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Abstract 

In this paper we numerically solved the coupled viscous Burgers’ equation with 

appropriate initial and boundary conditions. We use the Cubic B-Spline collocation 

method on the space integration and applied the Crank-Nicolson method for the 

temporal variable. This method proved to be unconditionally stable when we applied 

the Von Neumann stability algorithm. We provided some numerical examples to 

validate the scheme; our solutions were also compared with existing ones and it 

proved to possess faster convergence to the exact solutions. 

 
1. Introduction 

Burgers' equation is one of the most common nonlinear and time dependent partial differential equation (PDEs) in fluid 

mechanics.  

Burgers’ equation normally describes various kinds of phenomena such as mathematical model of turbulence and the 

approximate theory of flow through a shock wave travelling in a viscous fluid [1]. In literature, there abound numerical 

methods that have been implemented for approximating solution of Burgers’ equation. There are authors who use numerical 

techniques based on finite difference, [2], finite element [3] and boundary element [4] methods in attempting to solve 

Burgers equations. In [5], a parameter uniform implicit difference scheme for solving time-dependent Burgers’ equation 

was used.  

In this paper, we are concerned with numerical solution of coupled viscous Burgers’ equation derived in [1] to study the 

model of poly dispersive sedimentation. This is a simple model of sedimentation of two kinds of particles in fluid 

suspension or colloids under the influence of gravity.  

The exact solution of coupled Burgers’ equation has been obtained by Kaya [6] using Adomian decomposition method and 

soliton. There are a lot of recent studies that treated the viscous Burgers’ equation, viz-a-viz Harmonics differential 

quadrature finite differences coupled approach [7]. 
 

This paper seeks to find numerical solution for the coupled viscous Burgers’ equation given by: 

𝑢𝑡 − 𝑢𝑥𝑥 + 𝜂𝑢𝑢𝑥 + 𝛼(𝑢𝑣)𝑥 = 0               𝑥𝜖[𝑎, 𝑏], 𝑡𝜖[0, 𝑇]                               (1) 

𝑣𝑡 − 𝑣𝑥𝑥 + 𝜂𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥 = 0                𝑥𝜖[𝑎, 𝑏], 𝑡𝜖[0, 𝑇]                               (2) 

With initial condition  

𝑢(𝑥, 0) = 𝜑1(𝑥),          𝑣(𝑥, 0) = 𝜑2(𝑥) 
And boundary conditions 

𝑢(𝑎, 𝑡) = 𝑓1(𝑎, 𝑡),          𝑢(𝑏, 𝑡) = 𝑓2(𝑏, 𝑡) 
𝑣(𝑎, 𝑡) = 𝑔1(𝑎, 𝑡),          𝑣(𝑏, 𝑡) = 𝑔2(𝑏, 𝑡) 
Where 𝜂 a real constant is while  𝛼 and 𝛽 are arbitrary constants depending on the parameters. 

The treatment for this equation will involve the use of cubic B-spline collocation method on space integration and finite 

difference Crank-Nicolson method on the time integration. 

The paper is organized as follows: in section 1 we introduce the general Burgers’ equation model and its applications; 

section 2 highlights the basis function for cubic B-spline and their derivatives at the nodal point. Section 3 was devoted 

to computing approximate solutions in terms of cubic spline function and some time dependent parameter. We test the 

stability of our scheme using Von Neumann method in section 4; the paper is concluded with two numerical examples 

in section 5. 
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2. Cubic Spline Bases 

To construct numerical solution we consider the nodal points (𝑥𝑖 , 𝑡𝑗) defined on the region [𝑎, 𝑏] × [0, 𝑇] where  

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏 

𝑥𝑖+1 − 𝑥𝑖 = ℎ,     0 < 𝑡0 < 𝑡1 < ⋯ < 𝑡       
𝑡𝑖+1 − 𝑡𝑖 = ∆𝑡 
The following represents the cubic B-Spline basis functions at their nodal points: 

𝐵𝑚(𝑥) =
1

ℎ3

{
 
 

 
 
(𝑥 − 𝑥𝑚−2)

3                                         𝑥 ∈ [𝑥𝑚−2, 𝑥𝑚−1)                         

