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Abstract 
 

A new perspective for obtaining solutions of initial value problems using Artificial 

Neural Networks (ANN) stems from the fact that most solutions in previous research 

works rely on weight updating to finding approximate solutions to initial value 

problems. In this paper we develop a Neural Network algorithm using MathCAD 14 

software, which enables us to slightly adjust the intrinsic biases involved in solving 

third order homogeneous and non-homogeneous ODE. In the homogeneous and 

non-homogeneous cases, we employ a Statistical Package for Social Sciences (SPSS 

23) and Gaussian Radial Basis Function (GRBF) to obtain the weights, which need 

not be adjusted, from input layer to the hidden layer, and from the hidden layer to the 

output layer, respectively. We compare exact results with the neural network results 

for our example ODE problems and find the results to be in good agreement. 
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1.0 Introduction 

An Artificial neural network (ANN) is fundamentally a mathematical model, and its structure consists of a series of processing 

elements which are inter-connected and their operation resemble that of the human neurons. These processing elements are also 

known as units or nodes.  The ability of the network to process information is embedded in the connection strengths, simply called 

weights, which, when exposed to a set of training patterns, adapts to it. [1]. The conventional way of solving differential equations 

using artificial neural network involves updating of all the parameters, weights and biases, during the neural network training [2 - 

7]. This is caused by the inability of the neural network to predict a solution with an acceptable minimum error. In order to reduce 

the error, the error function is minimized. Minimizing the error function demands finding its gradient. This gradient involves the 

computation of multivariate partial derivatives of the error function with respect to all the parameters, weights and biases, and the 

independent variable. This computational complexity is quite evident when handling first order ordinary differential equations, as 

shown in [8,9]. It is even more difficult when solving higher order ODE where you need to compute higher order derivatives of 

the error function. 

 

2.0 Mathematical Model of ANN 

ANNs are constructed with layers of units, which are termed multilayer ANNs. A layer of units in an ANN is made up of units 

that perform similar tasks. There are two functions that govern the behaviour of a unit in a particular layer, which normally are the 

same for all units within the whole ANN. These are; 

1) The input function and 

2) The output/activation function 

Input into a node is a weighted sum of output from nodes connected to it. 

A neuron receives a set of n inputs,  1,2,...,jS x j n  . In Fig. 1, each input is weighted before reaching the main body of a neuron

iN by connection strength or weight factor ijw for 1,2,...,j n . In addition, it has a bias b or
0w , a threshold value 

k , which has 

to be reached or exceeded for the neuron to produce an output signal [10].  
 

2.1 Activation Function 

The activation of a neuron is computed by applying a threshold function (popularly known as activation function) to the weighted 

sum of the inputs plus a bias [10]. A function  f s  acts on the produced weighted signal. This function is called an activation  
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function. Mathematically, the output of the ith neuron 
iN is given by;  
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       (1) 

and figure 1.1  shows detailed computational steps of the working principle of an artificial neuron (AN) in a neural network. Now 

the input signal for the ith neuron 
iN  is,  

0
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j

s w w x
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       (2) 

 
Fig.1 Mathematical Model of Artificial Neural Network. [8] 

 

All inputs are multiplied by their weights and added together to form the net input to the neural called net. Mathematically, we can 

write 

 
1 1 2 2 ...i i in nnet w x w x w x            (3) 

where   is a threshold value that is added to the neurons. The neuron behaves as activation or mapping function  f net  to 

produce an output y  which can be expressed as: 

 
1

n

ij j

j

y f net f w x 


 
   

 


            (4) 

where  f net  is called the neuron activation function or the neuron transfer function [10]. 

In this paper we employ the sigmoid activation function given by 

   
1

1 Txx e


                       (5) 

It is an S shaped smooth function, where input is mapped into values between +1 and 0. 

 

2.2 Function Approximation 

Function approximation attempts to describe the behaviour of very complicated functions by sets of simpler functions, therefore 

we shall exploit its potentials in this paper. 

