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Abstract 
 

This paper describes dual impact of a continues mineral uptake by a growing 

vegetation biomass and an increasing rainfall stress on a fertile topsoil. The study 

identifies four mutually existing but interdependent interacting ecological 

components comprising of, in the first category, vapour, cloud droplets and raindrops 

phases, the humid phase (hot air), the fertile topsoil and the component of vegetation 

biomass. It is further assumed that while the density of vegetation cover exhibits a 

logistic type growth, the other phases undergo ecological type growth and nonlinear 

interactions. The stability theory of differential equations and numerical simulation 

were used to establish the stability behaviours of the proposed model. It is shown that 

the depletion of fertile topsoil could be due to the continues mineral uptake by 

vegetation cover and the increasing stress of rain drop 
 

1. Introduction 

The process necessitating the gradual change, overtime, in the value of a resource, in the present study – soil, is basically referred 

to as degradation. Land degradation, therefore, refers to a temporary or permanent decline in the productive capacity of the land, 

or a falloff from its potential for environmental management. Land resources broadly includes soil, landscape, vegetation, water 

and microclimatic components of an ecosystem[1].Soil is basically a non-renewable resource that is very prone to degradation 

because it is intrinsically and indispensably involved with all of life’s processes and procedures [2]. Major soil degradation 

processes include water (raindrop) and wind erosion, depletion in the pool of the soil organic carbon (SOC), loss in biodiversity, 

loss of soil fertility and elemental imbalance, acidification and salinization [1, 2, 3]. The four basic types of soil degradation and 

their extents and effect can be looked up in [2]. The consequences of soil erosion are widespread and dire [1 – 7]. The direst 

economic consequence of degradation is its attendant devastation of crop cultivation intensive [2, 3].Some types of land 

degradation, for example severe gullying and advanced salinization (known to severely compromise the long-term biological and 

environmental potential of the land [5]), displacement of soil material (erosion),are irreversible [1]. The economic importance of 

wind and rain in accelerating the processes of soil erosion can be looked up in [8, 9, 10]. Water, for instance was compared in [9] 

to be about 800 times heavier than air and with about the same weight as lose topsoil. Making it easier to displace loose 

substances. It was further figured out that the energy of moving water is bound to increase proportionally as the mass and speed of 

droplets grow in size therefore, invariably making, especially, larger raindrops or heavy rain one of the important natural factors 

that affects the fertility of soil making it less or non-productive. Green plants (trees, grasses and other vegetative cover) soil 

interaction could also exert unsustainable SOC, nutrient and moisture content depletion is exacerbating degradation [1, 2]. Most 

types of soil degradation, however, can be prevented or reversed by adding nutrients to nutrient-depleted soil, rebuilding topsoil 

through soil amendments, re-establishing vegetation, or buffering soil acidity [1, 2, 3]. Relative to their natural conditions, land 

resources exist in one of three states – productive, undergoing degradation or degraded. About half of the estimated global cost 

effect of soil erosion is argued to be borne by developing countries [11].The practicality or otherwise of rehabilitating or 

managing degraded soil depends on the costs relative to the value of output or environmental benefits expected [1]. A 

considerable number of studies exist on resource depletion [8 – 10, 12 – 19]. 
 

2. Mathematical model 

Our model considers the following six interacting components. The first three state variables of the model system (1), a vapour, 

cloud droplets and raindrops phases, which are assumed to follow a consecutive natural forming process, exhibit a mutual 

existence in the atmospheric space of the region being considered. Here, the natural formation process of the vapour phase is 

assumed to be constant, at a rate ,VQ  as well as through augmentation by vaporisation of humidity and liquid on green vegetation  
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through evaporation rate, ,  and transpiration rate .  It is assumed to be depleted by natural factors at a rate   leading to the 

growth of cloud droplets, which is also considered to undergo natural depletion at a rate ,  with an assumed fraction, ,1 aiding 

the formation of rain drops which is further modified by a raindrops formation proportionality rate, .2  The density of raindrops 

is assumed to deplete naturally at a rate 0 as well as interaction by vegetation and soil surface at rates 
1  and 

2  respectively. 

