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Abstract 
 

In this paper, we proposed a combination of direct computational method with 

homotopy analysis method, namely DHAM, in order to find approximate solutions of 

Fredholm integral equations. We present convergence analysis of the proposed 

method of DHAM for solving Fredholm integral equations to the exact solution. 

illustrative examples were given to show applicability and efficiency of the proposed 

method of DHAM in solving Fredholm integral equations. The result obtained by 

DHAM is in line with the theoretical finding. 
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1. Introduction  

Integral equations arise naturally in physics, chemistry, biology and engineering [4]. Most physical phenomena are governed by 

functional equations such as differential equations (DE), difference equations, integral equation (IE) and other functional equations.  

More details about the sources and origins of integral equations can be found in [1-3]. The exact solution of integral equations is some 

time difficult to find especially the nonlinear ones. Different approaches were made by researchers to find the exact or approximate 

solution of IEs. In [4].Sinc collocation method based on the double exponential transformation was applied to solve Voltera integral 

equation. A modified homotopy perturbation method was applied to solve DE and IE [5,6]. Guzeliya construct solution of Voltera and 

Abel integral equations by a generalized power series [7]. Ababneh used Picard approximation method to solve Voltera IE by using of 

self-canceling noise terms approach which is proposed by Wazwaz [8]. In [9], Ahmet obtained numerical solution of Fredholm IE using 

weighted mean value theorem. In [10], review of different numerical methods for solving both linear and nonlinear Fredholm integral 

equations was discussed. In [11], Laplace transform and Taylor's series was used to solve Voltera IE of convolution type. Their method 

was shown to require much less computational work than traditional methods. 

 Since the introduction of homotopy analysis method (HAM) [12,13] many authors applied the method to solve integral equations. In [14] 

HAM was applied to both Fredholm and Voltera integral equations with numerical examples given to show the performance and 

reliability of the method. Convergence of homotopy HAM was studied in [15] with examples to illustrate the validity for the conditions 

presented in the method. For other applications of HAM see [16-18]. S. L. Bichi et.al [19] developed the direct-homotopy analysis 

method (DHAM) for solving Fredholm integro-differential equations. 

 In this paper, we consider integral equation of the form: 

𝛷(𝑥) = 𝑓(𝑥) + 𝛶 ∫ 𝑘(𝑥, 𝑡)𝛷(𝑡)𝑑𝑡
𝑏

𝑎
,      (1) 

where𝑘(𝑥, 𝑡) = 𝑔(𝑥)𝑠(𝑡)i.e𝑘(𝑥, 𝑡)which is separable and 𝑓(𝑥) are known functions, 𝑎, 𝑏and 𝛶are constant and 𝛷(𝑥)is the unknown 

function to be determine. 

 

Description of Homotopy Analysis method 

Consider 

 N[𝛷(𝑥)] = 0        (2) 

where𝑁is a nonlinear operator, 𝛷(𝑥) is the unknown function of independent variable x. For simplicity, we ignore all initial or boundary 

conditions. Liao [12] constructed the so called zero-order deformation equation as follows: 

(1 − 𝑞)𝐿[𝜓(𝑥; 𝑞) − 𝛷0(𝑥)] = ℎ𝑞𝐻(𝑥)𝑁[𝜓(𝑥; 𝑞)],    (3) 

where𝑞 ∈ [0,1]is the embedding parameter, ℎ ≠ 0is an auxiliary parameter, 𝐻(𝑥) ≠ 0 is an auxiliary function, 𝐿is a linear operator and 

𝛷0(𝑥) is the initial guess of 𝛷(𝑥). When 𝑞 = 0and 𝑞 = 1 it holds that: 

𝜓(𝑥; 0) = 𝛷0(𝑥)and𝜓(𝑥; 1) = 𝛷(𝑥)      (4) 

respectively. Thus, from (4) as 𝑞increases from 0 to 1, 𝜓(𝑥; 𝑞) varies from initial guest𝛷0(𝑥) to solution𝛷(𝑥). According to taylor's 

theorem,𝜓(𝑥; 𝑞) can be expanded in power of 𝑞as follows: 
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𝜓(𝑥; 𝑞) = 𝛷0(𝑥) + ∑ 𝛷 m (𝑥)𝑞𝑚,

∞

𝑚=1

     (5) 

where   

𝛷 m (𝑥) =
1

𝑚!

