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Abstract 
 

A nonlinear mathematical model is proposed analysed to study the extent of 

increasing human population pressure on vegetation cover and the consequential 

fallout on the fertility of fertile topsoil. The model is analysed using the stability 

theory of differential equations and numerical simulation. It was shown, among 

other findings, that allowing population pressure to continue to increasing has the 

consequential effect of decreasing the density of vegetation cover thereby reducing 

soil nutrient uptake due to reducing vegetation density. Numerical simulation of the 

model validated analytical results. 

 
 

1. Introduction 

The livelihood of a substantial number of the world’s population depend on forestry resources [1]. These resources include, but 

not limited to food, fresh water, clothing, herbs, shelter [1]. These benefits are under enormous threat in recent times [1, 2]. The 

types of vegetation and how well they can grow on particular soil types are basically influenced by soil physical – properties: soil 

texture, structure, porosity, soil density, drainage and surface hydrology. These properties play a major role on soil erodibility [3]. 

Soil microorganisms are vital for the functioning and long-term sustainability of the ecosystem. The scantiness or lack of 

vegetation cover exacerbates wind erosion [3].Forest soils with a carpet of decomposing leaves absorb rainwater like a sponge, 

holding the water for gradual release to streams throughout the year [1]. Tillage and cropping practices, known to lower soil 

organic matter and deplete soil structure, among others, are important erosion causal factors [4]. Soil is the epicentre of a very 

complex elemental interaction. its loss has been estimated as a function of the extent of these interacting components, for instance, 

precipitation pattern, topographical setting, physical transporting processes, economic diversification, social integration, 

legislative and political interplay and conservation management strategies [4, 5]. Substantial information and insightful 

implications have been gotten from nonlinear mathematical studies on the extent of human pressure on forest resources [1, 5 – 10] 

and the various literatures they contain. However, to the best of our knowledge, there are no existing researches on the depletion 

of fertile topsoil incorporating mineral intake using nonlinear mathematical models. Thus, we intent to provide a nonlinear 

mathematical formulation that will study the extent of population pressure and mineral uptake aspects of soil degradation. 

 

2. Model formulation 

Let, in the region being considered and at any given time period t,  tV  denotes the density of vegetation cover,  tH denotes 

population (human) density,  tP represents the density of deployable human pressure,  tS and  tU  denote the mass of topsoil 

and concentration of soil mineral in absorbed phase. Pursuant to our research intention, we consider the following assumptions 

1. Both the density of vegetation cover and population are governed by logistic type equations with L as the maximum 

sustainable population size under the given environmental and ecological constraints. 

2. The mounting levels of population pressure at any given time is proportional to the corresponding population density at 

that time period 

3. The mass of fertile topsoil has a constant natural growth rate 

4. The concentration of absorbed soil mineral by vegetation is proportional to the density of vegetation and fertility of 

topsoil   

From the forgoing, the system dynamics may be governed by the following system of nonlinear ordinary differential equations: 
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where           .00  ,00  ,00  ,00  ,00  USPHV  

We propose that the density of vegetation cover at any given time period is affected by the fertility status of the soil as well as mounted 

level of human population pressure. Thus, the growth rate of vegetation cover, which grows intrinsically at a rate ,  is decreased due to 

increasing human interferences. We assume that this decrease is proportional to the level of human intra specific competition at a rate 

,1 depletion rate due to population’s usage of vegetation for fuel, wood, shelter, roofing, food, fodder, herbs etc. at a constant rate ,1
which simultaneously influences the growth of the population in proportion to the cumulative volume of vegetation resources used with 

proportionality constant d (such that 00   ). The parameter 2 represents the depletion rate coefficient of vegetation cover due to 

the mounting population pressure like the irreversible clearing of land for agriculture, housing complexes and other infrastructural 

constructions. We therefore assume that this increase in population pressure is proportional, with constant ,  to the human population 

density and decreases following natural courses like ill health, incapacitation, death, etc. at rate ,0 as well as due to deployable human 

effort on the soil at a rate .1 The second equation of the model system (1) has   as its intrinsic population growth rate and L is the 

corresponding carrying capacity of the population in the absence of vegetation biomass. Further, the mass of fertile topsoil is assumed to 

grow naturally at a constant rate coefficient  and decreases naturally (for instance, due to gravitational force effect on topsoil) at a rate 

