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Abstract 
 

Lie symmetry analysis is performed on a class of non-linear partial differential 

equations (PDEs), which describes the longitudinal motion of an elasto-plastic bar and 

anti-plane shearing deformation. All the geometric vector fields of the equation are 

obtained. Interestingly, it is shown that this equation admits nonlocal type symmetry. 

The symmetry reductions and some new exact explicit solutions are also presented. 
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1 Introduction 

Nonlinear partial differential equations (NLPDEs) [1] are globally used to describe complex phenomena in several fields of sciences. 

especially in physical sciences. Therefore, solving nonlinear problems plays a vital role in nonlinear sciences. In line with this direction, 

many effective methods for finding exact solutions of NLPDEs have been established and developed in the past few decades. Among 

these methods, the Lie symmetry method, also called Lie group method, isone of the most powerful methods used in finding solutions of 

NLPDEs. The fundamental basis of this method is that whena differential equation is invariant under a Lie group of transformations [2–

4], a reduction transformation occurs. For PDEs 

with two independent variables, a single group reduction transforms the PDEs into ordinary differential equations (ODEs),which are 

generally easier solve to obtain the exact or numerical solutions. In the recent past years, there have been significant developments in 

symmetry methodsfor differential equations as clearly revealed by the number of research papers, books and new symbolic software 

devoted tothe subject. 

In the present paper, we consider a generalized fourth order nonlinear PDE arising in elasto-plastic flow[5] 

𝑢𝑡𝑡 − 2𝛽𝑢𝑥𝑥𝑡 +  𝛼𝑢𝑥𝑥𝑥𝑥 − 𝛾(𝑢𝑥
𝑛)𝑥 = 0,                                                          (1)        

where α,𝛽,γ are constants and n > 0. 

The Lie symmetries and symmetry solutions of the wave equations are derived. 
 

2 Preliminaries 

Definition 2.1.  

A 𝑘𝑡ℎ − order (k ≥  1) system 𝐸𝜎 of s partial differential equations of  𝑛 independent variables 𝑥𝑖 , 𝑖 =  1,2, . . . , 𝑛 and 𝑚-dependent 

variables 𝑢𝛼 ∶  𝛼 =  1, 2, . . . , 𝑚 is defined by; 

𝐸𝜎(𝑥𝑖 , 𝑢𝛼 , 𝑢(1), ⋯ , 𝑢(𝑘)) = 0,       𝜎 = 1, ⋯ , 𝑠                                                 (2) 

where 𝑢(1), … , 𝑢(𝑘) denote the collection of all first, second, ..., kth-order partial derivatives.  

Definition 2.2. 

The Euler-Lagrangian operator is defined by 
𝛿

𝛿𝑢𝛼
=

𝜕

𝜕𝑢𝛼
+ ∑(−1)𝑠

𝑠≥1

𝐷𝑖1
⋯ 𝐷𝑖𝑠

∂

∂u𝑖1⋯𝑖𝑠

α  ,              α =  1,2, . . . , m             (3)  

where 𝐷𝑖 =
𝜕

𝜕𝑥𝑖
+  𝑢𝑖

𝛼 𝜕

𝜕𝑢𝛼
+ 𝑢𝑖𝑗

𝛼 𝜕

𝜕𝑢𝑗
𝛼 + ⋯ ,          𝑖 =  1,2, . . . , n                        (4)   

is the total derivative operator with respect to 𝑥𝑖 

Definition 2.3. 

 The Euler-Lagrangian equations, associated with (2) are the equations 
𝛿𝐿

𝛿𝑢𝛼
= 0,                α =  1,2, . . . , m                                                                         (5)  

 

where L is referred to as a Lagrangian of (2). 

Definition 2.4.  

