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Abstract 

 
Knowledge of the magnitude of error at each sampling step is necessary to know how 

to improve data quality. This study derived three jackknife approaches for reduction 

of sampling error. Jackknife leaving one cluster value out (JK1), Jackknife leaving 

one stratum out (JK2), and Jackknife within each stratum (JK3). The Statistical 

properties of these Jackknife approaches were examined and compared. JK1 is the 

most efficient approach for sampling error reduction followed by JK3 and JK2. 
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1.0 Introduction 

Sampling error is the degree to which the estimate differs from its true value. Knowledge of magnitude of error at each sampling step is 

necessary to identify how to reduce the error. In [1], Quenouille's technique was applied to study its use in ratio estimation, using 2  

groups. Optimal choice of   for bias reduction in ratio estimation was studied in [2], and n  was shown to be the optimal choice. 

With stratified sampling design using jackknife method under unequal probability sampling, an attempt was made in [3] to develop an 

efficient scheme for variance estimation.  

A generalized jackknife variance estimator was also proposed and a general definition of a jackknife pseudo value that is applicable for 

unequal probability sampling and stratification was given. This generalized the jackknife variance estimate so that it applied to any 

sample design for which the variance of an estimated mean can be estimated (exist) [4]. Therefore, the re-sampling techniques, in the 

context of sampling survey, has been widely studied and developed to handle stratified multistage sampling and the properties of various 

forms of the jackknife estimator for this case have been studied theoretically and empirically [5].  

In [6], the consistency of Campbell’s generalized jackknife variance estimator was established. The study also compared the performance 

of Campbell's jackknife in a single stage context with standard single stage jackknife and a modified Campbell's estimator by proposing a 

simple jackknife variance estimator was achieved in [7]. Berger's estimator was consistent under unistage stratified sampling without 

replacement. A brief overview of early uses of re-sampling methods in survey sampling, and an appraisal of more recent re-sampling 

methods for variance estimation and inference for small areas were provided in [2]. While in[8], the problem of approximating the 

sampling relative error of point estimates derived from large sample surveys on a finite population using stratified random sampling 

design without replacement was studied. Three jackknife methods and compared it with the plug-in and two bootstrap techniques. The 

first one (JK1) was considered by removing a sample value at each iteration, the second one (JK2) constructed by removing a stratum at 

each iteration, and the third estimate (JK3) constructed by considering the variance of̂  as a linear combination of variances of 

statistics constructed at stratum level, and these variances were previously estimated by jackknife in each stratum. The different 

procedures were examined and compared by extensive simulation study [8]. This work investigated reduction of bias and sampling error 

in stratified cluster sampling using jackknife approaches. 

 

2.0 Methodology 

 

2.1 Sampling Relative Error 

The sampling error of ̂  can be presented in relative terms, using the variation coefficient of the estimator given by:  

)ˆ(

ˆ
)ˆ(






E
VarErel 

         (1) 

Supposing a population of N clusters of M units can be stratified into L strata such that 
LNNN ,...,, 21
 cluster units. Each stratified cluster 

units contains LhforM
hN ,...,1  and a sample n is selected using stratified random sampling such that each stratified samples hn   
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contain 
hnM  units. Let 

hijY  be the value of the characteristics under study for the jth  element, Mj ,...,1 , for the ith  cluster,

hNi ,...,1  in the hth  stratum.  

 

2.2 Notations 

        (2) 

        (3) 

        (4) 

        (5) 

       (6) 

        (7) 

       (8) 

The population total 

      (9) 

for 

        (10) 

and 

        (11) 

Let  MjniLhy hhij ,...,1,,...,1,,...,1,  be a stratified random sample without replacement of Y, of size




L

h

hh nnn
1

,
 being the 

sample size within the h-th stratum.  

Denoting by

h

h
h

n

N
F   the elevation factors of each stratum, the unbiased estimators of the mean  and the total t are obtained as 

follows. 

An estimator of Y is given by the mean of cluster in based on hn  samples 

 (12) 

       (13) 

 

An estimate of t is given as  

The population total 

    (14) 

Where  

        (15) 

And 

        (16) 
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Note that, by definition, 
hh nN   for the strata self- represented in the sample, and hence the elevation factor of these strata is 1hF . 