,0 due to vegetation cover on the soil surface at a rate ,1 which simultaneously  represent the soil concentration of nutrients absorbed 

by vegetation cover. 
2 and 

3  denote  the depletion rate coefficients due to extreme human pressure on the soil surface assumed to be 

proportional to P  and 2P for agricultural and infrastructural expansions respectively. The constant 
1 denotes the natural washout rate 

coefficient of absorbed nutrient concentration while 
0  denote the depletion rate coefficient of absorbed nutrients concentration due to 

dying (harvesting, cutting down, burning etc.) of vegetation biomass. 

 

3. Boundedness of the system 
The boundedness of a system guarantees its validity. In this section, we establish the boundedness of the model system (1) through the 

following lemma.  

Lemma.The set   ,00;0;0:,,,,
101 
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is the region of attraction for the model system 

(1) and attracts all solutions initiating in the interior of the positive orthant, where
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Proof 
It can be noted from the first equation of the model system that 
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Next, from the fourth equation of the model system (1), we can be noted that 
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Hence, the prove of the Lemma. 

 

4. Equilibrium analysis 

The model system (1) has the following nonnegative equilibria 

 ,0,0,0,0,00E  ,0,0,0,0,11 VE  ,0,0,0,,0 22 HE  ,0,,0,0,0 33 SE  ,0,0,0,, 444 HVE  ,0,,0,0, 355 SVE  ,0,0,,,0 666 PHE  ,0,,0,,0 777 SHE

 ,0,0,,, 8888 PHVE  ,0,,0,, 9999 SHVE  1010101010 ,,0,, USHVE and  .,,,, ****** USPHVE  

The existences of  ,0,0,0,0,00E  ,0,0,0,0,11 VE  ,0,0,0,,0 22 HE  ,0,,0,0,0 33 SE  ,0,,0,0, 355 SVE  0,0,,,0 666 PHE  and 

 0,,0,,0 777 SHE  are obvious without any condition. Those of  ,0,0,0,, 444 HVE  0,,0,, 9999 SHVE  and  1010101010 ,,0,, USHVE  

depends on the validity of ,  that is, if the intrinsic growth rate of vegetation cover exceeds the corresponding basic utilisation need 

of man. Further, the existence of the equilibrium  0,0,,, 8888 PHVE  is determined by the condition 
1L  (that is if the intrinsic 

growth rate of green vegetation exceeds the cumulative expected vegetative need of man), in which case 
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The existence of  ****** ,,,, USPHVE . Where, **** ,,, SPHV and *U are the positive solutions of the algebraic equations given as 
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Thus, from the second equation of the system (2), we have  

   
 

.  , 

 ,  ,  ,

*

00

**

0*

2*

3

*

2

*

10

*

*

10

*

1*

*

21

*

1**

1

*

V

VS
U

PPV
S

S

VL
P

P

H
VV

L
H




































    (3) 

Further, solving the equations in the system (3) in terms of ,*P  we obtain 

   *

1*

2

2

11

1* Pf
PL

L
V 








  and 

 
 *

22*

3

*

2

*

110

* Pf
PPPf

S 






 say. 

