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Abstract 
 

We have solved the radial Schrödinger equation with the Eckart potential using the 

techniques of exact quantization rule and obtained closed form expressions for the 

energy eigenvalues and normalized radial eigenfunctions, the results we obtained are 

in perfect agreement with the energy eigenvalues of the Eckart potential solved by 

other methods in the literature, as a special case, we have also deduced the energy 

eigenvalues of the Hulthén potential from our formula which also turns out to be in 

total agreement with results in the literature. 
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1.0  Introduction 

The exact solutions of wave equation, both relativistic and nonrelativistic occupy prominent position in the field of 

quantum mechanics because from such solutions, vital information regarding the system being studied can be retrieved [1-

3]. The potential energy function used to solve the Schrödinger equation dictates the solution type, exact or inexact solution 

[4]. The harmonic oscillator and coulomb potentials are known to give exact solutions for all quantum states, nℓ, where n is 

the principal quantum number and ℓ is the angular momentum quantum number [5], few other potential functions give 

exact solutions for the special case of s-wave (ℓ = 0)[6]. Most of the other known potentials have no exact solutions with 

the Schrödinger equation for any quantum state, customarily, analytic solutions with these class of potentials are obtained 

by applying approximation scheme [7-8] on the spin-orbit centrifugal term of the Schrödinger equation. Researchers have 

employed various solution methods to solve the Schrödinger equation, some of the solution techniques include: Nikiforov-

Uvarov [9] method, Romanovski polynomial [2, 10-11] method, Laplace transform [3] method, path integral [12] method, 

exact quantization rule [1, 5, 8, 13-16] method and ansatz solution [17-19] method. The Eckart potential is an exponential-

type potential with varying applications in chemical, solid state and nuclear physics, this important potential has been 

studied in the literature, the s-wave solution of the Schrödinger equation with Eckart potential has been reported [3, 16], 

Wei et al. [18] have obtained ℓ-wave scattering state solution of the Schrödinger equation with Eckart potential by ansatz 

solution method, Taskin and Kocal [17], by employing an improved approximation scheme have studied the solution of 

Schrödinger equation with Eckart potential, also by ansatz solution method. Encouraged by the works of Qiang et al. [1] in 

solving the Schrödinger equation with Hulthén potential by exact quantization rule, we are motivated to solve the radial 

Schrödinger equation with Eckart potential from the approach of exact quantization rule, which to the best of our 

knowledge is not in the literature, our result will be compared with existing results in the literature, obtained by other 

methods 

 

2.0 Theoretical Approach 

2.1 Review of the Concepts of Exact Quantization Rule 

Here we give an outline of the methods of exact quantization rule, the complete detail is given by Ma and Xu [13]. The 

exact quantization rule was proposed to solve the one-dimensional Schrödinger equation given as: 
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where 
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with μ as the reduced mass of the two interacting particles, Enℓ is the energy eigenvalue knℓ (x) is the momentum of the 

system, Veff (x) is the effective potential energy function which is a piecewise continuous real function of x. Eq. (1) can be 

reduced to the well-known Riccati nonlinear differential equation given by: 

       022  xxkx nnn   .         (3) 

where      xxx nnn   /  is the logarithmic derivative of the wavefunction ψnℓ (x) is known as the phase angle. Due to 

Sturm-Liouville theorem, ϕnℓ (x) decreases monotonically with respect to x between two turning points determined by the 

equation Enℓ ≥ Veff (x). Specifically, x increases across a node of the wavefunction ψnℓ (x), where Enℓ ≥ Veff(x), ϕnℓ (x) 

decreases to -∞ and jumps to +∞ and then decreases again. By carefully studying the one-dimensional Schrödinger 

equation, Ma and Xu [13] proposed an Exact Quantization Rule givenby: 
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where xnA and xnB are two turning points determined by Enℓ = Veff(x) and xnA< xnB. N is the number of nodes of ϕnℓ (x) in 

the neighborhood of Enℓ ≥ Veff(x) and it is larger by one than the number of nodes n of the wavefunction ψnℓ (x), clearly, N 

= n + 1. The first term, Nπ, relates to the contribution from the nodes of the wave function, and the second term is called 

the quantum correction. Ma and Xu [13] have found that the quantum correction is independent of the number of nodes for 

the exactly solvable systems, therefore, it can be evaluated for the ground state (n = 0), the second term in Eq. (4) can thus 

be represented by: 
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where Qc is the quantum correction term. The exact quantization rule can easily be generalized to three dimension, in 

spherical coordinates it assumes the form: 
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In compact form, Eq. (6) can be expressed as: 

 
cQNI   .          (7) 

where 

  

Bn

An

r

r

n rdrkI 

.          (8) 

  
   























Bn

An

r

r

c rd
rd

rd

rd

rkd
rQ

1

00

0






 .       (9) 

The Schrödinger equation in three dimensions for a spherically symmetric potential [18] is given as: 
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Rnℓ (r) being the radial wave function. 