A Lie Backlund operator X is defined by 
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 𝑋 = 휀
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼

𝛿

𝛿𝑢𝛼
+ ∑ ς

𝑖1⋯𝑖𝑠

α

𝑠≥1

∂

∂u𝑖1⋯𝑖𝑠

α  ,              α =  1,2, . . . , m                                (6)  

where ς
𝑖1⋯𝑖𝑠

α are given as 

ς
𝑖
α = 𝐷𝑖(𝜂𝛼) − ς

𝑖1⋯𝑖𝑠

α 𝐷𝑖휀𝑗 ,        ς
𝑖1⋯𝑖𝑠

α = 𝐷𝑖𝑠
(ς

𝑖1⋯𝑖𝑠

α ) − u𝑗𝑖1⋯𝑖𝑠−1

α 𝐷𝑖𝑠
(휀𝑗), 𝑠 ≥ 1 .    (7)  

Definition 2.5.  

The Lie point symmetry of equation (2) is a generator X of the form (6) that satisfies  

𝑋[𝑘]𝐹|𝐹=0 = 0,                                   (8) 

where 𝑋[𝑘] is the  𝑘𝑡ℎ prolongation of X i.e., 

𝑋[𝑘] = 𝜉𝑖(𝑥, 𝑢)
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼(𝑥, 𝑢)

𝜕

𝜕𝑢𝛼
+ ς

𝑖
α(𝑥, 𝑢, 𝑢(1))

𝜕

𝜕𝑢𝑖
𝛼 + ⋯ + ς

𝑖1…𝑖𝑘
α (𝑥, 𝑢, 𝑢(𝑘))

𝜕

𝜕u𝑖1…𝑖𝑘
α  .     (9) 

Definition 2.6.  

A Lie Backlund operator X of the form (6) is called a Noether symmetry generator associated with a Lagrangian L of (5) if there exists a 

vector  𝐵 = (𝐵1, 𝐵2, ⋯ , 𝐵𝑛) 

such that 

𝑋𝐿 + 𝐿𝐷𝑖(휀𝑖) =  𝐷𝑖(𝐵𝑖),                                                                                                        (10) 
where X isprolonged to the degree of L [1]. If the vector B is identically zero, then X is a strict Noether symmetry [6]. For each Noether 

symmetry generator X associated with a given Lagrangian L corresponding to the Euler-Lagrange differential equations, a conserved 

quantity is obtained [7] using the equation 

𝑇𝑖 = 𝐵𝑖 − 𝑁𝑖L,                                    𝑖 =  1,2, . . . , n                                                         (11) 

3 Lie point symmetries 

In this section, the Lie point symmetry generators admitted by (1) are presented. The Lie symmetries is formed by the set of vector fields 

of the form  

𝑋 = 𝜉𝑡(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
+  𝜉𝑥(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
.                                                    (12) 

The operator X satisfies the Lie symmetry condition [1] 

𝑋[4][𝑢𝑡𝑡 − 2𝛽𝑢𝑥𝑥𝑡 + 𝛼𝑢𝑥𝑥𝑥𝑥 − 𝛾(𝑢𝑥
𝑛)𝑥]|(1) = 0,                                                          (13) 

where 𝑋[4]is the fourth prolongation of the operator X and can be computed from (9). 

Expansion and separation of (15) with respect to the powers of different derivatives of u yields the following  over determined system in 

the unknown coefficients 𝜉𝑡 , 𝜉𝑥 and 𝜂:  

𝜂𝑡𝑢 = 0, 𝜂𝑢𝑢 = 0, −𝜂𝑥𝑢 = 0, −𝜂𝑥𝑥𝑥𝑥 =
1

𝛼
(−𝛾𝜂𝑢(𝑢𝑥

𝑛)𝑥 + 2𝛾𝜉𝑡(𝑢𝑥
𝑛)𝑥), 

+2𝛽𝜂𝑥𝑥𝑡−𝜂𝑡𝑡, 𝜉 𝑢
𝑡 = 0, 𝜉 𝑥

𝑡 = 0, 𝜉 𝑡𝑡
𝑡 = 0, 𝜉 𝑡

𝑥 = 0, 𝜉 𝑢
𝑥 = 0, 𝜉 𝑥

𝑥 =
1

2
𝜉 𝑡

𝑡 .                   (14) 