(𝑥 − 𝑥𝑚−2)
3 − 4(𝑥 − 𝑥𝑚−1)

3        𝑥 ∈ [𝑥𝑚−1, 𝑥𝑚)                                

(𝑥𝑚+2 − 𝑥)
3 − 4(𝑥𝑚+1 − 𝑥)

3   𝑥 ∈ [𝑥𝑚, 𝑥𝑚+1)                     

(𝑥𝑚+2 − 𝑥)
3𝑥 ∈ [𝑥𝑚+1, 𝑥𝑚+2)   

0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

(3) 

Using this B-Spline basis function, the values of 𝐵𝑚(𝑥) and their derivatives could be obtained from nodal points thus: 

At 𝑥𝑚−2 nodal point we have 
1

ℎ3
[(𝑥𝑚−2 − 𝑥𝑚−2)

3] = 0 = 𝐵𝑚(𝑥𝑚−2) 

At 𝑥𝑚−1 nodal point we have  

𝐵𝑚(𝑥𝑚−1) =
1

ℎ3
[(𝑥𝑚−1 − 𝑥𝑚−2)

3 − 4(𝑥𝑚−1 − 𝑥𝑚−1)
3] =

1

ℎ3
× ℎ3 − 4(0) = 1 

At 𝑥𝑚 nodal point we have  

𝐵𝑚(𝑥𝑚) =
1

ℎ3
[(𝑥𝑚+2 − 𝑥𝑚)

3 − 4(𝑥𝑚+1 − 𝑥𝑚)
3] 

=
1

ℎ3
[[(𝑥𝑚+2 − 𝑥𝑚+1) − (𝑥𝑚+1 − 𝑥𝑚)]

3 − 4(𝑥𝑚+1 − 𝑥𝑚)
3] 

1

ℎ3
(2ℎ)3 − 4ℎ3 =

1

ℎ3
× 4ℎ3 = 4 

at 𝑥𝑚+1 nodal point we have  

𝐵𝑚(𝑥𝑚+1) =
1

ℎ3
[(𝑥𝑚+2 − 𝑥𝑚+1)

3] =
1

ℎ3
× ℎ3 = 1 

𝐵𝑚(𝑥𝑚+2) = 0                                                               
1𝑠𝑡 Derivatives of cubic spline at the nodal point: 

𝐵𝑚
ˈ(𝑥𝑚−2) =

1

ℎ3
[3(𝑥𝑚−2 − 𝑥𝑚−2)

2] = 0                                   

𝐵𝑚
ˈ(𝑥𝑚−1) =

1

ℎ3
[3(𝑥𝑚−1 − 𝑥𝑚−2)

2 − 12(𝑥𝑚−1 − 𝑥𝑚−1)
2] 

=
1

ℎ3
× 3(ℎ2) =

3

ℎ
 

𝐵𝑚
ˈ(𝑥𝑚) =

1

ℎ3
[3(𝑥𝑚+2 − 𝑥𝑚)

2 − 12(𝑥𝑚+1 − 𝑥𝑚)
2] 

=
1

ℎ3
× [3(2ℎ)2 − 12ℎ2] =

1

ℎ3
× 0 = 0 

𝐵𝑚
ˈ(𝑥𝑚+1) =

1

ℎ3
[3(𝑥𝑚+2 − 𝑥𝑚+1)

2] =
1

ℎ3
 × 3ℎ2 =

3

ℎ
 

𝐵𝑚
ˈ(𝑥𝑚+2) = 0                                                                             
2𝑛𝑑 Derivatives at Nodal Points 

𝐵𝑚
ˈˈ(𝑥𝑚−2) = 0                                                                                     

𝐵𝑚
ˈˈ(𝑥𝑚−1) =

6

ℎ3
[(𝑥𝑚−1 − 𝑥𝑚−2) − 24(𝑥𝑚−1 − 𝑥𝑚−1)] =

6

ℎ2
 

𝐵𝑚
ˈˈ(𝑥𝑚) =

1

ℎ3
[6(2ℎ) − 24ℎ] =

1

ℎ3
(−12) = −

12

ℎ2
 

𝐵𝑚
ˈˈ(𝑥𝑚+1) =

1

ℎ3
[6ℎ] =

6

ℎ2
 

𝐵𝑚
ˈˈ(𝑥𝑚+2) = 0.                                                                                  

