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Abstract 
 

In this paper, mathematical model for tuberculosis disease dynamics is presented. The basic 

mathematical properties of solution of the model are examined; the effect of public health 

education campaign was assessed which was found the most effective intervention for 

minimizing the transmission of TB in a population. Finally, the graphical profile of some of 

the solution of the model is presented and discussed. 
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1 Introduction 

Tuberculosis (TB) has existed for millennia and remains a major global health problem. It causes ill-health in millions of people each 

year and in 2015 was one of the top 10causes of death worldwide, ranking above HIV/AIDS as one of the leading causes of death from 

an infectious disease [1].TB is an infectious disease caused by the bacillus Mycobacterium tuberculosis. It typically affects the lungs 

(pulmonary TB) but can affect other sites as well (extra pulmonary TB) [2].The disease is spread in the air when people who are sick 

with pulmonary TB expel bacteria, for example by coughing. Overall, a relatively small proportion of people infected with M. 

tuberculosis will develop TB disease. However, the probability of developing TB is much higher among people infected with HIV. TB is 

also more common among men than women, and affects mainly adults in the most economically productive age groups. TB is treated 

through the use of effective drug. Effective drug treatments were first developed in the 1940s. The most effective first-line anti-TB drug, 

rifampicin, became available in the 1960s. People with latent TB infection have TB bacteria in their bodies, but they are not sick because 

the bacteria are not active. People with latent TB infection do not have symptoms, and they cannot spread TB bacteria to others. 

However, if TB bacteria become active in the body and multiply, the person will go from having latent TB infection to being sick with 

active TB disease. For this reason, people with latent TB infection are often prescribed treatment to prevent them from developing TB 

disease. Treatment of latent TB infection is essential for controlling and eliminating TB. Because there are less bacteria in a person with 

latent TB infection, treatment is much easier. Four regimens are approved for the treatment of latent TB infection. The medications used 

to treat latent TB infection include:  The currently recommended treatment for new cases of drug-susceptible TB is a six-month regimen 

of four first-line drugs: isoniazid, rifampicin, ethambutol and pyrazinamide. Treatment success rates of 85% or more for new cases are 

regularly reported to WHO by its Member States. TB treatment saved 49 million lives globally between 2000 and 2015.TB bacteria 

become active (multiplying in the body) if the immune system can't stop them from growing. When TB bacteria are active, this is called 

TB disease. TB disease will make a person sick. People with TB disease may spread the bacteria to people with whom they spend many 

hours. 

2. Model Formulation 

In our model formulation, the total population size ( )N t  is divided into six epidemiological classes, VIZ: vaccinated ( )V t , Susceptible

( )S t ,Exposed L( )t , Infectious ( )I t , Treated ( )T t  and Recovered ( )R t . In this model, the vaccinated population increases as a result of the 

individuals who are recruited by either immigration at the rate Λ and per capital birth rate 𝜋. The population however decreases as a 

result of those babies whose BCG vaccine has expired and due to natural death rate 𝜇. 
Table 1: State Variables of the model 
Variable Description 

)(tV  Number of vaccinated individuals at time, t 

)(tS  Number of susceptible individuals at time, t 

)(tL  Number of exposed (latently) individuals at time, t 

)(tI  Number of infections (active) individuals at time, t 

)(tT  Number of treated individuals at time, t 

)(tR  Number of recovered individuals at time, t 

)(tN  Total Population at time t 
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Figure 1: A compartmentalized diagram showing the TB model with public Health Education Campaign 

 
Table 2: Parameters of the model 

Parameter Description 
  Breakdown rate from the exposed class to the infectious class 
  Infection rate 
  Vaccination rate 
  Waning rate of the BCG vaccine 

  Recruitment number(due to birth) 
  Proportion of vaccinated individuals at birth 

 )1(   Proportion of individuals not vaccinated at birth 

e  Public health education campaign 

  Proportion of individuals acquiring active(infections) TB infection 

  Natural death rate 

  Death rate due to TB 

1  Treatment rate for the infectious individual 

2  Treatment rate for the latently(exposed) infected individual 

  Recovery rate of the treated individuals 

  Movement rate of the recovered individual back to the susceptible class 

Table 2 : Parameters of the Basic Model with Public Health Education Campaign 

Based on our model variables and parameters, assumptions in section 3 and the flow diagram in figure 1, the following non-linear ordinary differential 

equations were derived. 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 141–150 

ⱱ 

S 

 

I 

 
L 

 

T 

R 



143 
 

Stability Analysis of Dynamics…          Ezieke, Nwasuka, Nwachukwu and Ajike            Trans. Of NAMP 
 

 

 )( 
dt

dV         (1) 

SRV
N

SI

dt

dS
e   )1()1(      (2) 

L
N

SI

dt

dL
e )()1)(1( 2        (3)  

IL
N

SI

dt

dI
e )()1( 1        (4) 

TTIL
dt

dT
  12

       (5)  

RT
dt

dR
)(          (6) 

where 

RTILSVN         (7)   

Summing (1)-(6) yields 

IN
dt

dN
          (8)  

 

2.1 MODEL ANALYSIS  
The model (1) – (6) is analyzed qualitatively to give insights into its dynamical features that give better understanding of the impacts of 

vaccination, treated and public health education campaign on the transmission dynamics of TB. First, we have the following important 

theorems on nonlinear systems of differential equations. 