From which we further obtain 
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It can therefore be gotten from the expression for 
*P  from the above that 
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To establish the existence of ,*E  it is sufficient to show that the equation (4) has unique positive solution .*P  We therefore proceed as follows. 
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Thus, for the value ,*P  the ensuing values of ,*V ,*H
*S  and *U  can be obtained from the above. It can further noted that 
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 Hence, the cumulative mass of fertile topsoil would decrease as the growth rate coefficient of population 

pressure increases. Similarly,          0*
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5. Stability analysis 

5.1. Local stability analysis 

Using the corresponding Jacobian matrix of the model system (1), the local stability behaviour of the equilibrium points ,0E ,1E ,2E

,3E ,4E ,5E ,6E ,7E ,8E
9E  and 

10E  may be analysed by determining the signs of the eigenvalues of the corresponding Jacobian 

matrix evaluated at point. Therefore, the Jacobian matrix of the model system (1)is 
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where 

 VPHa 21111 2    and 2

321044 PPVa    

Evaluating the Jacobian matrix at each equilibrium, we obtain the following results 

1. Two of the eigenvalues of the Jacobian matrix J corresponding to the equilibrium 
0E  are observed to be positive. So the 

equilibrium has unstable local manifold in the V – H plane. 

2. One of the eigenvalues of the Jacobian matrix J corresponding to the equilibrium 
1E  is positive. So the equilibrium has an 

unstable local manifold in the H direction 

3. The equilibrium 
2E  is locally stable since all its eigenvalues are negative 

4. It may be noted that two of the eigenvalues ofJcorresponding to 
3E are positive. So the equilibrium has an unstable local 

manifold in the V – H plane. 

5. The equilibrium 
4E  is locally stable. 

6. The matrix J corresponding to 
5E can be verified to have one positive eigenvalue. So the equilibrium has an unstable local 

manifold in the H direction. 

7. Similarly with J having one positive eigenvalue when evaluated at ,6E the equilibrium point has an unstable local manifold in 

the Vdirection. 

8. Also one of the eigenvalues of J corresponding to equilibrium 
7E  is positive. So the equilibrium has an unstable local manifold 

in the V plane. 

9. The equilibrium point 
8E  is locally stable. 

10. Similarly, the equilibrium point 
9E  is locally stable. 

In view of the nature of the components of the interior equilibrium ,*E  establishing its stability behaviour using the Jacobian scheme is 

quite rigorous and barely tractable. Thus, we state the following theorems which give sufficient conditions that guarantee its local and 

nonlinear stability. 

Theorem 1.  The interior equilibrium 
*E  is locally asymptotically stable if the following conditions 
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hold. 
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Proof 
We employ the Lyapunov stability theorem to establish this claim. To achieve this, we consider the following positive definite function  
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1U  are small perturbations around the interior equilibrium *E . Then the time derivative of 1L along the 

solutions of the linearised system of the model system (1) is 
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From inequalities (8), we may easily choose the positive value 
2d  if 
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We assert from inequality (9) that 
dt

dL2  is negative definite under condition (6) and (7), thus proving the claim. 

5.2. Global stability analysis 

To discuss the global stability behaviour of the interior equilibrium 
*E , we state the following theorem. 

Theorem 2.  The equilibrium *E  is globally asymptotically stable inside the region of attraction  , if the following conditions 
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hold. 

Proof 

To establish the nonlinear stability behaviour of ,*E  we consider the following positive definite function about *E  
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where the constants 
321  , , mmm  and 

4m  are positive and remain to be suitably chosen. 

Evaluating the time derivative of 
2L  along the solutions of the model system (1) for ,11 m *

3 1 Sm  and ,*

014 Vm    we obtain 
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dL2 will be negative definite inside the region of attraction  , provided the following inequalities 
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hold. It may easily be verified that the condition (11) is satisfied for our choice of parameter values (12). Furthermore, a set of positive 

suitable values of 
2m  exist for which the inequality (10) is satisfied. More specifically, for instance, we may choose  
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for such a verification. Thus, dtdL2
 is negative definite under conditions (10) and (11). 