 

3. The Solution of Coupled Viscous Burgers’ Equation 

Here we discretize the time derivative of equation (1) and (2) using finite difference scheme of the Crank Nicolson 

scheme to obtain  
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𝑢𝑛+1 − 𝑢𝑛

∆𝑡
−
[𝑢𝑥𝑥
𝑛+1 + 𝑢𝑥𝑥

𝑛 ]

2
+ 𝜂

[(𝑢𝑢𝑥)
𝑛+1 + (𝑢𝑢𝑥)

𝑛]

2
+ 𝛼

[((𝑢𝑣)𝑥)
𝑛+1 + ((𝑢𝑣)𝑥)

𝑛]

2
= 0                                                                                                                                                                             (4)   
𝑣𝑛+1 − 𝑣𝑛

∆𝑡
−
[𝑣𝑥𝑥
𝑛+1 + 𝑣𝑥𝑥

𝑛 ]

2
+ 𝜂

[(𝑣𝑣𝑥)
𝑛+1 + (𝑣𝑣𝑥)

𝑛]

2
+ 𝛽

[((𝑢𝑣)𝑥)
𝑛+1 + ((𝑢𝑣)𝑥)

𝑛]

2
= 0                                                                                                                                            (5) 

The nonlinearities in (2) and (3) are linearized thus: 

(𝑢𝑢𝑥)
𝑛+1 = 𝑢𝑛+1𝑢𝑥

𝑛 + 𝑢𝑛𝑢𝑥
𝑛+1 − (𝑢𝑢𝑥)

𝑛                                                                                                       (6) 
(𝑢𝑣)𝑥

𝑛+1 + (𝑢𝑣)𝑥
𝑛 Is computed thus: 

(𝑢𝑣)𝑥 = 𝑣𝑢𝑥 + 𝑢𝑣𝑥 

So that 

[(𝑢𝑣𝑥)
𝑛+1 + (𝑢𝑣𝑥)

𝑛] + [(𝑣𝑢𝑥)
𝑛+1 + (𝑣𝑢𝑥)

𝑛] = (𝑢𝑣)𝑥
𝑛+1 + (𝑢𝑣)𝑥    .                                    

𝑛                              (7) 
From (5) we substitute into (7), the like terms cancel thus: 
(𝑢𝑣)𝑥

𝑛+1 + (𝑢𝑣)𝑥
𝑛 = (𝑢𝑛+1𝑣𝑥

𝑛) + (𝑢𝑛𝑣𝑥
𝑛+1) − (𝑢𝑣𝑥)

𝑛 + (𝑢𝑣𝑥)
𝑛 + (𝑣𝑛+1𝑢𝑥

𝑛) 
+(𝑣𝑛𝑢𝑥

𝑛+1) − (𝑣𝑢𝑥)
𝑛 + (𝑣𝑢𝑥)

𝑛 

= 𝑢𝑛+1𝑣𝑥
𝑛 + 𝑢𝑛𝑣𝑥

𝑛+1 + 𝑣𝑛+1𝑢𝑥
𝑛 + 𝑣𝑛𝑢𝑥

𝑛+1  .                                                                                                   (8) 
Now, the following equation represents a simplified version of (4) for what follows:  

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
−
[𝑢𝑥𝑥
𝑛+1 + 𝑢𝑥𝑥

𝑛 ]

2
+ 𝜂

[𝑢𝑛+1𝑢𝑥
𝑛 + 𝑢𝑛𝑢𝑥

𝑛+1]

2
+ 𝛼

[𝑢𝑛+1𝑣𝑥
𝑛 + 𝑢𝑛𝑣𝑥

𝑛+1 + 𝑣𝑛+1𝑢𝑥
𝑛 + 𝑣𝑛𝑢𝑥

𝑛+1]

2
= 0                                                                                                                                                                             

𝑣𝑛+1−𝑣𝑛

∆𝑡
−

[𝑣𝑥𝑥
𝑛+1+𝑣𝑥𝑥

𝑛 ]

2
+ 𝜂

[𝑣𝑛+1𝑣𝑥
𝑛+𝑣𝑛𝑣𝑥

𝑛+1]

2
+ 𝛽

[𝑢𝑛+1𝑣𝑥
𝑛+𝑢𝑛𝑣𝑥

𝑛+1+𝑣𝑛+1𝑢𝑥
𝑛+𝑣𝑛𝑢𝑥

𝑛+1]

2
=0. 