𝜕𝑚𝜓(𝑥;𝑞)

𝜕𝑞𝑚
|𝑞 = 0.       (6) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary function are properly chosen, the series (5) 

converges at 𝑞 = 1. So, we obtain  

𝛷(𝑥) =  𝛷0(𝑥) + ∑ 𝛷 m (𝑥)

∞

𝑚=1

.      (7) 

Define a vector 

 𝛷 n

⃗⃗ ⃗⃗ ⃗⃗  ⃗
= {𝛷 0 (𝑥), 𝛷 1

(𝑥), 𝛷 2 , … , 𝛷 n (𝑥), }. 

Differentiating (3) 𝑚times with respect to the embedding parameter 𝑞and setting 𝑞 = 0 then divide through by 𝑚! we obtain the 

𝑚𝑡ℎorder deformation equation as: 

𝐿 [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)] = ℎ𝐻(𝑥)𝑅 m (𝛷 1m ),    (8) 

where    

𝑅 m (𝛷 1m ) = 
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝜓(𝑥;𝑞)]

𝜕𝑞𝑚−1
|𝑞 = 0,     (9) 

and   

 𝝌 m = {
0, 𝑚 ≤ 1
1, 𝑚 > 1

. 

 

2. Direct-homotopy Analysis Method 

In this section we construct the new method of direct homotopy analysis method (DHAM)as follows: 

Consider the Fredholm integral equation: 

𝛷(𝑥) = 𝑓(𝑥) + 𝛶 ∫ 𝑘(𝑥, 𝑡)𝛷(𝑡)𝑑𝑡
𝑏

𝑎
,       (10) 

where𝑓(𝑥) and 𝑘(𝑥, 𝑡) are known functions with 𝑘(𝑥, 𝑡) = 𝑔(𝑥)𝑠(𝑡). We define the nonlinear operator as: 

𝑁[𝛷(𝑥)] = 𝛷(𝑥) −  𝑓(𝑥) − 𝛶𝑔(𝑥) ∫ 𝑠(𝑡)𝛷(𝑡)𝑑𝑡
𝑏

𝑎
.    (11) 

The corresponding mth-order deformation equation is: 

𝐿 [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)] = ℎ𝐻(𝑥)𝑅 m (𝛷 1m ),    (12) 

where   

𝑅 m (𝛷 1m ) = 𝛷 1m (𝑥) −  𝑓(𝑥) (1 − 𝝌 m ) − 𝛶𝑔(𝑥) ∫ 𝑠(𝑡)𝛷 1m (𝑡)𝑑𝑡
𝑏

𝑎
.  (13) 

Choosing the auxiliary linear operator 𝐿[𝛷(𝑥)] = 𝛷(𝑥), we obtain 

𝛷 1
(𝑥) = ℎ𝐻(𝑥)[𝛷 0 (𝑥) − 𝑓(𝑥) −  𝛶𝑔(𝑥) ∫ 𝑠(𝑡)[𝛷 0 (𝑡)𝑑𝑡

𝑏

𝑎
. ],   (14) 

and 

𝛷 m (𝑥) = 𝛷 1m (𝑥) + ℎ𝐻(𝑥) [𝛷 1m (𝑥) −  𝛶𝑔(𝑥) ∫ 𝑠(𝑡)𝛷 1m (𝑡)𝑑𝑡
𝑏

𝑎
],  (15) 

for 

𝑚 = 2,3,4,… .        (16) 

With proper choice of the initial guess 𝛷 0 (𝑥), the auxiliary function 𝐻(𝑥) and the auxiliary parameter ℎthe series 

𝛷 0 (𝑥) + ∑ 𝛷 m (𝑥)

∞

𝑚=1

,       (17) 

converges to the exact solution. Therefore the solution is: 

𝛷(𝑥) =  𝛷0(𝑥) + ∑ 𝛷 m (𝑥)

∞

𝑚=1

.      (18) 

3. Convergence analysis 

Theorem 3.1. Given that the series (17) is convergent, with 𝛷 0 (𝑥) as initial guess and 𝛷 m (𝑥)obtained from equation (12) and equation 

(13). Then the convergence is to the exact solution ofequation (10). 
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Proof of Theorem 3.1.Let 

𝛷(𝑥) =  ∑𝛷 m (𝑥)

∞

𝑚=0

 

be a convergent series, then it is true that 

lim
𝑛→∞

𝛷 m (𝑥) = 0. 

