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Abstract   
COVID-19 infected individuals are increasing in an alarming rate in Nigeria. Just in 

80 days, Nigeria has recorded over 5,000 cases. The trend shows that in the next 80 

days, this figure might triple if nothing is done to flattened the curve. Developing a 

stochastic model is very important in studying the trend and pattern of the spread of 

this novel virus. In this research, a stochastic model called the Gamma-Power function 

distribution is developed using the T-Power{Y} framework. Many properties of the 

stochastic model were investigated. The maximum likelihood estimation method was 

used to estimate the parameters of the proposed distribution and numerical 

investigation of the parameters which are not in closed form were developed. 

Simulation study was carried out to test the consistency of the parameter estimates. The 

pro-posed distribution was applied to two COVID-19 continuous data collected from 

Nigeria Centre for Disease Control (NCDC) and the results were compared with 

existing models. The results showed that the proposed distribution performed 

favourably when compared with other models. 
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1. Introduction 

The rise in the number of COVID-19 laboratory confirmed cases in Nigeria is alarming and in no time might hit 4-digit. COVID-19 is a 

disease caused by a novel coronavirus, which index case started from Wuhan City of Hubei Province in China in December 2019. The 

virus was first isolated on 7th January 2020 in China. The total cases reported by World Health Organisation (WHO) from 31st December 

2019 to 20th January 2020 was 44 cases [1]. The first imported cases outside China was reported in Thailand on 13th January, 2020. WHO 

[1] reported that 282 confirmed cases of COVID-19 from four countries including 278 cases from China, 2 from Thailand, 1 from Japan 

and 1 from Republic of Korea; all from the same region on 20th January, 2020. 
 

On the 23rd January, 2020, United States of America (USA) reported her first case, which are now leading in the number of laboratory 

confirmed cases worldwide. Vietnam recorded the first local transmission on the 24th January, 2020. The first death outside China was 

recorded in Philippines on 13th February, 2020. Egypt reported its first confirmed case of COVID-19 on the 15th February, 2020 to 

become the first country in Africa to have COVID-19. On 22nd February, 2020, France recorded the first death in Europe [2]. On 26th 

February, 2020, there were more new cases reported outside of China than in China for the first time, since the onset of COVID-19 

disease. 
 

On the 28th February, 2020, Nigeria reported her index case of COVID-19 in West African Sub-region from an Italian immigrant, and on 

the same day, WHO increased the assessment of the risk of spread and risk of impact of COVID-19 from high to very high at the global 

level and it was declared a pandemic [2]. The second case in Nigeria was confirmed after 10 days, on the 9th March, 2020. Strict 

measures were not put in place by Nigerian government to checkmate and screen immigrants at her borders to stop imported cases. It was 

too late before Nigerian government started putting strict measures to contain the virus. As at the 80th day of the virus in Nigeria, the total 

laboratory confirmed cases has hit 5,959 cases. Since 28th April 2020, new cases reported on daily basis are above 100 (an average of 231 

cases) as reported by Nigeria Centre for Disease Control (NCDC). If this trend continues, it means the total reported cases will hit 4 

digits in June 2020 [3]. 
 

COVID-19 closed cases are the sum of COVID-19 induced deaths and recovered cases. When closed cases are subtracted from infected 

individuals, what is left is the active cases. It is necessary to have continuous COVID-19 data. Thus, COVID-19 induced deaths per 100 

closed cases and time between two COVID-19 induced deaths are two continuous data of interest. So, developing a probability  
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distribution that fit the COVID-19 continuous data is very important because existing ones might not be a good fit. Generating 

continuous probability distributions and fitting them to emerging data is trending in the field of probability theory and statistics [4]. The 

T-R{Y} framework developed by [5] and later redefined by [6] is a framework for generating convoluted distributions. It was developed 

from Beta-X by [7] and extended to T-X by [8]. 

 

Different authors in recent years have used the T-R{Y} framework to generate new distributions. Some of the most recent works already 

published in literature include Normal-exponential{logistic} by [9], Weibull-normal{log-logistic} by [4], Reduced Beta Skewed Laplace 

by [10], Odd Lomax-Exponential{log-logistic} by [11], exponentiated-exponential-dagum{lomax} by [12]. None of these authors have 

explored the possibility of using the power function distribution as a baseline distribution in generating convoluted distribution using the 

T-R{Y} framework, despite its simple functional form and flexibility. 
 

