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Abstract 

 

An extended Riemannian metric tensor in a spherical gravitational field is used to 

deduce planetary equations of motion. The obtained planetary equations of motion are 

solved and the precession equation in the gravitational field of a spherical star is 

obtained. The precession equation reduces to the corresponding pure Newtonian 

equation in the order of 𝒄𝟎. It contains post Newtonian and Einstein terms in the order 

of 𝒄−𝟐. The consequences of these results are that it can be applied to study the steady 

change in the orientation of the axis of a rotation of the earth. 
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1.0 Introduction 

At the end of the 19th century it was observed that Newton’s dynamical theory of gravitation (NDTG) could not explain the anomalous 

orbital precession of the orbit of the planet as well as the gravitational red shift by the sun [1- 2]. 

In 1905, Einstein published his geometrical theory of gravitation (EGTG). This theory successfully explains the anomalous orbital 

precession of the orbit of the planet as well as the gravitational red shift by the sun [1- 2]. 

The first exact solution of Einstein’s geometrical field equation was constructed in 1916 by Karl Schwarchild. It is the metric due to 

spherically symmetric body. The well known Schwarchild’s metric tensors in gravitational field of static homogeneous spherical massive 

body of mass 𝑀 situated in empty space is given explicitly by [1- 6] 

 𝑔00 = 1 −
𝐺𝑀

𝑐2𝑟
            (1) 

 𝑔11 = − (1 −
𝐺𝑀

𝑐2𝑟
)

−1
           (2) 

 𝑔22 = −𝑟2                    (3) 

 𝑔33 = −𝑟2 sin2 𝜃            (4) 

 𝑔𝜇𝜈 = 0; otherwise            (5) 

where, 𝑟 > 𝑅 is the radius of the static spherical mass, 𝐺  is the universal gravitational constant    and 𝑐 is the speed of light in vacuum 

and 𝑓(𝑟)is an arbitrary function determined by the distribution. 

Despite the famous test of Einstein’s theory of General Relativity (GR), all the authorities in Relativity and Physics in general have 

continued to raise objections against the mathematical difficulty of Einstein’s theory of Relativity [1- 4].  

In 2009, an entirely new approach to the search for the metric tensor of space time with the influence and interaction of gravitational 

fields was introduced [1, 4, 9]. In this approach, the metric tensor is a fundamental quantity of nature and can be obtained through 

extensions of the Euclidean metric tensor.  

In this paper, we introduce a new approach to derive the precession equation in the gravitational field of spherical polar coordinates using 

an extended Riemannian metric tensor.   

 

2.0 Theoretical Analysis 

An extended Riemannian metric tensor in the gravitational field exterior to a spherical mass is given by [9] 

𝑔00(𝑟, 𝜃, 𝜙, 𝑥0) = − {1 +
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0)}          (6) 
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𝑔11(𝑟, 𝜃, 𝜙, 𝑥0) = {1 −
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0)}

−1
          (7) 

𝑔22(𝑟, 𝜃, 𝜙, 𝑥0) = 𝑟2            (8)  

𝑔33(𝑟, 𝜃, 𝜙, 𝑥0) = 𝑟2𝑠𝑖𝑛2𝜃           (9) 

𝑔𝜇𝜈 = 0 ; otherwise                       (10) 

where, 𝑓 is  an extended Riemannian gravitational scalar potential exterior to the spherical body and (𝑐𝑡, 𝑟, 𝜃, 𝜙) is the space- time 

coordinate with (𝑥0 = 𝑐𝑡).  

The extended Riemannian gravitational scalar potential exterior and interior to spherical astrophysical bodies has been obtained. The 

extended Riemannian gravitational scalar potential exterior to a spherical astrophysical body (𝑓) is shown to be given explicitly as [8]  

 𝑓 =
𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
+ ⋯                  (11) 

where   𝑘 = 𝐺𝑀, 𝐺 is the universal gravitational constant, 𝑀 is the mass of the planets, 𝑐 is the speed of light  𝑅 is the radius of the 

spherical astrophysical body and 𝑟 > 𝑅 for the exterior field. 

The general expression for the line element in the gravitational field of spherical massive body is given explicitly from the extended 

metric tensor by [1- 3]  

𝑐2𝑑𝜏2 = −𝑐2 {1 −
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥/0)} 𝑑𝑡2  

− {1 −
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0)}

−1
𝑑𝑟2 − 𝑟2𝑑𝜙2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2      (12) 

Substituting equation (6) into (7) we obtain 

c2dτ2 = c2 {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]} 𝑑𝑡2  

− {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]}

−1

𝑑𝑟2 − 𝑟2𝑑𝜙2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2    (13)  

Now, consider the motion of a particle whose motion is confined to the equatorial plane of the spherical astrophysical body (e.g. Sun, 

planet or comet), then from geometry considerations in spherical polar coordinates,   