Using Cubic B-Spline basis function𝐵𝑚(𝑥) and the time dependent parameters 𝛿𝑚(𝑡) and 𝜎𝑚(𝑡)for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) 
we obtain approximate solutions thus: 

𝑣𝑚(𝑥, 𝑡) = ∑ 𝜎𝑚(𝑡)𝐵𝑚(𝑥),           

𝑁+1

𝑚=−1

𝑢𝑚(𝑥, 𝑡) = ∑ 𝛿𝑚(𝑡)𝐵𝑚(𝑥).                                                        (9)  

𝑁+1

𝑚=−1

 

We use the Cubic B-Spline function 𝐵𝑚(𝑥) to deduce the approximate solution 𝑢(𝑥) and 𝑣(𝑥) in terms of time 

parameter of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) respectively. 

We compute 

𝑢𝑚 = ∑ 𝛿𝑀(𝑡)𝐵𝑀

𝑚+2

𝑀=𝑚−2

(𝑥); 

by taking into cognizance the property that 𝐵𝑚−𝑖(𝑥) = 𝐵(𝑥𝑚−1) so that  

𝑢𝑚 = 𝛿𝑚−2(𝑡)𝐵𝑚(𝑥𝑚−2) + 𝛿𝑚−1(𝑡)𝐵𝑚(𝑥𝑚−1) + 𝛿𝑚(𝑡)𝐵𝑚(𝑥𝑚) + 𝛿𝑚+1(𝑡)𝐵𝑚(𝑥𝑚+1) + 𝛿𝑚+2(𝑡)𝐵𝑚(𝑥𝑚+2) 
= 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1 

𝑢𝑚
ˈ = ∑ 𝛿𝑀(𝑡)𝐵𝑀

ˈ(𝑥)

𝑚+2

𝑀=𝑚−2

= 𝛿𝑚−2(𝑡)𝐵𝑚
ˈ(𝑥𝑚−2) + 𝛿𝑚−1(𝑡)𝐵𝑚

ˈ(𝑥𝑚−1) + 𝛿𝑚(𝑡)𝐵𝑚
ˈ(𝑥𝑚) + 𝛿𝑚+1(𝑡)𝐵𝑚

ˈ(𝑥𝑚+1)

+ 𝛿𝑚+2(𝑡)𝐵𝑚
ˈ(𝑥𝑚+2) = 0 +

3

ℎ
𝛿𝑚−1 + 0 +

3

ℎ
𝛿𝑚+1(𝑡) + 0 

=
3

ℎ
[𝛿𝑚−1(𝑡) + 𝛿𝑚+1(𝑡)] 

𝑢𝑚
ˈˈ = ∑ 𝛿𝑚(𝑡)𝐵𝑚

ˈˈ(𝑥)

𝑚+2

𝑚=𝑚−2

= 𝛿𝑚−2(𝑡)𝐵𝑚
ˈˈ(𝑥𝑚−2) + 𝛿𝑚−1(𝑡)𝐵𝑚

ˈˈ(𝑥𝑚−1) + 𝛿𝑚(𝑡)𝐵𝑚
ˈˈ(𝑥𝑚) + 𝛿𝑚+1(𝑡)𝐵𝑚

ˈˈ(𝑥𝑚+1)
+ 𝛿𝑚+2(𝑡)𝐵𝑚

ˈˈ(𝑥𝑚+2) 

= 0 +
6

ℎ2
𝛿𝑚−1(𝑡) −

12

ℎ2
𝛿𝑚(𝑡) +

6

ℎ2
𝛿𝑚+1= 

6

ℎ2
(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1). 