 

Solving the over determined system (14)  for 𝜉𝑡(𝑡, 𝑥, 𝑢), 𝜉𝑥(𝑡, 𝑥, 𝑢) and 𝜂(𝑡, 𝑥, 𝑢)we obtain the Lie symmetries 

𝑋1 =  
𝜕

𝜕𝑡
, 𝑋2 =  

𝜕

𝜕𝑥
, 𝑋3 =  

𝑥

2

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
, 𝑋4 =  𝑢

𝜕

𝜕𝑢
, 𝑋5 =

1

6
𝑥3

𝜕

𝜕𝑢
, 𝑋6 = 𝑥

𝜕

𝜕𝑢
 ,   

𝑋7 =
1

2
𝑥2 𝜕

𝜕𝑢
, 𝑋8 = 2𝛾 ∬(𝑢𝑥

𝑛)𝑥 𝑑𝑡𝑑𝑡                             (15)  

𝑋1 − 𝑋7 are called Lie point symmetries while 𝑋8 is referred to as nonlocal symmetry due to the presence of the integral in the 

infinitesimal.  

Special cases 

(i)𝜶 = 𝟎, 𝜷 = 𝟎, 𝒏 = 𝟏, 𝜸 ≠ 𝟎 

This case gives rise to the linear wave equation 

𝑢𝑡𝑡 − 𝛾𝑢𝑥𝑥                (16) 

 
Equation (18) admits eight Lie point symmetries given by 

𝑋1 =  
𝜕

𝜕𝑡
, 𝑋2 =  

𝜕

𝜕𝑥
, 𝑋3 = 𝑢 

𝜕

𝜕𝑢
, 𝑋4 =  

𝜕

𝜕𝑢
, 𝑋5 = 𝑥

𝜕

𝜕𝑢
, 𝑋6 = 𝑡𝑥

𝜕

𝜕𝑢
, 

𝑋7 = 𝑡
𝜕

𝜕𝑢
, 𝑋8 = 2𝑥

𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
+ 𝑢 

𝜕

𝜕𝑢
,                  (17) 

as well as an infinite symmetry 𝑋9 = 𝐹1(𝑡, 𝑥)
𝜕

𝜕𝑢
, where 𝐹1(𝑡, 𝑥)is a solution of equation (16)and hence called the solution symmetry. 

This symmetry always comes up as a result of the linearity of the equation in question.  

(ii) 𝜷 = 𝟎, 𝜶𝜸 ≠ 𝟎, n = 3 

In this case equation (1) reduces to a well-known PDE, the modified Boussinesq equation given by [7] 

𝑢𝑡𝑡 +  𝛼𝑢𝑥𝑥𝑥𝑥 − 𝛾(𝑢𝑥
3)𝑥 = 0.                                                                                               (18) 

which was presented in the famous Fermi-Pasta-Ulam problem. The symmetries are 

𝑋1 =
𝜕

𝜕𝑡
, 𝑋2 =

𝜕

𝜕𝑥
 , 𝑋3 =

𝑥

2

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
 , 𝑋4 =

𝜕

𝜕𝑢
, 𝑋5 = 𝑡

𝜕

𝜕𝑢
 .                                     (19) 
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Equation (18) is used to investigate the behavior of systems which are primarily linear but a nonlinearity is introduced as a perturbation. 

It also arises in other physical applications[8]. In [9], three types of symmetry reductions of equation (20) were derived and it was shown 

thatthe equation is unintegrable. The soliton solutions of some special cases of equation (18) were obtained in [8 10,11,12,13]by various 

techniques. 