 

2.2 Energy Eigenvalues of the Eckart Potential 

The effective Eckart potential [17] is given by: 

      rVrVrVeff  .         (11) 

where V (r) and Vℓ (r) are respectively the Eckart potential and centrifugal term potential respectively, they are given by: 
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with a as the range of the potential, α and β(α > 0, β > 0, α < β) are the depths of the potential. 
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where L = ℓ (ℓ + 1). Substituting Eq. (12) and Eq. (13) in Eq. (11), ones obtains: 
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Eq. (10), with the effective potential given by Eq. (14) can be solved exactly only for the case of s-wave (ℓ = 0), to obtain 

analytical solution for ℓ ≠ 0, we must use a suitable approximation on the centrifugal term. one could employ the Greene 

and Aldrich approximation [ref] on the centrifugal term, this approximation is however unsuitable for short range region of 

the screening parameter, thus, we invoke the approximation due to Taskin and Kocal [17], known to give accurate results 

for both short and long range parameter, therefore, we assume: 
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where η and λ are adjustable parameters. By replacing Eq. (15) in Eq. (14) and simplifying, get: 
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Letting 
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Eq. (17) transforms to: 
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Eq. (18) leads to: 
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By defining the following constants: 
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Eq. (19) assumes the following simplest form 
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The turning points, ynA and ynB are determined by solving the equation Veff (y) = Enℓ, this results in: 

02  nEyByA .         (25) 

Eq. (25) has roots given by: 
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From Eq. (26) and Eq. (27) it is obvious that the sum and product of ynA and ynB are given by: 
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For the ground (n = 0) state, Eq. (28) and Eq. (29) gives respectively: 
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The expression for the momentum is given by, following Eq. (2), this gives: 
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With slight modification, Eq. (32) can be written as: 
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An important relation which will be required later is the expression relating knℓ (y) and the turning points ynA and ynB, 

inserting Eq. (28) and Eq. (29) in Eq. (33), we find: 
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The derivative of Eq. (34) with respect to y is given by: 
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Eq. (35) gives for the ground state(n = 0), and employing Eq. (30): 
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Using Eq. (2) and Eq. (3), the Riccati equation in three dimensions in spherical coordinates is: 
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To obtain the corresponding equation in terms of variable y, we substitute Eq. (17) in Eq. (37) and use Eq. (22) to eliminate 

Vnℓ (y), this leads to: 
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Eq. (38) has for the ground state; 
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Since ϕ0ℓ (y) has one zero and no pole, it has to assume a linear form in y, for a trial solution, we take: 
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c1 and c2 being constants, substituting Eq. (40) in Eq. (39), get: 
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Eq. (41) simplifies to; 
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By equating corresponding coefficients of y2, y and y0 respectively on both sides of Eq. (42), we arrive at the following 

relations: 
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Solving for c1 in Eq. (43), get: 
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By substituting Eq. (23) in Eq. (46), c1 can be expressed in more compact form as: 
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where 
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Evidently, Eq. (48) gives; 
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Eq. (44) gives: 

 
2

1

2
2

1

c

B

a
c


 .          (50) 

Having obtained c1 and c2, we are now in position to compute the various integrals which appear in Eq. (7), starting with 

the right hand side of this equation, Eq. (9) can be used to obtain the quantum correction, using the transformation given by 

Eq. (17), we have; 
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Using Eq. (40) and Eq. (36) in Eq. (51), we have: 
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By expanding out the numerator in Eq. (52) and splitting into partial fractions, we obtained: 
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the definite integral in Eq. (53) can be evaluated by means of the following standard integral [5] given by: 
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applying Eq. (54) in Eq. (53) yields the following results: 
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where 
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Thus, by putting Eq. (45) in Eq. (56), we find: 
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similarly; we find: 
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On substituting Eq. (30) and Eq. (31) in Eq. (58), this gives: 
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To further simplify Eq. (59), divide Eq. (44) and Eq. (45) each by Eq. (43), and the results substituted in Eq. (59), get: 
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Using Eq. (43) to eliminate the denominator in Eq. (60), we obtained: 
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Substituting Eq. (57) and Eq. (61) in Eq. (55), we have for the quantum correction: 
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The other integral on the right hand side of Eq. (7) is given in terms of variable y as: 
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Putting Eq. (34) in Eq. (63), this gives: 
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In order to evaluate the integral in Eq. (64) we use the following standard integral [8], viz: 
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By using the definite integral in Eq. (65) we obtained, 
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Substitute Eq. (66) and Eq. (62) in Eq. (7) to get: 
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Substituting Eq. (23) in Eq. (68) and then inserting Eq. (47) in the resulting expression, Eq. (68) reduces to: 
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Where we have replaced N by n + 1 in Eq. (68). Eq. (67) and Eq. (69) gives the energy eigenvalues, Enℓ as: 
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2.3 Energy Eigenfunctions 

Having obtained the expression for the energy eigenvalues of the Eckart potential as given by Eq. (70), for completeness, 

we now derive the corresponding expression for the energy eigenfunctions, this is achievable by solving the nonlinear 

Riccati equation given by Eq. (38), alternatively, the Schrödinger equation given by Eq. (10) can be solved directly. 