Similarly, 

𝑣𝑚 = 𝜎𝑚−1(𝑡) + 4𝜎𝑚(𝑡) + 𝜎𝑚+1(𝑡) 

𝑣𝑚
ˈ =

3

ℎ
(𝜎𝑚+1 − 𝜎𝑚−1) 
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𝑣𝑚
ˈˈ =

6

ℎ2
(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1) 

Next, we plug in the approximate solutions and their derivatives into (4) and (5) thus: 

⟹ 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1 − 𝑢
𝑛 −

Δ𝑡

2
[
6

ℎ2
(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) + 𝑢𝑥𝑥

𝑛 )]

+
𝜂Δ𝑡

2
[(𝛿𝑚−1 − 4𝛿𝑚 + 𝛿𝑚+1)𝑢𝑥

𝑛 +
3

ℎ
(𝛿𝑚+1 − 𝛿𝑚−1)𝑢

𝑛]

+
𝛼Δ𝑡

2
[(𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1)𝑣𝑥

𝑛 +
3

ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)𝑢

𝑛 + (𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1)𝑢𝑥
𝑛

+
3

ℎ
(𝛿𝑚−1 + 𝛿𝑚+1)𝑣

𝑛] = 0 

𝑢𝑛 +
∆𝑡

2
𝑢𝑥𝑥
𝑛 = (𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) (1 +

𝜂Δ𝑡

2
𝑢𝑥
𝑛 +

𝛼Δ𝑡

2
𝑣𝑥
𝑛) −

3Δ𝑡

ℎ2
(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) + (

3𝛼Δ𝑡

2ℎ
𝑣𝑛 +

3𝜂Δ𝑡

2ℎ
𝑢𝑛) (𝛿𝑚+1 − 𝛿𝑚−1) +

3𝛼Δ𝑡

2ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)𝑢

𝑛 +
𝛼Δ𝑡

2
𝑢𝑥
𝑛(𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1). 

Let𝑎1 = 1 +
Δ𝑡

2
(𝜂𝑢𝑥

𝑛 + 𝛼𝑣𝑥
𝑛), 𝑎2 = −

3Δ𝑡

ℎ2
, 𝑎3 =

3Δ𝑡

2ℎ
(𝛼𝑣𝑛 + 𝜂𝑢𝑛), 𝑎4 =

3Δ𝑡

2ℎ
(𝛼𝑢𝑛), 𝑎5 =

Δ𝑡

2
(𝛼𝑢𝑥

𝑛) 

Similarly, from (2) we substitute the approximate solution 𝑣𝑚 = ∑ 𝜎𝑀(𝑡)𝐵𝑀
ˈ𝑚+2

𝑀=𝑚−2  of 𝑣(𝑡, 𝑥) thus: 

(𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚) − 𝑣
𝑛

=
Δ𝑡

2
[
6

ℎ2
(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1) − 𝑣𝑥𝑥

𝑛 ]

+
𝜂Δ𝑡

2
[[(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1)𝑣𝑥

𝑛 +
3

ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)𝑣

𝑛]

+
𝛽Δ𝑡

2
[(𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1)𝑣𝑥

𝑛 +
3

ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)𝑢

𝑛 + (𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1)𝑢𝑥
𝑛

+
3

ℎ
(𝛿𝑚+1 − 𝛿𝑚−1)𝑣

𝑛]] = 0                  

𝑣𝑛 +
Δ𝑡

2
𝑣𝑥𝑥
𝑛 = (1 +

Δt

2
(𝜂𝑣𝑥

𝑛 + 𝛽𝑢𝑥
𝑛)) (𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1) −

3Δ𝑡

ℎ2
(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1)

+
3Δ𝑡

2ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)(𝜂𝑣

𝑛 + 𝛽𝑢𝑛) +
3Δt

2ℎ
(𝛽𝑣𝑛)(𝛿𝑚+1 − 𝛿𝑚−1) +

Δ𝑡

2
(𝛽𝑣𝑥

𝑛)(𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) 

Here,  

𝑎6 = (1 +
Δt

2
(𝜂𝑣𝑥

𝑛 + 𝛽𝑢𝑥
𝑛)) 

𝑎7 = −
3Δ𝑡

ℎ2
 

𝑎8 =
3Δ𝑡

2ℎ
(𝜂𝑣𝑛 + 𝛽𝑢𝑛) 

𝑎9 =
3Δt

2ℎ
(𝛽𝑣𝑛) 

𝑎10 =
Δ𝑡

2
(𝛽𝑣𝑥

𝑛) 

We write the difference equations in the following way: 