By computing 

∑

[
 
 
 
 

𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)

]
 
 
 
 

= 𝛷 1 (𝑥) +

(

  
 

𝛷 2 (𝑥) − 𝛷 1 (𝑥)

)

  
 

+ ⋯

𝑛

𝑚=1

 

+(𝛷 n (𝑥) − 𝛷 1n (𝑥)) = 𝛷 n (𝑥).      (19) 

As 𝑛 → ∞, we obtain 

∑ 𝛷 m (𝑥)

∞

𝑚=1

= lim
𝑛→∞

𝛷 m (𝑥) = 0.      (20) 

By the choice of our linear operator 𝐿 

∑ 𝐿 [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)]

∞

𝑚=1

= 𝐿 ∑ [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)]

∞

𝑚=1

= 0   (21) 

Using equation (8) given as 

𝐿 [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)] = ℎ𝐻(𝑥)𝑅 m (𝛷 1m ).     (22) 

Thus, we have from equation (21) and equation (22) that 

∑ 𝐿 [𝛷 m (𝑥) − 𝝌 m  𝛷 1m (𝑥)]

∞

𝑚=1

= ∑ ℎ𝐻(𝑥)𝑅 m (𝛷 1m )

∞

𝑚=1

    (23) 

=  ℎ𝐻(𝑥)∑ 𝑅 m (𝛷 1m )

∞

𝑚=1

.       (24) 

= 0.         (25) 

Since ℎ ≠ 0and 𝐻(𝑥) ≠ 0we have 

∑ 𝑅 m (𝛷 1m )

∞

𝑚=1

= 0       (26) 

from equation (13) and equation (26) 

∑𝑅
1m

(𝛷 1m )

∞

𝑚=1

 = ∑[

∞

𝑚=1

 𝛷 1m (𝑥) −  𝑓(𝑥)(1 − 𝝌 m ) 

−𝛶𝑔(𝑥)∫ 𝑠(𝑡)𝛷 1m (𝑡)𝑑𝑡
𝑏

𝑎

] 

= ∑𝛷 1m (𝑥)

∞

𝑚=1

−  𝑓(𝑥) − 𝛶𝑔(𝑥)∫ 𝑠(𝑡) ∑

∞

𝑚=1

𝛷 1m (𝑡)𝑑𝑡
𝑏

𝑎

 

= ∑𝛷 m (𝑥)

∞

𝑚=0

−  𝑓(𝑥) − 𝛶𝑔(𝑥)∫ 𝑠(𝑡)∑𝛷 m (𝑡)

∞

𝑚=0

𝑑𝑡
𝑏

𝑎

 

 = 0 ,        (27) 

implies 

 𝛷(𝑥) = 𝑓(𝑥) + 𝛶 ∫ 𝑘(𝑥, 𝑡)𝛷(𝑡)𝑑𝑡
𝑏

𝑎
.      (28) 

Therefore, 𝛷(𝑥) is the exact solution of equation (10). 
 

4. Numerical results 

In this section we present some numerical examples that uses DHAM to solve Fredholm integral equations (10).Throughout the 

following example we make choices of the auxiliary parameter ℎ = −1and auxiliary function 𝐻(𝑥) = 1.The result we obtained from 

DHAM is compared with exact solution and absolute error is shown in the given tables. 
 

Example 4.1 Consider integral equation: 

𝛷(𝑥) = 1 +
4

1 ∫ 𝑐𝑜𝑠𝑥𝛷(𝑡)𝑑𝑡2



0

, 

with exact solution 𝛷(𝑥) = 1 + xcos
6

 . Choosing 𝛷 0 (𝑥) = 1 as initial guess, we obtain from (13) and (14) that 
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𝛷 1
(𝑥) = −𝛷 0 (𝑥) + 1 +

4

1 ∫ 𝑐𝑜𝑠𝑥𝛷 0 (𝑡)𝑑𝑡2



0

, 

𝛷 m (𝑥) =
4

1 𝑐𝑜𝑠𝑥 ∫ 𝛷 1m (𝑡)𝑑𝑡2



0

. 

Table 1: The exact and approximate solution of example 4.1 

𝑚 𝑥 Exact solution DHAM (18) Absolute error 

 

 

 

 

30 

0.0 

0.2 

0.4 

0.7 

0.9 

1.0 

1.5235987756 

1.5131616602 

1.4822664087 

1.4004704328 

1.3254742183 

1.2829016258 

1.5235987756 

1.5131616602 

1.4822664087 

1.4004704328 

1.3254742183 

1.2829016258 

4.54150E_19 

4.45096E_19 

4.18299E_19 

3.47353E_19 

2.82304E_19 

2.45378E_19 

Table 1, provides the exact solution example 4.1 and its approximate solution obtained by DHAM (18). The errors obtained indicated that DHAM is 

efficient 

.      
Figure 1: Exact and DHAM solutions for Example 4.1  Figure 2:Errors for Example 4.1 