The unbiasedness properties of stcly and t̂  as estimators of Y and t , respectively, following from their construction as convex linear 

combinations of sample means are as follows 

     

      (17) 

And 

      (18) 

The variances of these estimators are 

        

       (19) 

And 

      (20) 
2

bh  being the variance of the finite population in the h-th stratum, given as 

       (21) 

And the corresponding sample variances corrected by their degrees of freedom are given as 

      (22) 

Then the variance estimator becomes 

      (23) 

And 

       (24) 

The absolute and relative sampling errors of estimator 
stcly  take the form 

   (25) 

     (26) 

Hence the estimate of the variance estimator of these errors is 

    (27) 

    (28) 
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The rest of the study will focus on the estimation of the relative error of parameter t, the population total. 

 

2.3 The Jackknife Method 

The Grouped Quenouille-Tukey (QT) Jackknife Method is given as follows: 

The sample of size n  independent and identically (iid) observations 
nxxx ,...,, 21
is divided into g no-overlapping groups 

gGGG ,...,, 21
 

each of the size d , assuming that dgn   with the ithjacknife sample ),...,,,,...,,( 21)(21)1( dgididddi SSSSSSS  and ith group 

),...,,( 2)1(1)1( iddidi SSS 
are deleted in turn and the "delete-group" estimates gii ,...,2,1,ˆ   are computed, where 

i̂  denotes the 

estimator of  based on the sample of size )1(  gddn , which are named pseudo estimates. 

Quenouille showed that the estimator 

          (29) 

Where
kk gg  ˆ)1(ˆˆ  and these are named pseudo values. 

          (30) 

j̂ can be expressed in terms of the pseudo estimates as 

         (31) 

It can also be expressed as, 

         (32) 

With  

 

Tukey suggested regarding the 𝜃̃k as iid for general ̂ and then using 

         (33) 
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As the "jackknife" variance estimator of 𝜽̂j or 𝜽̂ 
 

In a stratified sampling, the jackknife pseudo-values can be constructed following one of the two possible criteria: either removing a 

sample value at each iteration or removing a stratum at each iteration. Application of these criteria leads to two different jackknife 

estimators for the variance of 
stcly  and t can be expressed as a linear combination of independent statistics, each one being separately 

constructed from the subsample of each stratum. Consequently, the variance of 
stcly  can be calculated as a linear combination of 

variances of 
stcly statistics constructed at stratum level. If these variances are previously estimated by jackknife in each stratum, then 

there will be a third way of using the jackknife to approximate the variance. Each of the three jackknife proposals are described more in 

detail below 

 

2.4 The Cao [8] Jackknife Method 

In [8], three jackknife estimators for the variance of 𝜏̂was proposed. This work extended these estimators to stratified cluster sampling. 

 

2.4.1 Case 1: Jackknife Leaving One Clustered Sample Value Out: 

Each jackknife pseudo value is constructed by removing a single data value from the overall sample. The pseudo value obtained when 

eliminating the s-thcluster of the r-th stratum, Yrs, takes form 

     (34) 

Where 

 
And 
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and hence 

        (35) 

By averaging all the pseudo values, we obtain 

 

       (36) 

Hence, the jackknife estimator of )ˆ(tV is given by 

 

 

        (37) 

and the first variant of the jackknife estimator for the relative error is 

      (38) 

 

2.4.2 Case 2: Jackknife Leaving One Stratum Out 
To calculating each pseudo-value, removing all the cluster(s) of one stratum. Thus, the r-th jackknife pseudo-value is based on the 

original sample without the clusters of stratum r, i.e. 

     (39) 

Now, two variants of the jackknife estimator are introduced by considering different ways of averaging the pseudo-values 
)2(

)(̂rt .First, 

using a weighted mean, where each pseudo-value is weighted by the population size of the stratum removed in the calculation. Thus, we 

have  

  (40) 

Then, the jackknife estimator of )ˆ(tV takes the form 

 

    (41) 

The jackknife estimator of the relative error is then calculated as 

       (42) 
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An alternative variant of the jackknife leaving a stratum out is obtained if all the strata contribute with the same weight in the estimation, 

i.e. the pseudo-values are directly averaged as follows 

  (43) 

Then using 
)2(

(.)
ˆ Bt the jackknife estimator of )ˆ(tV  becomes 

  (44) 

The jackknife estimator of the relative error with this criterion is 

       (45) 

 

2.4.3 Jackknife Within Each Stratum 

The population variance can be expressed as a linear combination of variances of the sample means within each stratum 

        (46) 

Hence, a new jackknife approximation to the variance of t can be obtained by estimating each )( hyV with the jackknife method and 

replacing these estimators in (46). For the jackknife estimator of )( hyV , the pseudo-values are defined as  

      (47) 

For s =1, 2,…,nh, and their mean is given by 

  (48) 

Then, the jackknife estimator of the variance of the sample mean of the h-th stratum is 

 

 

 

 

 

 

       (49) 

and using these previous jackknife estimations we obtain 

        (50) 

The corresponding jackknife estimation of the relative error is given by 

       (51) 

3.0 Results 

The data considered were on weights of junior secondary school students of Egba-Odeda High school, Odeda Local Government, Ogun 

State. Gender was considered as stratifying factor with class as cluster of students. The data was checked and arranged with the use of the 

statistical packages for social sciences (SPSS) and R. 
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The descriptive statistics shows the distribution of students according to gender for the classes. 