𝑎1(𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) + 𝑎2(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) + 𝑎3(𝛿𝑚+1 − 𝛿𝑚−1) + 𝑎4(𝜎𝑚+1 − 𝜎𝑚−1)

+ 𝑎5(𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1) = 𝑢
𝑛 +

∆𝑡

2
𝑢𝑥𝑥
𝑛                                                                                              (10) 

𝑎6(𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1) + 𝑎7(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1)+𝑎8(𝜎𝑚+1 − 𝜎𝑚−1) + 𝑎9(𝛿𝑚+1 − 𝛿𝑚−1)

+ 𝑎10(𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1) = 𝑣
𝑛 +

∆𝑡

2
𝑣𝑥𝑥                                                                                                                                    
𝑛 (11) 

𝑚 = 0,… ,𝑁 

It is noteworthy that system equation (10) and (9) have 2(N+3) unknown i.e. 𝛿−1, 𝛿0, 𝛿1, … , 𝛿𝑁+1 and 

𝜎−1, 𝜎0, 𝜎1, … , 𝜎𝑁+1 and (𝑁 + 1) × 2 equations which constitutes an over determined system of 2(𝑁 + 3) × 2(𝑁 + 1); 
to make the system solvable, we reduce the unknowns by imposing boundary conditions such that we could deal with 
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square matrix system dimension. Here, we eliminate boundary terms𝛿−1, 𝛿𝑁+1 and 𝜎−1, 𝜎𝑁+1. This leaves us with the 

require system(2𝑁 + 2) × (2𝑁 + 2) matrix which is a bi-triagonal that could be solved by modified Thomas 

Algorithm. 
 

4. Stability of the scheme 

We use Von Neumann stability algorithm to check the stability of the scheme. First, we linearize the nonlinear terms 

𝑣𝑣𝑥 𝑎𝑛𝑑 (𝑢𝑣)𝑥 by considering both𝑢 𝑎𝑛𝑑 𝑣 as local constants µ
1
 𝑎𝑛𝑑 µ

2
respectively. We substitute into (4) and (5) 

and obtain the following equation with the variable 𝛿𝑚: 

µ
1
= (𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) −

3Δ𝑡

ℎ2
(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) + (

3𝛼Δ𝑡

2ℎ
µ
2
+

3𝜂Δ𝑡

2ℎ
µ
1
) (𝛿𝑚−1 + 𝛿𝑚+1) +

3𝛼Δ𝑡

2ℎ
(𝜎𝑚−1 +

𝜎𝑚+1)µ1        (12) 

And 

 

µ
2
= (𝜎𝑚−1 + 4𝜎𝑚 + 𝜎𝑚+1) −

3Δ𝑡

ℎ2
(𝜎𝑚−1 − 2𝜎𝑚 + 𝜎𝑚+1) +

3Δ𝑡

2ℎ
(𝜎𝑚+1 − 𝜎𝑚−1)(𝜂µ

2
+ 𝛽µ

1
) +

3Δt

2ℎ
(𝛽µ

2
)(𝛿𝑚−1 +

𝛿𝑚+1)          (13) 
From (12) we obtain: 

(1−
3Δ𝑡

ℎ2
+
3Δ𝑡

2ℎ
(𝛼µ

2
+ 𝜂µ

1
)).𝛿𝑚−1

𝑛+1+(4+
6Δ𝑡

ℎ2
). 𝛿𝑚

𝑛+1+ 

+(1−
3Δ𝑡

ℎ2
+
3Δ𝑡

2ℎ
(𝛼µ

2
+ 𝜂µ

1
)).𝛿𝑚+1

𝑛+1 +
3Δt

2ℎ
(𝛼µ

2
). (𝜎𝑚+1

𝑛+1 − 𝜎𝑚−1
𝑛+1)= (1+

3Δ𝑡

ℎ2
−
3Δ𝑡

2ℎ
(𝛼µ

2
+ 𝜂µ

1
)).𝛿𝑚−1

𝑛 +(4−
6Δ𝑡

ℎ2
). 𝛿𝑚

𝑛 +(1+
3Δ𝑡

ℎ2
−

3Δ𝑡

2ℎ
(𝛼µ

2
+ 𝜂µ

1
)).𝛿𝑚+1

𝑛 −
3Δt

2ℎ
(𝛼µ

2
). (𝜎𝑚+1

𝑛 − 𝜎𝑚−1
𝑛 ) .                              (14) 