 

(iii) 𝜶 = 𝟎, 𝜷𝜸 ≠ 𝟎, n = 1 

This gives rise to  

𝑢𝑡𝑡 − 2𝛽𝑢𝑥𝑥𝑡 − 𝛾𝑢𝑥𝑥  .                                (20) 

The Lie symmetries are  

𝑋1 =
𝜕

𝜕𝑡
, 𝑋2 =

𝜕

𝜕𝑥
, 𝑋3 = 𝑡

𝜕

𝜕𝑢
 , 𝑋4 =

𝜕

𝜕𝑢
, 𝑋5 = 𝑢

𝜕

𝜕𝑢
 , 𝑋6 = 𝑡𝑥

𝜕

𝜕𝑢
, 𝑋7 = 𝑥

𝜕

𝜕𝑢
.     (21) 

 

4 Symmetry reduction and Exact/Invariant Solution 

One of the main aims for finding the symmetries of differential equations is to use them to reduce the differential equations which could 

be solved to obtain exact solutions. 

In this section, we will make use of the symmetries obtained in Section 3 to reducethe wave equations and obtain exact solutions where 

possible. In particular, we use the translation generators in 𝑡  variable given as 𝑋1 =  
𝜕

𝜕𝑡
 

The similarity variables and the similarity solutions of the equations can be obtained by solving characteristic equation given as 
𝑑𝑡

𝜉𝑡
=

𝑑𝑥

𝜉𝑥
=

𝑑𝑢

𝜂
                    (22) 

The general solution of these equations involves two constants, one becomes independent variabler and other plays the role of new 

dependent variable w.  

 

(i)𝜶 = 𝟎, 𝜷 = 𝟎, 𝒏 = 𝟏, 𝜸 ≠ 𝟎 

Using the  generator, 𝑋1 =  
𝜕

𝜕𝑡
on solving equation (22) we obtain the invariants 

𝑟 = 𝑥, 𝑤(𝑟) = 𝑢.              (23) 

Substituting (23) into equation (16) leads to the reduced second orderlinear 

ODE 

𝑤 ′′ − 𝛾𝑤 ′′ = 0                                                                                                                        (24) 
whose general solution in terms of the original variable u is 

 𝑢(𝑥) = (1 − 𝛾)𝐶1𝑥 + 𝐶2,  where 𝐶1, 𝐶2,  are constants. 

(ii) 𝜷 = 𝟎, 𝜶𝜸 ≠ 𝟎, n = 3 

Similar approach reduces (18) to 

𝛼𝑤 ′′′′ − 3𝛾𝑤 ′′𝑤 ′2 = 0.                                                                                                         (25) 
The general solution of (25) is an elliptic function given as, 

 𝑢(𝑥) =
2

3
√2 (√𝛼 (

𝛾

𝐶1
)

−
1

4
𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝐹 (𝑁 (

𝛾

𝐶1
)

1

4
, 𝐼) + 𝑥 + 𝐶2)

3

2

+ 𝐶3. 

where 𝐶1, 𝐶2,𝐶3are constants. 

(iii) 𝜶 = 𝟎, 𝜷𝜸 ≠ 𝟎, n = 1 

With the same generator 𝑋1, (20) reduces to the following third order nonlinear ordinary 

differential equation in 𝑥  variable 

𝑤 ′′ − 2𝛽𝑤 ′′′ − 𝛾𝑤 ′′ = 0.                                                                                                    (26) 
The solution of (26) is 

𝐶_3𝑒
−

1

2𝛽
(1−𝛾)𝑥

+ 𝐶_2𝑥 +  𝐶_1.                              (27) 
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5 Discussion and Conclusion 

In this paper, the invariance properties ofa class of non-linear PDEs, found in elasto-plastic flow were presented by using the Lie 

symmetry analysis. All the geometric vector fields of the non-linear PDEs were obtained. We discovered that the analyzed equation 

admits nonlocal type and solution symmetries as a result of the linearity of the equation when n = 1. 

The symmetry reductions were performed and the invariant solutions of the equations were presented. 

The results obtained here can be used in many important space times to facilitate the solutions of the wave equations in these space times. 
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