𝜃 =
𝜋

2
  

Then, equation (13) becomes 

𝑐2𝑑𝜏2 = 𝑐2 {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]} 𝑑𝑡2  

− {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]}

−1

𝑑𝑟2 − 𝑟2𝑑𝜙2                          (14)  

 

Dividing all through equation (14) by 𝑑𝜏2 and designating proper time differentiation by dot, reduces equation (14) to 

𝑐2 = 𝑐2 {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]} �̇�2  

− {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]}

−1

�̇�2 − 𝑟2�̇�2 = 0            (15) 

  

Considering a clock at rest in this gravitational field, it can be shown that 

�̇� = {1 −
2

𝑐2
[

𝑘

𝑟
{1 −

𝑘

𝑐2𝑅
} −

𝑘2

𝑐2𝑟2
]}

−1

                                                     (16) 

Also, the pure azimuthal speed can be deduced as 

�̇� =
𝑙

𝑟2
                                                                                                   (17) 

where, 𝑙 is a constant of motion, which physically corresponds to the angular momentum per unit mass. 

Substituting equations (16) and (17) into equation (15) and simplifying we obtain 

�̇�2 =
2𝑘

𝑟
−

𝑙2

𝑟2
+

2𝑙2𝑘

𝑐2𝑟3
−

2𝑘2

𝑐2𝑅𝑟
−

𝑘2

𝑟2
−

𝑙2𝑘2

𝑐2𝑟4
−

2𝑙2𝑘2

𝑐4𝑟3𝑅
                 (18)  

 

Assuming that powers of 𝑐−4 and above are negligible, equation (18) reduces to 

�̇�2 =
2𝑘

𝑟
−

𝑙2

𝑟2
+

2𝑙2𝑘

𝑐2𝑟3
−

2𝑘2

𝑐2𝑅𝑟
−

𝑘2

𝑟2
−

𝑙2𝑘2

𝑐2𝑟4
                   (19) 

Differentiating equation (19) with respect to proper time yields 

 �̈� = −
2𝑘

𝑟2
+

2𝑙2

𝑟3
−

6𝑙2𝑘

𝑐2𝑟4
+

2𝑘2

𝑐2𝑅𝑟2
+

2𝑘2

𝑟3
+

4𝑙2𝑘2

𝑐2𝑟5
                                          (20) 

Equations (19) and (20) are respectively the radial speed and radial acceleration of a particle in the equatorial plane.  In the order of  𝑐0 

these results reduce to the corresponding pure Newtonian calculations [1 - 3]  

�̇�2 =
2𝑘

𝑟
−

𝑙2

𝑟2
,    �̈� = −

2𝑘

𝑟
+

𝑙2

𝑟3
+

𝑘2

𝑟3
                                       

Let us transform the motion in terms of 𝜙 and let 𝑢 be a new coordinate defined by   

 𝑢(𝜙) =
1

𝑟(𝜙)
. 

Then       

 �̇� = −𝑙
𝑑𝑢

𝑑𝜙
 and  �̈� = −𝑙2𝑢2 𝑑2𝑢

𝑑2𝜙
 

Thus equation (20) can be written as 
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𝑑2𝑢

𝑑2𝜙
+ 2 (1 +

𝑘2

𝑐2
) 𝑢 =

2𝑘

𝑙2
+

6𝑘

𝑐2
𝑢2 +

2𝑘2

𝑐2𝑙2𝑅
+

4𝑘2

𝑐2
𝑢3        (21)  

Equation (21) is an extended Riemannian planetary equation of motion for a spherical astrophysical body and it contains post Newtonian 

and post Einstein terms. 

We shall seek the analytical solution of equation (21) using Taylor series expansion and as a first approximation, the term with 𝑢3 will be 

neglected. 

Suppose 

𝑢(𝜙) = ∑ 𝐴𝑛𝑒𝑥𝑝{𝑛𝑖(𝜔𝜙 + 𝛼)}∞
𝑛=1            (22) 

 

where, 𝐴𝑛, 𝜔 and 𝛼 are arbitrary constants. 

Equation (22) can be expanded to give 

𝑢(𝜙) = ∑ 𝐴𝑛𝑒𝑥𝑝{𝑛𝑖(𝜔𝜙 + 𝛼)}

∞

𝑛=1

= 𝐴0 + 𝐴1𝑒𝑥𝑝{𝑖(𝜔𝜙 + 𝛼)} 

 +𝐴2𝑒𝑥𝑝{2𝑖(𝜔𝜙 + 𝛼)} + 𝐴3𝑒𝑥𝑝{3𝑖(𝜔𝜙 + 𝛼)} + ⋯          (23) 