 

2.3Theorem (Universal approximation theorem for MLP) 

Let 
nI  represent an n-dimensional unit cube containing all possible input samples x, that is,  0,1 ,ix  1,2,...,i n  , and  nC I  be the 

space of continuous functions on
nI . If  .  is a continuous sigmoid function, then the finite sums of the form  

 
2

3 2

1 0
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N n
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i j

y y x w w w x k m
 

 
   

 
 

          (6) 

are dense in  nC I . In other words, given any  nf C I   and 0  , there is a sum  ,y x w  of the form (2.6) that satisfies 

   ,y x w f x    for all
nx I . As such, there always exists a 3-layer perceptron that can approximate an arbitrary nonlinear, 

continuous, multi-dimensional function f   with any desired accuracy[11].Thus, any continuous function can be approximated to 

a given precision using artificial neural networks with just one hidden layer. 
 

3.0 Neural Network method for solving third order ODE 

Lagaris et al. [4] gave the following as the general formulation for the solution of first order ODE       

   , ,   ,
d

f x x a b
dx


 

             (7) 

with initial condition  a A  .To employ ANN for the solution, we define a trial solution,  ,t x p written as the sum of two terms, i.e. 
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       , , , ,t x p A x F x N x p                 (8) 

where  A x satisfies the initial conditions and contains no adjustable parameters, where  ,N x p is the output of feed forward neural 

network with the parameters p and input data x. The function   , ,F x N x p  is actually the operational model of the neural network. 

Feed forward neural network (FFNN) converts differential equation problem to function  

approximation problem. The neural network  ,N x p  is given by 

   
1

,
m

j j

j

N x p v z



               (9) 

where  

 
1

,
n

j ji i ji
z w x u


                            (10) 

jiw denotes the weight from input unit i to the hidden unit  j , jv denotes weight from the hidden unit j to the output unit, ju

denotes the biases, and  jz is the sigmoid activation function. 

To solve this problem using neural network (NN), a NN architecture with three layers - one input layer with one neuron; one 

hidden layer with three neurons and one output layer with one output unit, as shown in figure 2.2, is employed. Each neuron is 

connected to other neurons of the previous layer through adaptable synaptic weights jw  and biases ju . Lagaris et al. [4] applied 

the same procedure to second order IVP. 

   
2

2
, , ,  0 , 0

d d
f x A B

dx dx

 
  

 
   

 

              (11) 

with the trial solution cast as 

   2 ,t ix A Bx x N x p                     (12) 

where ,A B  and    
3

1

,i j j

j

N x p v z


 . 

 

Fig.2 Schematic for  ,N x p  

For third order initial value problem: 

     
3 2

3 2
, , , , 0 , 0 , 0

d d d
f x A B C

dx dx dx

  
   

 
     

 

,              (13) 

We extended the trial solution for first and second order ODE to get the following for third order, viz: 

   2 3 , ,   , ,t ix A Bx Cx x N x p A B C       

[8] proposed the following method in solving linear ordinary homogeneous differential equations with constant coefficients using 

NN novel approach. First, a solution is assumed to the homogeneous part and the assumed solution is approximated with a 

polynomial function using SPSS model. The choice of polynomial functions was motivated by the fact that every polynomial 

function   1

1 1 0

n n

n nf x a x a x a x a

     , is continuous x  , and the graph of continuous function in a given interval is 

unbroken in that interval [12]. This enables us to estimate the regression coefficients in the nonlinear regression model. These 

coefficients are then employed as the weights from the input layer to the hidden layer. The task of obtaining the weights from 

hidden layer to the output layer is done by finding  f x , a real function of a real valued vector  1 2, ,...,
T

dx x x x and a set of 

functions,   i x called the elementary functions such that  

   
1

ˆ ,
N

i i

i

f x v v x


         (14)                                

 is satisfied, where iv  are real valued constants such that 
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   ˆ ,f x f x v            (15)  

When one can find coefficients 
iv  that make   arbitrarily small for any function  f   over the domain of interest, we say that the 

elementary function set   i   has the property of universal approximation over the class of functions  f   [8].We shall use the 

GRBF given by 
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as our elementary function and find  f x  such that; 

1v f                      (17) 

Here v becomes a vector with the coefficients, f is a vector composed of the values of the function at the N points, and   the 

matrix with entries given by values of the elementary functions at each of the N points in the domain. The major task here is 

finding  f x . We shall apply what [8,9] proposed for first and second order ode to this effect. Now to compute the weights from 

hidden layer to the output layer, we find a function  F x  such that 1v f  where        1 2 3, , 
T

f x F x F x F x   
.  We form a 

linear function based on the default sign of the differential equation, i.e.  F x ax b  , where a  is the coefficient of the derivative 

of y and b  is the coefficient of y . Extending this to the third order IVP,   3 2F x ax bx cx d    , where , , ,a b c d . Then we 

employ MathCAD 14 [13], a numerical algebra software, to slightly adjust the biases. These are the only parameters to be 

adjusted according to this new procedure. The Mean-Squared Error (MSE), given by: 

  
2

1

1 n

n i i

i

E y f x
n 

 
                 (18)    

will be employed to analyze the error.  A demonstration of how the neural network solutions agree with exact solutions are 

presented in the subsequent tables and simulations. 
 