Further, it is assumed that atmospheric air could be heated up naturally by sunlight and other natural factors at a constant rate .AQ  

Again, it is assumed that this heated air is either naturally lost at some rate ,0 through cooling, or trapped in the atmosphere to 

form vapour at a .  The mass of fertile topsoil is considered to have a natural growth rate 
SQ  and gets depleted due to natural 

factors, like SOC loss, at a constant rate 0 or  by 1 due to stress of heavy rain on the soil surface proportional to R. A fraction, 

, of the lost SOC is assumed to be available to the density of vegetation biomass for absorption. However, only to a fraction, ,

is actually absorbed as a part, ,  is assumed to naturally get washed away. Finally, it is assumed that the density of vegetation 

biomass grows intrinsically at a rate 
0  and gets depleted through intraspecific competition at a rate 

1 , it is assumed that the 

growth in fertility of the mass of fertile topsoil could be augmented at a proportionality rate .k  

Following from the foregoing, the dynamics of the depletion of the fertility of fertile topsoil is governed by the following system 

of nonlinear differential equations. 
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where               .00 ,00 ,00 ,00 ,00 ,00 ,00  GUSARCV  
 

3. The region of attraction 

The region of attraction is stated below 

Lemma 1.The set, ,  stated below, where     210 -1 ,-1 ,min vq and   ,-1 ,min 0 sq  is the region of attraction for 

the model system (1) and attracts all solutions initiating in the positive octant. 
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Applying the comparison theorem in [20] on model system (1), we obtain from the fourth and last equations that 
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 where     210 -1 ,-1 ,min vq . 

Similarly, from the fifth and sixth equations, we can obtain 
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This gives 
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 ,0 USqQ
dt

dU

dt

dS
SS   

where   .-1 ,min 0 sq  

Hence, the lemma follows. 
 

4. Equilibrium analysis 

The point  ******** ,,,,,, GUSARCVE , where ****** ,,,,, USARCV   and *G  are positive solutions of the algebraic equations (2) 

below, is a nonnegative equilibrium of the model system (1). 
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To establish the existence of the equilibrium *E  we proceed as follows. 

It can be noted from equation (2) that 
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We further note from equation (3) that 

a. For ,0S  one positive value of ,R  say ,R then will be obtained as a root of the quadratic equation 

    ,0010211

2

0110  KQQRaRK AV   where    .21011001 AV QQKa    In particular, 

.0VQR   

b. As ,S R attains a constant value 

c.       
 

,0
2

0

2

12

2

0101021 





RR

RfRKRQ

dR

dS A



  in the first quadrant provided that

    .10

2

010 RQRfRRK A   

We equally note from (4) that  

a. For ,0R then  
 

,0
100010

01 





KkK

KQ
S S



  is ensuing positive value of S provided that   .0101   kK  

b. As ,R S attains a constant value 

c. 
.0

2

1


S

Q

dS

dR S



 

Thus, using the values of ,*G *R  and *S  we obtain the values corresponding to ,*V
*C , *A  and *U from (2) 

 

5. Stability analysis 

In this section, we analyse the stability behaviour of the nonnegative equilibrium  ,,,,,,, ******** GUSARCVE  where ,*V ,*C ,*R ,*A

,*S *U  and *G  are positive solutions of the algebraic equations (2). To study the stability behaviour of the equilibrium, we propose 

the following theorems. 

Theorem 1: The equilibrium *E if it exists, is locally asymptotically stable inside the region of attraction .  

Proof 

To prove the LAS of *E , it is sufficient to obtain the variational matrix of the model system (1). The variational matrix of the 

model system (1) is given as  
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It can easily be verified that all the eigenvalues of the matrix above are negative. Thus, the equilibrium point *E is locally 

asymptotically stable. 