Differentiating equation (23) and substituting in equation (16) gives  

−𝜔2𝐴1𝑒𝑥𝑝{𝑖(𝜔𝜙 + 𝛼)}−4𝜔2𝐴1𝑒𝑥𝑝{2𝑖(𝜔𝜙 + 𝛼)}+9𝜔2𝐴1𝑒𝑥𝑝{3𝑖(𝜔𝜙 + 𝛼)} 

+2 (1 +
𝑘2

𝑐2
) [𝐴0 + 𝐴1𝑒𝑥𝑝{𝑖(𝜔𝜙 + 𝛼)} + 𝐴2𝑒𝑥𝑝{2𝑖(𝜔𝜙 + 𝛼)} + ⋯ ] = 

 
2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
+

6𝑘

𝑐2
[𝐴0

2 + 𝐴0𝐴1𝑒𝑥𝑝{𝑖(𝜔𝜙 + 𝛼)} + 2𝐴0𝐴2𝑒𝑥𝑝{2𝑖(𝜔𝜙 + 𝛼)} + ⋯ ]       (24) 

 

Equating constant terms of equation (24), we get 

 
3𝑘

𝑐2
𝐴0

2 − (1 +
𝑘2

𝑐2
) 𝐴0 +

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
= 0            (25) 

 

Equation (25) is quadratic in 𝐴0  and thus  

 𝐴0 =
𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) ±

𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) [1 −

12𝑘

𝑐2𝑙2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 +

𝑘2

𝑙2
)

−2

]

1

2

   

or approximately 

𝐴0 =
𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) ±

𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) [1 −

12𝑘

𝑐2𝑙2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
         (26) 

Equating the coefficients of first order exponential terms in equation (19) gives 

 𝜔2 = (1 +
𝐾2

𝑙2
) −

6𝑘

𝑐2
𝐴0                        (27) 

 

Substituting equation (26) into (27) and simplifying yields 

𝜔2 = ± (1 +
𝑘2

𝑙2
) [1 −

12𝑘

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
  

Taking the square root of both sides 

 𝜔 = {± (1 +
𝑘2

𝑙2
) [1 −

12𝑘

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
}

1

2

        (28) 

We have two roots of 𝜔 which are given explicitly as 

𝜔𝛼 = {(1 +
𝑘2

𝑙2
) [1 −

12

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
}

1

2

         (29) 

and  

𝜔𝛽 = {− (1 +
𝑘2

𝑙2
) [1 −

12

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
}

1

2

         (30) 

Equation (30) is mathematical sound but physically of no significance as it yields a complex solution. Hence, we consider equation (29) 

as our physical expression for angular velocity. 

Substituting equation (29) into (23) and simplifying, we get  

 𝑢(𝜙) =
𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) ±

𝑐2

6𝑘
(1 +

𝑘2

𝑙2
) [1 −

12𝑘

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

1

2
  

+  𝐴1𝑒𝑥𝑝{𝑖(𝜔𝛼𝜙 + 𝛼)} + ⋯                                       (31) 

The perihelion displacement angle Δ is known to be given by 

 Δ = 2π(𝜔𝛼
−1 − 1)         (32) 

Substituting equation (29) into (32) and simplifying we get 
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Δ = 2𝜋 {(1 +
𝑘2

𝑙2
)

−
1

2
[1 −

12𝑘

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]

−
1

4
} − 2𝜋        (33) 

Expanding terms with fractional indices and neglecting higher terms reduces equation (33) to 

Δ = 2𝜋 {(1 −
𝑘2

2𝑙2
) [1 +

3𝑘

𝑐2
(

2𝑘

𝑙2
−

2𝑘2

𝑐2𝑙2𝑅
) (1 −

2𝑘2

𝑙2
)]} − 2𝜋          (34) 

Simplifying equation (34) and neglecting powers of 𝑐−4, we obtain 

Δ =
6𝜋𝑘2

𝑐2𝑙2
−

5𝜋𝑘2

𝑙2
−

15𝜋𝑘4

𝑐2𝑙4
+

4𝜋𝑘4

𝑙4
+

12𝜋𝑘6

𝑐2𝑙4
         (35) 

Equation (30) is the precession equation in the gravitational field of a spherical star. 

 

CONCLUSION 

We have in this paper shown how to derive the planetary equation of motion and precession equation in the gravitational field of a 

spherical star using an extended Riemannian metric tensor. The planetary equation of motion and precession equation in the gravitational 

field of a spherical star is found to be equations (21) and (35) respectively. It is interesting and instructive to note that these equations 

reduces to the corresponding pure Newtonian equations in the order of  𝑐0 and to the order of  𝑐−2 it contains additional correction terms 

which are not found in Einstein equation and [10]. These results point to the fact that the extended Riemannian metric tensor introduced 

in this research can be used to effectively obtain the precession equation with post-Einstein correction terms. These additional 

correctional terms are open up for theoretical development and experimental investigations and applications. This study can be applied to 

derive the gravitational spectral shift by the Sun and extend Robert Walker’s metric tensor. 
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