4.0 Main results 

In this section we present our main results. This concerns the solution of third order initial value problems using the novel 

artificial neural network methods developed in [8]. We shall consider both homogeneous and non homogeneous third order 

differential equations. 
 

4.1  Third order homogeneous and non-homogeneous ODE 

We observe here that in the literature, we did not see, to the best of our knowledge, any example on third order differential 

equations to compare our results with. Thus, we shall be contented to make a comparison of our results with exact solutions. It is 

also important to mention here that the methods we have developed thus far, can solve linear constant coefficient ordinary 

differential equations of any order. We begin with the initial value problem [14]; 

       100 100 0; 0 4, 0 11,  0 299,  0,1y y y y y y y x                                      (19) 

Our trial solution is    2 3 ,ty x A Bx cx x N x p    . Applying the initial conditions gives 

4, 11, 229 2A B C     

Hence    2 3299
4 11 ,

2
ty x x x x N x p    , the exact solution is      cos 10 sin 10x

ay x e x x   . 

We use excel spreadsheet to find values of  ay x  at all the specified x  values, displayed in Table 4.1 

Table 4.1 Values of       , cos 10 sin 10x

ax y x e x x    for problem (19) 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

y 2 2.4869 1.7146 0.50099 0.0814 0.97346 2.5029 3.4246 3.0694 1.961 1.335 

Using SPSS regression model[15], we compute the weights from input layer to hidden layer. From Table 4.2 and Figure 3, the 

cubic curve shows perfect fit. Using the cubic, we pick our weights from input layer to hidden layer as:

11 12 1317.581, 44.840, 28.698w w w     . 

Table 4.2   Model Summary and Parameter Estimates (SPSS Output) for problem (19) 

Dependent Variable: Y 
 

Equation 

Model Summary Parameter Estimates 

R Square Constant b1 b2 b3 

Linear 

Quadratic 

Cubic 

.040 

.066 

.536 

1.509 

1.778 

2.811 

.628 

-1.165 

-17.581 

 

1.793 

44.840 

 

 

-28.698 

The independent variable is X 
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Fig. 3Polynomial Curve – Fit Regression of      cos 10 sin 10x

ay x e x x    

In order to compute the weights from hidden layer to the output layer, we form  F x  by forming a cubic equation with the default 

sign of the ODE. That is,   3 2F x ax bx cx d    , where 1,a  1,b   100,c  100d   . Therefore, 

  3 2 100 100,F x x x x       110.011,120.048,130.117
T

f x                        (20) 

as obtained from Table 4.1, and 1v f . Hence, the weights from the hidden layer to the output layer are given by; 
1

1

2

3

518.281 0.94 0.78 110.011

0.94 1 0.94 120.048 940.225

0.78 0.94 1 130.117 609.67

v

v

v



      
      

  
      
             

                    (21) 

Hence the weights from the hidden layer to the output layer are; 

1 2 3518.28,  940.225,  609.67v v v     

The biases are fixed between -50 and 50. We now train the network with the available parameters using our MathCAD 14 

algorithm [13] as follows: 

 

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1

w : 17.581   w : 44.840   w : 28.698   x : 1   

v : 518.28      v : 940.225    v : 609.67   u : 16.004      u : 50      u : 26.3

z : w x u 1.577     z : w x u 5.16     z : w x u 2.398

σ z : 1

     

       

              

   

   

   

     

 

     

    

1

1

1 3
2 2

1

3 3

1 1 2 2 3 3

2 3299
p 2

x
d

2

d p

exp z 0.171189

σ z : 1 exp z 5.709 10

σ z : 1 exp z 0.083325

N : v σ z v σ z v σ z 134.157043

y x : 4 11 x x x N 0.342957

y x : e 10 cos 10 x sin 10 x 0.342954

E : 0.5 y x y x



 





   

      

     

      

        

       

    125.862 10

 

 

Next we consider the initial value problem;  

       6 11 6 6 7; 0 1,  0 1,  0 4,  0,1y y y y x y y y x              .                       (22) 

The trial solution is    2 3 ,ty x A Bx cx x N x p    . Applying the initial conditions gives 1, 1, 2A B C    . Hence,

   2 31 2 ,ty x x x x N x p    ,   2 3x x x
ay x e e e     . 

