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Abstract 
 

In this paper we establish some new oscillation criteriafor the solution of a forced 

superlinear conformable fractional differential equationwith damping term by using 

the averaging functions method.Our results provide extensions and improvmentto 

some existing ones. Some examples are also given to show the relevance of our 

results. 
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1. Introduction 

The fractional calculus [1, 2, 3] has attracted many researchers since the last two centuries. The impact of this 

fractional calculus on both pure and applied branches of sciences and engineering gained substantial increase during the last 

two decades. Also, research on oscillation theory as part of the qualitative theory of differential equations has been 

developing rapidly in the last decades, particularly on the oscillatory behaviour of integer order differential equations [4-6, 

7]. Furtherextensions have been done on oscillation of fractional differential equations using Riemann-Liouville, Caputo 

and modified Riemann-Liouville [8-10, 11-13, 14]. However, since the introduction of conformable fractional derivatives, 

not many researchers have  worked on the oscillation of the solution of conformable equations. These include : 

[15]worked on oscillatory properties of a class of conformable fractional generalised Lienard equations  

0

2 0=))(()))(())((()))(()(( tttxgtxTtxftxTtrT  
     (1) 

 where 
T  denotes the conformable fractional derivative w.r.t  , 1<0  . 

Also, [16] established Kamenev Type oscillatory criteria for linear conformable fractional differential equations  
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 where ))(0,),,([ 0  tCp , )),,([ 0 R tCq , 1<0   and q  might change signs. 

In [17],  the oscillation of solutions to the generalized forced nonlinear conformable fractional differential equation of the 

form 

,))(),(,(=))(),(,()]())(()([ 0tttxTtxtQtxTtxtPtxTtxtaT       (3) 

were cosidered where 
T  denotes the operator called conformable fractional derivative of order   with respect to variable 

t, C  denotes continuous function with fractional derivative of order  , ]),,[[ 0 R tCa   and ],),[[•, 2

0 RR tCQP  . 

In this paper, we establish the oscillation of solutions to a forced superlinear fractional differential equation with damping 

term 
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where 

:,, gpa are continuous functions on the interval ),( 0 t  

:, f are continuous functions on the real line R , with 0>)(xf ,  Rx . 
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2. Preliminaries 

For the purpose of this paper, we use the definition of fractional derivative of order (0,1]  by R. Khalil [18].  

Definition 1 [19,18] Given a function R)[0,:f . Then the "conformable fractional derivative" of f  of order   is 

defined by  
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 exists, then define  
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Definition 2 A solution )(tx  of (4)  is said to be oscillatory if it has infinite number of zeros, otherwise it is said to be 

nonoscillatory. The equation is said to be oscillatory if all its solutions are oscillatory.  

 

Some properties of the conformable fractional derivative of order (0,1]  which will be useful in this work are 

summarises below. For all pba ,, , we have  
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We refer the readers who are not familiar with conformable fractional derivatives to see [18,19] for details.  
 

3. Main Results 

In this section, we establish different oscillatory conditions for equation (4) . Here, we let  
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Theorem 1  

Suppose equation (6) – (11) hold and there exists a differentiable function thatsucht )(0,),[: 0   
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Then, for any integers 1>, , equation (4)  is oscillatory if  
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where  
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Proof. Let )(tx  be a non oscillatory solution of equation (4) , without loss of generality we assume that 0>)(tx  for 

0>0tt  . Let W be defined by  
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From equation (4) ,  
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 where )()(=)( tqtgtr  .  

Substituting (16)  into (15) , we have  
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 integrating inequality (17)  w.r.t ds, we have  
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 In what follows, we consider the following two cases. 

CASE 1 The integral  
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Also from (9) , we let  
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where B  is a positive constant. Next, we put  
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using (21) and the definition of )(tW  in equation (17), we obtain  

*

0
2

2

2

1

)(

)()(
)()()(

1)()(
)( Ttfor

dssk

tWtb
tWtt

kt

trt
tW

t

t














 

TtfortWtVtWtt
kt

trt



)]()()()()([

1)()(
= 2

2

1





     (22) 

If we multiply both sides of the inequality (22) by   )( ut  and integrate from   to t  we have  
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 dividing (23)  by   )(t  and taking the upper limit as t , we obtain  
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This contradicts (14) Next, we show the second case. 

CASE 2 The integral  
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We choose a 
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From (24)  and the above inequality, we deduce that  
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This complete the proof.  

Theorem 2 Suppose equations (10)  and )(t  in (11)  hold with (6)  and (12)  respectively replace with  
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for constants 3k  and 
1L . If there exists a positive continuously differentiable function   defined in Theorem 3 above, then 

equation (4)  is oscillatory if  
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Proof. On the contrary, we assume that equation (4)  has a non-oscillatory solution )(tx . Without loss of generality, we 

assume that 0>)(tx  for 0>0tt  . Following the proof of Theorem 3, we obtain equation (17)  i.e  
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using (25)  in inequality above, it implies that  
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integrate (28) , we have  
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simplifying the above inequality gives  
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 integrate (29) , we have  
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 dividing (30)  by )( 0tt   and taking the upper limit as t , we arrive at  
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this contradicts (27)  which complete the proof.  

Example 1. Consider the nonlinear forced fractional differential equation  
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Without loss of generality, equation (6)  to (9)  hold. 

Substitute (32) , (33)  and (35)  into (12) , we have  
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This shows that (14)  holds, hence equation (31)  is oscillatory. 

Example 2. Consider the nonlinear forced fractional differential equation  
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 From (36) , we deduce that  
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Substitute (37)  - (40)  into (27) , we have  
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This shows that (27)  holds, hence equation (36)  is oscillatory.  
 

Conclusions 

In this article, we have established some new oscillation results for a forced superlinear conformable fractional 

differential equations with dampping term. This extends and also improves on some existing results in the literature [15-

17]. Since the new results are derived, we provided two examples to illustrate the relevance of the results obtained.  
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