 

Theorem 2:Let the following inequalities hold 

   
 

     






 


















22

1

*

2

*

10

2*

2

2

2

2

1

*

2

*

10

*

10

**

1

*

3*

0

*

2

*

2

*

10

**

1

*

10

2

*

2

*

10

*

10

2

5
 ,

5
 ,

4
                     

,
2

min
3

 ,
15

 ,5max

R

SGUkGSG

k

RSG

G
d

RR

SGAS

RSG

R
























  

 (5) 














































































2
                                                                                                       

3

1
min

2
 ,

20
 ,max

*
**

2

2

**

*

0*

10*

*

0

*

2

*

10

**

12

2

*

*

U
RkG

GR

R
R

G

Gk

SG

RS

V

A

   (6) 

then the equilibrium *E is nonlinearly stable inside the region of attraction .  

Proof 

To establish the theorem, we consider the following positive definite function about *E  
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Then dtdF  will be negative definite subject to the following inequalities 
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and 
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Hence, dtdF  will be negative definite showing that F is a Lyapunov function, thus proving the theorem. 

6. Numerical simulation and discussion 

We subject our model to numerical simulation in order to validate the feasibility of our analytical analysis regarding the existence 

and stability behaviour of *E . To do this, we choose the following parameter values: 

 

.100  ,65.0  ,8.0  ,025.0

,04.0  ,6.0  ,85.0  ,02.0  ,4.0  ,8.1  ,235.0  ,0.3  ,2.0  ,01.0

,001.0  ,65.0  ,75.0  ,3.0  ,15.0  ,002.0  ,03.0  ,6.0  ,8.2  ,10
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10021

021


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from these values we calculate the equilibrium *E  as 

.6000.10  ,6302.8  ,4157.2  ,3170.2 ,9790.1  ,5040.8  ,2462.6 ******,  GUSARCV*  

It can further be confirmed that the eigenvalues corresponding to *E , as obtained from the corresponding Jacobian matrix, are 

,48936.17 ,65000.0 ,59019.0 ,97275.1 ,03740.2 23700.0  and 06890.0 . 

This further confirms that *E is locally asymptotically stable. Furthermore, in the figures 1 – 6, the fertility variation of the mass 

of fertile topsoil with time is shown for some baseline parameters. The enriching effect of rain on the sustenance of soil fertility of 

may be noted from figures 1, 2, 3 and 6. It may be observed from these figures that the onset of the rains would suggestively 

result in the depletion of soil fertility (Fig. 5), probably due to the expected increase in the density of vegetation biomass (Figs. 1). 

This phenomenon is observed to be short-lived as the trajectory suggests  

     
 

    
 

 

that the depth of fertile topsoil increases with increase in water uptake by both vegetation biomass and the soil itself. The tendency 

of the depth of fertile topsoil to deplete may be noted from Figs. 3 and 5.It may be a confirmation that the continues uptake of 

SOC by vegetation cover can reduce soil fertility (figure 3), the increasing impact of rain drops on the soil surface is inferred by 

Fig. 4. To have depleting consequence on topsoil (probably due to runoff). 
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Figure 1. Variation of  tS  with time for varying values of 
1  

Figure 3. Variation of  tS  with time for varying values of   Figure 4. Variation of  tS  with time for varying values of 
1  

Figure 2. Variation of  tS  with time for varying values of 
1  
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It is noted that in all cases the trajectory of the mass of fertile topsoil tends to its steady state level. 
7. Conclusion 
We proposed in this paper, a mathematical model to study the depletion of topsoil by raindrops and vegetation biomass. We considered the build 

up to the formation of rain from evaporation and transpiration. Further, we also considered both the stress that rain drops and the pressure that the 

increasing density vegetation biomass exert on the depth of fertile topsoil. 

Computer simulation performed to investigate the effect of some baseline parameters on the depth of fertile topsoil.  
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Figure 5. Variation of  tS  with time for varying values of 2  Figure 6. Variation of  tS  with time for varying values of 0  