2.2Theorem 

Given nn RRf : is differentiable at 0x , then the partial derivatives ,  , 1, , ,i jf x i j n    all exist at 0x and for all nRx  

xj
xj

xf
xxDf 




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)(
)( 0

0

 

Thus, if f is a differentiable function, the derivative Df is given by the n n  Jacobian matrix. 



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
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xj

fi
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2.3 Definition: equilibrium x
of the system  x f x  is called hyperbolic if all eigen-values of the Jacobian  Df x  have non-zero real 

part. 
2.4  Invariant Region 

This region will be obtained by considering the following theorem  

Theorem 1:The solutions of the system (4) are feasible for all t >0 if theyenter the invariant region  . 

Proof 1:Let  = )( RTILSV  be any solution of the system (4)with non-negativeinitial conditions. From equation (8), in 

absence of the disease (TB),  = 0 and equation (8) becomes 

IN
dt
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 

        (9)

 

N
         (10)

 




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Integrating on both sides we get; 

cN 





where c is a constant of integration 

Using the initial conditions; when t = 0, N(0) = N0 
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0NN  

Applying Birkhof and Rota's theorem on differential inequality [3], we obtain 0 N



  as t  the total population approaches 

k



 as t which is commonly termed 
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as the carrying capacity. Therefore, the feasible solutions set of the model (1-6)enters the region 

 .,0,0,0,0,0,0),,,,,(
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

 NRTILSVIRTILSV  

Thus in this region our model is biologically feasible. 

2.5 Analysis of the Basic Model 

In this section, (1-6) is qualitatively analyzed to investigate the disease free equilibrium state. 

 

3 Existence of Disease Free Equilibrium Point (DFE),E0 

Let ),,,,,( 000000 RTILSVE be the equilibrium points of the model system (1) -(6).  
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In case of no disease, L=I=T=R=0 the sum of susceptible and Vaccinated populations is equal to total population. 

Hence, the system 1-6 is reduced to 
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The DFE state is thus given by 
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(9) Shows the state in which there is no TB infection and is known as the disease-free equilibrium point. 

4. The effective Reproduction Number, (RE) 

The effective reproduction number, of the normalized model system (1-6) with vaccination, Treatment and Public health education 

campaign is: 
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and. 02   

Clearly,
1 is the dominant Eigen-value and therefore becomes the effective reproduction number (RE)  of the model (1) - (6).  
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Where: 

2

1

         The duration of latency 

2( )



    The proportion of individuals from the stage that becomes infectious 

1

1

    The effective infectious period 

1( )



   
The number of susceptible infected by one infectious individual during the infectious period. 

The details for the computation of the basic reproduction number and the comparison between the effective reproduction numbers with 

individual or combination ofdifferent interventions areshown in[4] 

Local Stability of the Disease-free Equilibrium State (DFE),E0

 

In order to obtain conditions for the local stability of the disease-free equilibrium state, we re-write equations (1)-(6) as follows: 
 )(1 f

        (18) 
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We now obtain the partial derivatives of 
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We substitute the above partial derivatives into the Jacobian matrix below 
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That is, 
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Substituting 30 into 31 yields 
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We next compute 0)( 0  IEJ     as follows: 
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




















e

e

e

 
(33) 

From 33, we obtain 

  0)())()(( 2333223

2   kkkkk
 (34) 

Where  
 






)(

)1()1(
1



 ek

   
 






)(

)1()1)(1(
2



 ek

  
 

13
)(

)1()1(





 




 ek

 

From 34 

),(1   ,2   ),(3   )(4  

 
We obtain                    from the quadratic equation below: 

0)( 2233323

2  kkkkk 
    (35) 

from 35 we obtain
5 and

6 as
1 2 3 4, , ,   

 2

223

2

323

2

2322365 22222422
2

1

2

1

2

1

2

1

2

1
,   kkkkkk

 

Clearly are all less than zero.  

It is not clear whether                are less or greater than zero. We therefore conclude that, the disease- free equilibrium state is 

locally asymptotically stable if  

are less than zero and unstable if otherwise. 

This implies that the determinant of our variation  matrix, is positive if and only if 1ER   .Since, the trace of our matrix  0J E  is less than 

zero and its determinant is positive when 1ER  then, model system (1-6) is locally asymptotically stable at disease free equilibrium,
0E . 

 

GLOBAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM E0 

Analyzing the global stability of the disease-free equilibrium point we use [4] approach 

We write model system 1-6 in the form  

1

2

( , )s
s DFE S i

i
i

dz
x z z x z

dt

dz
x z

dt


  


 


       (36)

 

Where sz  is the vector representing the non-transmitting compartments and iz  is the vector representing the transmitting components. 