Inserting the transformation Eq. (17) in Eq. (10) and the effective potential, Eq. (22), and simplifying, we obtained: 
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Eq. (71) assumes the form: 
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when Eq. (23) and Eq. (24) are used in Eq. (71). For brevity we have defined: 
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Eq. (72) takes the following form: 
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We can obtain an ansatz solution for Eq. (75), following ref. [17, 19], assume a solution of the form: 
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where Nnℓ is the normalization constant, p and q are constants to be determined such that Eq. (76) is satisfied and ψnℓ (u) is 

an unknown function. By successively differentiating Eq. (76) we have: 

  
 

 
 uR

u

q

u

p

u

u
uR n

n

n

n 


























1

1



 .        (77) 

  
 

 

 

 
 
 

 
 

 uR
u

pp

u

qq

uu

qp

u

u

u

q

u

p

u

u
uR n

n

n

n

n

n 




















 






























2

2

2
1

1

1

12

1

222








.  (78) 

Substituting Eq. (78) and Eq. (77) in Eq. (75) and simplifying, get: 
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Subject to the following constraints, Eq. (79) is Gaussian hypergeometric differential equation, iff: 

 
np 2 .          (80) 

and 
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Eq. (80) and Eq. (81) gives respectively: 
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with Eq. (80) and Eq. (81), Eq. (79) is reduced to: 

                0121322121  upquqppuuu nnn   .  (84) 

whose solution is the hypergeometric function given by: 

    upqpnnFun ;12;222,12  .       (85) 

It follows that the wave function given in Eq. (76) can be expressed in terms of variable y as: 
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Having obtained the constants p and q as given by Eq. (82) and Eq. (83) respectively, next is to determine the normalization 

constant. The normalization of wave functions [20] requires that: 
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If we insert Eq. (17), then Eq. (74) in Eq. (87), get: 
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After substituting Eq. (76), Eq. (85) in Eq. (88), we have the following definite integral: 
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Using the result of Dong and Qiang [20] to evaluate the integral in Eq. (89), we find: 
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with Γ(x) being the gamma function of the argument x. 

 

3.0 Results and Discussion 

If we let κ = ϕ, η = ξ and L = γ in Eq. (20), Eq. (21) and Eq. (48), the energy eigenvalues given by Eq. (70) coincides with 

the energy eigenvalues of the Eckart potential in ref. [17] which was obtained by solving a hypergeometric differential 

equation via the  ansatz solution method. As a special case of the Eckart potential, for some values of the parameters a, α, β, 

ε, κ, σ, η and λ, the effective Eckart potential in Eq. (16) reduces to Hulthén potential, thus, by comparing the effective 

potential given by Eq. (8) in ref. [19] with Eq. (16) of this article, it is obvious that a = 1/δ, α = Ze2δ, β = 0, L = ℓ (ℓ+1); η = 

ω, and λ = 1, substituting these values in Eq. (20), Eq. (21) and Eq. (48), we obtained respectively, ε = 0, κ = 2μZe2/δ ħ2 

and σ = ℓ+1, which when used in Eq. (70), yields: 
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Eq. (92) is the energy eigenvalues of the Hulthén potential as deduced by Wang et al. [19]. We have used the values α = 

1/a. λ = 0.98 and η = 1.10 [17] to plot the unnormalized wave functions of Eq. (76) for states n = 2, 3 and 5 in atomic units 

(ħ = μ = 1). The plots are shown in Figures 1, 2 and 3. In conclusion, we have solved the radial Schrödinger equation with 

the Eckart potential and obtained closed form expressions for the energy eigenvalues and normalized radial wave functions 

of the Eckart potential by exact quantization rules, the results of this research work could be useful in areas of solid state 

physics, atomic physics, nuclear physics and molecular physics. 

 

Figure 1 Plot of Unnormalized Radial Wave Functions R20, R21 and R22 vs. u      Figure 2 Plot of Unnormalized Radial Wave Functions R30, R31 and R32 vs. u 

 
Figure 3 Plot of Unnormalized Radial Wave Functions R50, R51 and R52 vs. u 
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4.0  Conclusion 

We have solved the radial Schrödinger equation and obtained closed form expressions for the bound state enrtgy 

eigenvalues and eigenfunctions of the Eckart potential by exact quantization rule, a Pekeris-type approximation scheme 

was employed to deal with the spin-orbit centrifugal term of the effective Eckart potential. Closed form expressions for the 

bound state energy eigenvalues and eigenfunctions of the Hulthén potential was also deduced as a special case of the Eckart 

potential. 
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