Example 4.2  Consider integral equation: 

𝛷(𝑥) = 𝑠𝑖𝑛𝑥 +

2

1 ∫ 𝑐𝑜𝑠𝑥𝛷(𝑡)𝑑𝑡2



0

, 

with exact solution 𝛷(𝑥) = 𝑠𝑖𝑛𝑥 + xcos .Choosing 𝛷 0 (𝑥) = 𝑥 as initial guess from (13) and (14). Weobtain: 

𝛷 1
(𝑥) = −𝛷 0 (𝑥) + 𝑠𝑖𝑛𝑥 +

2

1 ∫ 𝑐𝑜𝑠𝑥𝛷 0 (𝑡)𝑑𝑡2



0

, 

𝛷 m (𝑥) =

2

1 𝑐𝑜𝑠𝑥 ∫ 𝛷 1m (𝑡)𝑑𝑡2



0

. 

Table 2: The exact and approximate solution of example 4.2 

 

 

In Table 2, the exact solution of problem in example 4.2 is compared with approximate solution obtained by DHAM (18). The errors 

obtained indicated that DHAM is accurate. 

     
Figure 3: Exact and DHAM solutions for Example 4.2  Figure 4: Errors for Example 4.2       

 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 117–122 

𝑚 𝑥 Exact solution DHAM (18) Absolute error 

 

 

30 

0.0 

0.1 

0.3 

0.5 

0.7 

1.0 

1.0000000000 

1.0948375819 

1.2508566958 

1.3570081004 

1.4090598745 

1.3817732907 

0.9999999993 

1.0948375812 

1.2508566951 

1.3570080999 

1.4090598740 

1.3817732903 

7.13671E_10 

7.10107E_10 

6.81796E_10 

6.26306E_10 

5.45846E_10 

3.85598_10 
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Example 4.3Consider integral equation: 

𝛷(𝑥) =

10

9 2x
+

2

1
∫

22tx 𝛷(𝑡)𝑑𝑡
1

0

, 

with exact solution 𝛷(𝑥) = 𝑥
2

Choosing 𝛷 0 (𝑥) = 𝑥 as initial guess from (13) and (14). Weobtain: 

𝛷 1
(𝑥) = −𝛷 0 (𝑥) +

10

9 2x
+

2

2x
∫

2t 𝛷 0 (𝑡)𝑑𝑡
1

0

, 

𝛷 m (𝑥) =

2

2x
∫

2t 𝛷 1m (𝑡)𝑑𝑡
1

0

. 

Table 3: The exact and approximate solution of example 4.3 

𝑚 𝑥 Exact solution DHAM (18) Absolute error 

 

 

 

30 

0.0 

0.2 

0.4 

0.7 

0.9 

1.0 

0.0000000000 

0.0400000000 

0.1600000000 

0.4900000000 

0.8100000000 

1.0000000000 

0.0000000000 

0.0400000000 

0.1600000000 

0.4900000000 

0.8100000000 

1.0000000000 

0 

0 

0 

0 

0 

0 
 

In Table 3 the exact solution of problem in example 4.3 is compared with approximate solution of DHAM (18). The errors obtained 

indicate the accuracy of the result obtained by DHAM. 

      
Figure 5: Exact and DHAM solutions for Example 4.3  Figure 6: Errors for Example 4.3   

    

Table 4: Comparison between ADM; HPM and DHAM obtained from example 4.1 

𝑥 ADM HPM DHAM 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

5.0877E_4 

5.0113E_4 

4.8848E_4 

4.7096E_4 

4.4873E_4 

4.2201E_4 

3.9108E_4 

3.5624E_4 

3.1784E_4 

5.0877E_4 

5.0113E_4 

4.8848E_4 

4.7096E_4 

4.4873E_4 

4.2201E_4 

3.9108E_4 

3.5624E_4 

3.1784E_4 

1.1890E_4 

1.1711E_4 

1.1416E_4 

1.1006E_4 

1.0486E_4 

9.8625E_5 

9.1396E_5 

8.3254E_5 

7.4280E_5 
 

In Table 4, the absolute error obtained with ADM and HPM is compared with absolute error obtained by DHAM (each by taking first 

four terms of the series) problem in example 4.1. 