The equation (14) summarizes and translates to: 

𝑤1𝛿𝑚−1
𝑛+1+𝑤2𝛿𝑚

𝑛+1 + 𝑤3𝛿𝑚+1
𝑛+1+(𝜎𝑚+1

𝑛+1 − 𝜎𝑚−1
𝑛+1)𝑤=𝑤4𝛿𝑚−1

𝑛 + 𝑤5𝛿𝑚
𝑛 + 𝑤6𝛿𝑚+1

𝑛 + (𝜎𝑚+1
𝑛 − 𝜎𝑚−1

𝑛 )𝑤  (15) 

Where 𝑤,𝑤1, … ,𝑤6 represent the coefficients of (𝜎𝑚+1 − 𝜎𝑚+1 ), 𝛿𝑚−1, 𝛿𝑚, 𝛿𝑚+1 in (14). 

We bother not ourselves to summarize equation in 𝑣 in form of (14) because of symmetry; so it is enough to show stability of the 

entire scheme via (14). 

Now, by Von Neumann stability scheme, we aver that the solution of the discrete scheme (10)-(11) approximates the exact solution 

𝑢(𝑥, 𝑡) of the Coupled Viscuous Burgers’ equation (1)-(2). The round off error   𝜖𝑖,𝑗
𝑛  due to approximation and defined by: 

𝜖𝑖,𝑗
𝑛 =|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑛𝑢𝑚|.  

Since the exact solution must satisfy the discretized equation, the error too must satisfy the discretized equation. Here we assume that 

the numerical solution too must also satisfy the discretized equation, but we admit that this is only possible in machine precision. We 

may now reformulate (10)-(11) in terms of their error terms, i.e. replacing 𝑢𝑖,𝑗
𝑛   with 𝜖𝑖,𝑗

𝑛 . Obviously, the error and numerical solution 

have the same growth or decay rate with respect to time. For linear differential equations with periodic boundary condition, the 

spatial variation of error may be expanded in terms of their Fourier series thus: 

∈ (𝑥) = ∑ 𝐴𝑚

𝑀

𝑚=1

𝑒𝑖𝑘𝑚𝑥; 

 [8] gives more exposition.  

We refer to equation (15) and let 𝛿𝑚
𝑛 = 𝐴𝜉𝑛𝑒𝑖𝑚ℎ𝜑 and 𝜎𝑚

𝑛 = 𝐵𝜉𝑛𝑒𝑖𝑚ℎ𝜑; A and B are the Harmonic amplitudes, 

𝜑 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 and h is the  element size, 𝑖 = √−1. Upon doing the above substitution, we get: 

|𝑋2 + 𝑖𝑌|𝜉𝑛+1 = |𝑋1 − 𝑖𝑌|𝜉
𝑛, 

so, 𝐻 =
|𝑋1−𝑖𝑌|𝜉

𝑛

|𝑋2+𝑖𝑌|𝜉
𝑛+1

        (16) 

where 

𝑋2 = 1 − 4𝐾2𝑠𝑖𝑛
2 (
𝜑ℎ

2
⁄ ) + 2𝑅2𝑐𝑜𝑠

2 (
𝜑ℎ

2
⁄ ),   

𝑋1 = 1 + 4𝐾2𝑠𝑖𝑛
2 (
𝜑ℎ

2
⁄ ) + 2𝑅2𝑐𝑜𝑠

2 (
𝜑ℎ

2
⁄ ), Y=6𝑑𝐾1sin (𝜑ℎ). 

𝐾1 =
3

2ℎ
Δ𝑡, 𝐾2=

3

2ℎ2
νΔ𝑡, d is a local constant. 

We find that |H|<1, implying unconditional stability of our scheme by the Von Neumann stability theorem. 

Next, we may now return to our scheme to compute the numerical solutions of the coupled viscous Burger’ equation. 
 