We use excel spreadsheet to find values of   ay x  at all the x  points as displayed in Table 3.3. 

Table 4.3 Values of   2 3, x x x

ax y x e e e      for problem (22) 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

y 3 2.4644 2.0379 1.6962 1.4208 1.19754 1.0153 0.8656 0.7419 0.639 0.553 

 

Using SPSS regression model  [15],we compute the weights from input layer to hidden layer. From Table 4.4 and Figure 4, the 

cubic curve shows a perfect fit. Using the cubic, we pick our weights from input layer to hidden layer as:

11 12 135.651,  4.986,  1.781w w w      . 
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Fig. 4Polynomial curve – fit regression of   2 3x x x

ay x e e e      

Now to compute the weights from hidden layer to the output layer, we form  

     6 7,    6.4, 5.8, 5.2
T

F x x f x                                 (23) 

as obtained from Table 4.3and 1v f . Hence, the weights from the hidden layer to the output layer are 
1

1

2

3

29.9151 0.94 0.78 6.4

0.94 1 0.94 5.8 45.312

0.78 0.94 1 5.2 24.46

v

v

v


       
      

  
      
              

                                     (24) 

The weights from the hidden layer to the output layer are
1 2 329.915, 45.312, 24.46v v v     . 

The biases are fixed between 10 and 10. We now train the network with the available parameters using our MathCAD 14 

algorithm as follows: 

   

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1 1

w : 5.651   w : 4.986   w : 1.781   x : 1   

v : 29.915      v : 45.312    v : 24.46   u : 6      u : 5.464      u : 1

z : w x u 0.349     z : w x u 0.478     z : w x u 2.781

σ z : 1 exp z

     

         

             

  

   

   

     

 

 

    

1

1

2 2

1

3 3

1 1 2 2 3 3

2 3
p

x 2 x 3 x
d

2 9
d p

0.586375

σ z : 1 exp z 0.382821

σ z : 1 exp z 0.05836

N : v σ z v σ z v σ z 1.622483

y x : 1 x 2 x x N 0.377517

y x : 9 e 8 e 3 e x 3 0.377594

E : 0.5 y x y x 2.969 10







    



 

     

     

       

      

        

    

 

Finally, we consider the initial value problem; 

       2 35 2 24 e ; 0 1,  0 1,  0 3,  0,1xy y y y x y y y x                          (25) 

The trial solution is    2 3 ,ty x A Bx cx x N x p    . Applying the initial conditions gives 1, 1, 3 2A B C   . Therefore,   

   2 33
1 ,

2
ty x x x x N x p    ,      2 3 4x x x

ay x e e e   .  

We use excel spreadsheet to find values of  ay x  at all the x  points as displayed in Table 3.5. 

Table 4.5 Values of   2 3 4, x x x

ax y x e e e    for problem (25) 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

y 3 3.6604 4.718 6.32853 8.7225 12.2386 17.374 24.857 35.758 51.64 74.82 
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Table 4.4   Model Summary and Parameter Estimates (SPSS Output) for problem (22) 

Dependent Variable: Y 

Equation 

Model Summary Parameter Estimates 

R Square Constant b1 b2 b3 

Linear 

Quadratic 

Cubic 

.925 

.066 

.536 

1.509 

1.778 

2.811 

.628 

-1.165 

-17.581 

 

2.315 

4.986 

 

 

-1.781 

 

 

 

 

 
 

The independent variable is X 
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Using SPSS regression model [15], we compute the weights from input layer to hidden layer. From Table 4.6 and Figure 5, the 

cubic curve shows perfect fit. Using the cubic, we pick our weights from input layer to hidden layer as:

11 12 1326.881,  78.908,  123.643w w w    . 