Table 1: Distribution of students’ average weight by gender 

  N Minimum Maximum Mean 

JSS 2A Male Students 46 30 60 44.24 

JSS 2B Male Students 51 30 70 43.14 

JSS 3A Male Students 65 30 55 42.72 

JSS 3B Male Students 59 30 55 41.96 

JSS 2A Female Students 50 30 60 44.13 

JSS 2B Female Students 57 30 55 44.41 

JSS 3A Female Students 49 30 63 44.96 

JSS 3B Female Students 51 30 60 43.53 

 

3.1 Jackknife Estimator for Stratified Cluster Sampling Analysis 

There are two strata (male and female), there are eight clusters in all, 4 clusters in each stratum. Three clusters were formed and a sample 

out of the three clusters was chosen at random from each stratum to have stratified clusters of size 6 clusters. The Jackknife mechanism 

for mean was computed for the clusters and the Jackknife estimate, variance and relative error for the total were computed. 

N = 8, N1 = 4, N2 = 4, n1 = 3, n2 = 3, g = n 

 

 
Relative error=0.033 

 

Table 2: Jackknife variance Analysis  

Clusters 
m 

f 
mJK Fjk 

CL 1 2035 2030 2101.667 2184.333 

CL 2 2200 2265 2046.667 2106.000 

CL 3 1965 2068 2125.000 2171.667 

CL 4 2140 2220 2066.667 2121.000 

 

3.2 Jackknife leaving one cluster value out 

 

 

Hence, the jackknife estimator of )ˆ(tV  is given by 

 
  

 

 

 

and the first variant of the jackknife estimator for the relative error is 
 

 

 

 

3.3 Jackknife Leaving One Stratum Out  

 

 

Then, the jackknife estimator of )ˆ(tV  takes the form 
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= 501,670,464 

The jackknife estimator of the relative error is then calculated as 

  = 1.985 

An alternative variant of the jackknife leaving a stratum out is obtained if all the strata contribute with the same weight in the estimation, 

i.e. the pseudo-values are directly averaged as follows 

 

 = 11,443 

Then using the jackknife estimator of  becomes 

 

  
The jackknife estimator of the relative error with this criterion is 

 = 10.98  

 

3.4 Jackknife Within Each Stratum 

 
The corresponding jackknife estimation of the relative error is given by  

 
 

4.0 Conclusion 

This study was designed jackknife approaches for sampling error reduction in stratified cluster sampling. The data considered were on 

weights of students of Egba-Odeda High School, Odeda Local Government, Ogun State. Gender was considered as stratifying factor with 

class as cluster of students. Three clusters were formed and a sample out of the three clusters was chosen at random from each stratum to 

have stratified clusters of size 6 clusters. Three Jackkknife approaches [Jackknife leaving one cluster value out, (JK1), Jackknife leaving 

one stratum out, (JK2), and Jackknife within each stratum, (JK3)] for sampling error reduction were derived. There are two strata with 

428 students in each. There are eight clusters, 4 in each stratum with sizes 46, 51, 65, 59 and 50, 57, 49, 51 respectively for both strata. 

The mean weights of the male and female students were 42.605 and 44.257 respectively. The mean weights of the male students in JSS 

2A, JSS 2B, JSS 3A and JSS 3B were 44.239, 43.137, 42.717 and 41.961 respectively, and for female were 44.13, 44.412, 44.957 and 

43.529 respectively. The total weight of students for JK1, JK2, JK3, and existing estimator (EE) were 21758, 22880, 11443, and 22564 

respectively, where the variances were 40181.35, 501670, 57146.82 and 649946.4 respectively.  The relative error for JK1, JK2, JK3 and 

EE were 0.0089, 0.0309, 0.01059 and 0.033 respectively. The variance and relative error for the three derived Jackknife approaches are 

less than that of the existing estimator with JK1 having minimum variance and sampling error. The study revealed that the three jackknife 

approaches were more efficient than EE with JK1 the most efficient. 
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