 
Figure 7: Comparison of the absolute errors obtained by ADM, HPM and DHAM in Table 3 
 

 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 117–122 



122 
 

An Efficient Hybrid Method of…                     Sirajo and Lawal                     Trans. Of NAMP 
 
 

5. Conclusion 
In this paper, the approximate solution of integral equations with separable kernel was obtained by applying a combine methods of direct 

computational and homotopy analysis methods. We observed from the tables in the numerical results that the absolute errorsobtained are 

becoming better by taking more terms of the series equation (17).This is because the series (17) converges to the exact solution as proved 

in the convergence analysis. Comparison was also made with ADM and HPM which shows that our method of DHAM is efficient. 

 

REFERENCES 

[1] Wazwaz, A.M. (1997).A First Course in Integral Equations,world scientific, Singapore 

[2]  Kanwal R. P. (1971). Linear Integral Equations, London: Academic Press 

[3]  Rahman, M.(2007). Integral Equations and their Applications, WIT Press, Southampton UK. 

[4]  Muhammad, M., Eshkuvatov, Z.K., Nurmuhammad, A. M.,   Mori, M., Sugihara, M. (2005) Numerical solution of integral 

equations by means of the Sinc collocation method based on the double exponential transformation, Journal of Computational 

and Applied Mathematics 177,  269-286. 

[5]  Chowdhury, M.S.H., Razali, N.I. Ali, S., Rahman M.M. (2013). An Accurate Analytic Solution for Differential and Integral 

Equations by Modified Homotopy Perturbation Method, Middle-East Journal of Scientific Research 13 (Mathematical 

Applications in Engineering): 50-58. 

[6]  Dolapci, E.T.,Senol, M., Pakdemirli, M. (2013).New Perturbation Iteration Solutions for Fredholm and Volterra Integral 

Equations, Hindawi Publishing Corporation Journal of Applied Mathematics, Article ID 682537, 5 pages, 

http://dx.doi.org/10.1155/2013/682537. 

[7]  Guzeliya, G. andAlena, A. (2015)Analytical Solutions for Volterra and Abel Integral Equations Using a Generalized Power 

Series Method. International Journal of Pure and Applied Mathematics, Volume 105No. 3 2015, 537-542. 

[8]  Ababneh, O. Y. and Al-sawalha, M.M. (2016).Picard Approximation Method for Solving Nonlinear Quadratic Volterra Integral 

Equations, Journal of Mathematics Research; Vol.8, No. 1. 

[9]  Alturk, A.(2016). Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value 

theorem, SpringerPlus5:1962, DOI;10.1186/s40064-016-3645-8. 

[10] Ray, S.S. and Sahu, P.K.(2013)Numerical Methods for Solving Fredholm Integral Equations of Second Kind, Hindawi 

Publishing Corporation, Abstract and Applied Analysis, Volume, Article ID 426916, 17 pages, 

http://dx.doi.org/10.1155/2013/426916. 

[11]  Yang, C.and Hou, J. Numerical Method for solving Volterra Integral Equations with a Convolution Kernel, IAENG 

International Journal of Applied Mathematics, 43:4, IJAM-43-4-03. 

[12]  Liao, S.J. (2003). Beyond Pertubation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton. 

[13]  Liao, S.J.(2009). Notes on homotopy analysis method: Some definitions and theorems, Com-mun Nonlinear Sci. Numer. 

Simulat. 14, 983-997. 

[14]  Izadian, J., Salahshour, S., Soheil, S. (2012).Numerically Solving Volterra and Fredholm Integral Equations, World Applied 

Sciences Journal 16 (12): 1664-1667, 2012, ISSN1818-4952.  

[15]  Ghanbar, B. On the Convergence of the Homotopy Analysis Method for Solving Fredholm Integral Equations, 

http://wjst.wu.ac.th.  

[16]  Hetmaniok, E., Sota, D., Trawinski, T., Witua, R. (2014).Usage of the homotopy analysismethod for solving the nonlinear and 

linear integral equations of the second kind,NumerAlgor  67:163185, DOI 10.1007/s11075-013-9781-0. 

[17]  Zadeh, H. H., Jafari, H., Karimi,S. M. (2010).Homotopy Analysis Method for Solving Integral and Integro-Differential 

Equations, IJRRAS 2 (2), 

[18]  Vahdatia, S., Abbas, Z., Ghasemi, M. (2010)Application of Homotopy Analysis Method toFredholm and Volterra integral 

equations, Mathematical Sciences Vol. 4, No. 3,267-282. 

[19] Bichi, S. L, Lawal H. L., Lawal, S. M. and Bello, M. Y. (2018), Direct-homotopy analysis for solving fredholmintegro-

differential equations, Journal of Physics: Conference Series, 1123(1): pp012-036. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 117–122 

http://dx.doi.org/10.1155/2013/426916