Table 4.6   Model Summary and Parameter Estimates (SPSS Output) for problem (25) 

Dependent Variable: Y 
 

Equation 

Model Summary Parameter Estimates 

R Square Constant b1 b2 b3 

Linear 

Quadratic 

Cubic 

.801 

.982 

.999 

-9.255 

 6.728 

 2.277 

  62.714 

-43.843 

 26.881 

 

106.557 

-78.908 

 

 

123.643 

The independent variable is X 

 
Fig. 5 Polynomial Curve – Fit Regression of   2 3 4x x x

ay x e e e    

In order to compute the weights from hidden layer to the output layer, we form  

     2 3e ,      0.020086,0.072885,0.221364
TxF x x f x  ,            (26) 

obtained from Table 4.5, and 1v f . Hence, the weights from the hidden layer to the output layer are 

1

1

2

3

3.6221 0.94 0.78 0.020086

0.94 1 0.94 0.072885 7.596

0.78 0.94 1 0.221364 4.537

v

v

v



      
      

  
      
             

                  (27) 

The weights from the hidden layer to the output layer are
1 2 33.622, 7.596, 4.537v v v    . 

The biases are fixed between –5 and 30. We now train the network with the available parameters using MathCAD 14 software as 

follows: 

   

1 2 3

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1 1

w : 3.622   w : 7.596   w : 4.537   x : 1   

v : 26.881      v : 78.908    v : 123.643   u : 0.925      u : 30      u : 3.807

z : w x u 4.547     z : w x u 22.404     z : w x u 0.73

σ z : 1 exp z

    

       

           

  

   

   

     

 

    

 

1

1

2 2

1

3 3

1 1 2 2 3 3

2 33
p 2

4 x 3 x 3 x 21
d 375

d p

0.98952

σ z : 1 exp z 1

σ z : 1 exp z 0.674805

N : v σ z v σ z v σ z 31.126026

y x : 1 x x x N 34.626026

y x : 0.769 e 0.196 e x e 25 x 60 126 34.626017

E : 0.5 y x y

x







   

   

     

     

      

      

          

     
2 11x 3.789 10 

 

 

5.0Simulations 

We present the graphical profile of the accuracy of our method of solution as compared with the analytical. The conventional 

method, as mentioned earlier, involves complicated multivariate partial derivatives, while adjusting the parameters (weights and 

biases). This becomes even more apparent when second and higher order differential equations are involved. Therefore, our novel 

approach reduces this complexity to the barest minimum by eliminating completely weight adjustments. Table 5.1 and Figure 6 

compares the analytic result of problem (19) with our neural network result, and there was satisfactory agreement. Likewise Table 

5.2, Table 5.3, Figure 7 and Figure 8 for problems (22) and (25) respectively. 
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6.0Conclusion 

In this paper we extended the novel approach developed in [8] to third order homogeneous and non-homogeneous linear ordinary 

differential equations. We employed Excel spreadsheet, IBM SPSS 23, and MathCAD 14 algorithm to achieve this task. Our 

result is validated by the excellent approximations achieved in comparison with the exact solutions. 
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Table 5.1 Comparison of the results of Problem (19) 

Input Data 

(X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 4 3.5675 0.8823 -1.479 -1.2259 1.5408 4.4232 4.9324 2.7784 0.1383 -0.343 

Y Pred 4 3.5675 0.8823 -1.479 -1.2259 1.5408 4.4233 4.9325 2.7784 0.1383 -0.343 

 

Table 5.2 Comparison of the results of Problem (22) 
Input Data 

(X) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 1 0.9162 0.8525 0.7966 0.7418 0.6851 0.6257 0.5639 0.5009 0.4384 0.3776 

Y Pred 1 0.9161 0.8525 0.7965 0.7418 0.6852 0.6256 0.5639 0.5009 0.4383 0.3775 
 

Table 5.3 Comparison of the results of Problem (25) 

Input Data 

(X) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y Exact 
1 1.3928 1.9569 2.7667 3.9299 5.6039 8.0179 11.5075 16.5651 23.9151 34.626 

Y Pred 
1 1.2655 1.9569 2.7667 3.9299 5.6039 8.0179 11.5074 16.5651 23.9151 34.626 

 

                  
  Fig. 6Y Exact and Y Predicted for problem (19)      Fig. 7 Y Exact and Y Predicted for problem (22)      Fig. 8 Y exact and Y predicted for problem (25) 
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