6. Numerical simulations 

To investigate the feasibility of the results presented in the previous sections, we consider simulating our model numerically. Pursuant to 

this, we choose the following values for our parameters: 

.005.0 ,8.0 ,08.0.0 ,95.0 ,805.0,5.0 ,95.0,005.0

,2.0 ,002.0 ,05.0 ,100 ,5.0 ,0001.0 ,002.0 ,065.0 ,8.0

1032101

0211







 L

 

(12) 

Thus, from the set of parameter values (12), we have obtained the components of the interior equilibrium *E  as 

.0206.0   ,0212.0   ,1164.16   ,2912.888   ,0149.10 *****  USPHV  

Further, the corresponding eigenvalues of the Jacobian matrix around *E  of the model system (1) are given as:

8.0169.- 44.6516,- 0.2001,- 0.38191,-  0.7108,- The negative signs of all the corresponding eigenvalues validate the local stability of 

the interior equilibrium *E  with respect to the set of parameter values (12). Its global stability, on the other hand, has been shown in 

figure (1). It may be understood from these figures that each sub-density attains its stability, thus, confirming the stability of the interior 

equilibrium. Furthermore, the extent of the baseline parameters on the dynamics of the model system reveals the following: it is shown in 

figure 2 that increasing 1  (that is, the depletion rate of vegetation cover due to human intraspecific competition), the mass of fertile 

topsoil and the density of vegetation cover with respect to time would increase the mass of fertile topsoil but decrease the density of 

vegetation cover. A similar scenario is observed in figures 3 and 4 as
1 and 

2  are increased respectively. That is, the figures show that 

increasing demand on vegetation resource for herbs, firewood, fodder, roofing, shelter and wood as well as those needs bordering on 

expansion for agriculture and infrastructure would lead to decreasing the density of vegetation and as a result increase in the mass of 

fertile topsoil. It can be observed from figure 5 that the equilibrium levels of  tS  and  tV simultaneously decrease with increasing 

values of , that is, as the growth rate coefficient of population pressure due to population increases. The effect of the declination of 

population pressure due to natural and deployment factors is shown in figures 6 and 7.  

    
 

Figure 1. Density of model’s variables  ,tV  ,tH  ,tP  tS  and  tU at the interior equilibrium, *E , against time t  for parameter values in (12). 

Form these figures, we observe that as the values of 
0  and 

1 increase, the equilibrium levels of fertile topsoil and vegetation cover 

decrease. 
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Figure 2. Variation of  tS and  tV  against time t  for various values of 
1  while values of other parameters are held as in equation (12). 

     
Figure 3. Variation of  tS and  tV  against time t  for various values of 

1  while values of other parameters are held as in equation (12). 

     
Figure 4. Variation of  tS and  tV  against time t  for various values of 

2  while values of other parameters are held as in equation (12). 

     
Figure 5. Variation of  tS and  tV  against time t  for various values of   while values of other parameters are held as in equation (12). 

     
Figure 6. Variation of  tS and  tV  against time t  for various values of 

0  while values of other parameters are held as in equation (12). 
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Figure 7. Variation of  tS  against time t  for various values of 1  while values of other parameters are held as in equation (12). 

 

7. Conclusion 

Increase in human population is exerting enormous pressures on the ecosystem that resulting in phenomenal system 

imbalances. Topsoil fertility alongside free existing natural resources which dependant on it are being affected at depletive 

levels. To investigate the consequential fallout of this problem, a nonlinear mathematical model has been developed. In this 

model, we have considered a logistic growth for both the human population and vegetation cover. The density of fertile 

topsoil is considered to be simultaneously pressured by growing human population and vegetation cover both needing 

sustenance. We analysed the model using the stability theory of differential equations. All the 11 feasible equilibria of the 

model were analysed for both local and global asymptotic stability. In addition, numerical simulations were performed to 

validate the analytical results. In particular, it was found that deploying increasing volumes of human pressure could 

deplete both fertile topsoil and vegetation cover.  
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