The DFE is globally asymptotically stable if A has real negative eigenvalues and 2x is a Metzler matrix. 

From system (1-6) we have 

   l, , , , ,i sz i z v s t r   

1
s DFE s

v
v

v
sz z

 

 





 
 

 
 

    
 
 
 
        (37)
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We check if the non-transmitting compartments have real negative eigenvalues and that 
2x is a Metzler matrix. 

From (1-6) equation for non-transmitting compartments are 

1

2

0 0 0

(1 )

0 0 0

0 0

e

A

I

x

A

A

  
  



 
 

 
 

  
 
 
        (38)

 

Where 
1

2

A

A

A

 

 

 

  

  

  

 

1

2 1

0 0

(1 )
0

0 0

e s

x

  

 

 
 

 
 

  
 
 
                     (39)

 

2

2

1

(1 )(1 )

(1 )

e

e

s

x
s

   
  

  
   

  
  

  
   

        (40)

 

Our direct computation shows that, the eigenvalues of x are real and negative. 

This implies that the system 
1( )s

s DFE s i

dz
x z z x z

dt
  

 is globally asymptotically stable at DFE. 

More so, since 
10 1i  we have, 

1(1 ) 0i  and this implies 2x a Metzler matrix. 

Thus, the DFE is globally asymptotically stable.  

Theorem (2): The disease –free equilibrium point isglobally asymptotically stable in   if 1ER  and unstable if 1ER  . 

ENDEMIC EQUILIBRIUM OF THE MODEL (EE) 

The endemic equilibrium can be obtained when (V,S,L,I,T,R) 0 . Let the endemic equilibrium of our model system (1-6) be denoted by 

EE  , , , , ,V S L I T R      .We wish to derive the endemic equilibrium for EE  , , , , ,V S L I T R      . 

Let ( )I     be force of infection. 

 

 

1

1 ( )e

S
I

R
N
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  2
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2 1
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 
T

R


 

 


              (44)

 

Substituting L and I   in the equation for the force of infection: ( )I      

2 1

(1 )(1 )

( (1 )
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e

e
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Where 

 
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And 

1

2 1

(1 ) (1 )(1 )

(1 ) ( )( )( )

e e

e

SI SI

N N
K

I
R

N

    

           

 
    
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 
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Therefore:    1 2 3 2 3 0C C C C C C C C C          

Expressing this as a polynomial 

 

 1 1 2 3 2 3

0

,

X Y Z

where X C Y C C C C and Z C C C C

 



  

     

 

0            (48) 
Which corresponds to the disease free equilibrium early discussed and   0X Y Z    which corresponds to the existence of two 

endemic equilibrium points. 

. 

4.1Simulation and Discussion 

Table 3: Values for population-dependent parameters of the model(1-6) 

S/NO Variable/Parameter Value Source 

1 S  82,104,841  CIA [5] 

2 V  37,120,961 CIA [5] 

3 L  52,136,956 CIA [5] 

4 I  5,792,995 CIA [5] 

5 N  177,155,754 CIA [5] 

6 T
 

 0.0189 1yr  CIA [5] 

7    3,348,245 CIA [5] 

 

Table 4:Values for population-independent parameters of the model 

 

We present a summary of the results of our analytical solution in Figures 1below. 

 
Figure 1:Actively infected population against time. 

Figure 1shows the relationship between the actively infected population against time for the cases where the treatment rates and the 

public health education campaign are varied. The above figure shows a decline in the number of the actively infected individuals. This 

agrees with reality in the sense that when the treatment rates are effective and high, individuals infected with TB get quick recovery. 

Similarly, when the public health awareness campaign (advert on radio, TV and print media) on TB is also high, many persons will 

become more careful in interacting with anyone suspected to have TB infection. 
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S/NO Parameter       Value    Source 

1   0.0000621 1yr  [6] 

2   0.067 1yr  [7] 

3   
0.5 1yr  [8] 

4   0.1 1yr  Estimated 

5   0.00292 1yr  [9] 

6   1.25 1yr  Estimated 

7 

8 

9 

1  

2  
][e  

   0.7 1yr
 

0.8 1yr  
0-1 1yr  

Estimated 

Estimated 

Estimated 
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5. Conclusion 
In this paper, a mathematical model dynamics for TB incorporating treatment, vaccination and public health education campaign as 

control measures is presented as a system of ordinary differential equations. The disease free equilibrium is shown to be locally 

asymptotically stable if  
5 6 0and    and unstable if otherwise. The result of our analysis shows that the rate of spread of TB will be 

less when people infected with TB is reduced. The results obtained from dynamical system analysis and simulations of the models shows 

that incorporating of treatment and public health education campaign actually reduces the rate of actively infected individuals. The 

analysis and numerical results also suggest that incorporating treatment, vaccination and public health education campaign 

simultaneously reduces the rate of actively infected individuals better than when only one is introduced. 
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