5. Numerical Experiment, Result and Simulation 

We perform numerical experiments in order to gain insight into the performance of the current scheme. Here we will provide 

𝐿∞ 𝑎𝑛𝑑 𝐿2 𝑒𝑟𝑟𝑜𝑟𝑠; this is obtained through the following formula: 

𝐿∞ = max
𝑚
{|𝑢𝑚 − 𝑈𝑚|} , 𝐿2 =

√∑ |𝑢𝑚 − 𝑈𝑚|
2𝑁

𝑚=0

√∑ |𝑢𝑚|
2𝑁

𝑚=0

⁄   

where, 𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑈𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.  
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This is standard and follows by the definition of 𝐿∞ 𝑎𝑛𝑑 𝐿2 𝑛𝑜𝑟𝑚𝑠. 
For our experiment, we consider a coupled viscous Burgers’ equation (1) and (2) with 𝛼 = 𝛽 = 1 𝑎𝑛𝑑 𝜂 = −2; this 

reduce equations (1) and (2) to the following: 

𝑢𝑡 − 𝑢𝑥𝑥 − 2𝑢𝑢𝑥 + (𝑢𝑣)𝑥 = 0, 𝑣𝑡 − 𝑣𝑥𝑥 − 2𝑣𝑣𝑥 + (𝑢𝑣)𝑥 = 0 with the initial condition given by:𝑢(𝑥, 0) =
𝑣(𝑥, 0) = sin(𝑥) , 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑠𝑜𝑢𝑟𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢(𝑥, 𝑡). 
We adopt the exact solution of coupled viscous Burgers’ equation of [6] given by: 

𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥). The numerical solutions for this has been obtained by considering the domain 𝑥 ∈

[−𝜋, 𝜋] with ∆𝑡 =
1

1000
. The solution is as given in the table below with their number of partitions at different time 

steps. Because of symmetry in the initial and boundary conditions, results are presented only for u(x,t). The order of 

convergence is calculated through the formula: 

𝑅 =
log (𝐸𝑟𝑟𝑜𝑟(𝑁1)/𝐸𝑟𝑟𝑜𝑟(𝑁2))

log (𝑁2/𝑁1)
. 

 

𝑻𝒂𝒃𝒍𝒆 𝟏: 𝑳∞ 𝒂𝒏𝒅 𝑳𝟐 𝒆𝒓𝒓𝒐𝒓𝒔 𝒇𝒐𝒓 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒙, 𝒕) 
T N=200  N=400 Rashid (2009) for N=200 at t=1 

𝐿2 𝐿∞  𝐿2 𝐿∞                 𝐿2𝐿∞ 

.1 8.2×10−6 7.5×10−6 2.1×10−6 1.9×10−6  Nil Nil 

.5 2.5×10−5 4.1×10−5 1.0×10−5 6.2×10−6 Nil Nil 

1 3.0×10−5 8.2×10−5 2.0×10−5 7.6×10−6 2.9×10−5 1.2×10−5 

 
𝑻𝒂𝒃𝒍𝒆𝟐 ∶ 𝑶𝒓𝒅𝒆𝒓 𝒐𝒇 𝑪𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒉𝒆 𝑵𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔 𝒕𝒐 𝒕𝒉𝒆 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒙, 𝒕) 
t=0.1 t=0.5 

N 𝐿∞ Ratio Order of convergence 𝐿∞ Ratio Order of Convergence 

32 2.9×10−4 Nil Nil 9.748×10−4 4.001 2.005 

64 7.3×10−5 4.000 2.001 2.436×10−4 4.000 2.001 

128 1.8×10−5 3.999 1.999 6.090×10−5 4.000 2.001 

256 4.5×10−5 3.995 1.998 1.522×10−5 4.000 2.001 

512 1.1×10−6 3.981 1.993 1.805×10−5 4.001 2.002 

 

 
Fig. 1: Comparison between Numerical and Analytic Results 

6. Conclusion 

It is observed in this paper that due to time truncation error of the derivative term, the accuracy of the solutions reduces as time increases. 

However, the advantage of the collocation method used in this paper is that the method works well for large class of linear and nonlinear PDEs. 

We have presented our solutions graphically at different time steps and make some comparisons with the exact solution. The 𝐿∞ 𝑎𝑛𝑑 𝐿2 𝑛𝑜𝑟𝑚𝑠 
of the error in numerical computations has been done and the order of convergence of the solution u(t,x) found. 
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