Epidemiological Summary History of COVID-19 Cases in Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Spread of COVID-19 Nationwide 
 

The diagram in Figure 1 shows how COVID-19 spread from the first imported case in Lagos by an Italian immigrant to his 

contact in Ogun State, which was the second case and thereafter spread to other 33 states including Federal Capital 

Territory (FCT) Abuja. On 27th February, a 44-year old Italian citizen was diagnosed of COVID-19 in Lagos State. The 

case was the first to be reported in Nigeria since the first confirmed case in China. The case came through Murtala 

Muhammed International Airport, Lagos at 10pm on 24th February 2020 aboard Turkish airline from Milan, Italy. He 

moved from Lagos to his company site in Ogun state on 25th February. On 26th February, he presented at the staff  clinic in 

Ogun and there was high index of suspicion by the managing physician. He was referred to IDH Lagos and COVID-19 was 

confirmed on 27th February [3]. 
 

The second case was reported on 9th March in Ogun State, a contact from the index case. Initially it was Lagos and Ogun 

States that were susceptible but by 18th March 2020, susceptible states increased to 3, with Ekiti State included. The virus 

continues to spread both from imported cases and local transmission. As at 29th April, 2020, 35 states of the federation 

have reported cases of COVID-19, making the 35 states to be susceptible. Only Cross River and Kogi States do not have 

any COVID-19 case as at 17th May 2020. 
 

The map of Nigeria showing the total coverage of COVID-19 as at 17th March 2020 is depicted in Figure 2. 

 

 

 

 

 
Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 15–30 



17 
 

Stochastic Modelling of Covid-19…          Ekum, Akinmoladun and Ogunsanya             Trans. Of NAMP 
 
 

 

 
Figure 2: Map showing spread of COVID-19 Nationwide 

 

Recently, the number of COVID-19 induced deaths have increased significantly from 14 deaths reported on the 23rd 

January, 2020 to 264,109 deaths reported on 6th May, 2020. Initially, as at 23rd January, the time between two successive 

COVID-19 induced deaths was 180 minutes (3 hours), but as at 6th May, the time between two successive COVID-19 

induced deaths was 0.2367 minutes (14.2 seconds). This implies that every 14 seconds, someone dies of COVID-19. So, 

developing a probability distribution that fit the COVID-19 induced death rate is very important. Also, the number of time 

between two successive COVID-19 induced deaths is a continuous data that needs a continuous probability distribution to 

fit it. This distribution is distinct and has its peculiar features (see [13]). The new continuous distribution would be tested 

using two COVID-19 datasets, namely, data on COVID-19 induced death rate and time between two failures (COVID-19 

induced death). 
 

The remaining parts of the paper are unfolded as follows, in section 2, we present the materials and methods in which we 

derived the Gamma-Power function{log-logistic} distribution and its functions. Section 3 includes the results and 

discussion, while in Section 4, we made concluding remarks. 
 

2 Materials and Methods 

2.1 T -power{Y} Family of distribution 

The T-R{Y} framework by [6] provides a convolution method for generalizing the R distribution using the T distribution 

with the Y quantile function. Combining these three distributions will produce a convoluted distribution with greater 

flexibility. 
 

Let R be a random variable that follows a power function distribution defined by [14] with cdf, 𝐹𝑅(𝑥) =
𝑥𝑘

𝜆𝑘 and pdf, 

𝑓𝑅(𝑥) =
𝑘𝑥𝑘−1

𝜆𝑘  .   The cdf of T-Power function{Y} or simply T-P{Y} family of distribution is given by 

𝐹𝑋(𝑥) = ∫ 𝑓𝑇(𝑡)

𝑄𝑌(
𝑥𝑘

𝑘)

𝑎

𝑑𝑡 = 𝐹𝑇 [𝑄𝑌 (
𝑥𝑘

𝑘)] 

and the corresponding pdf is given by 

𝑓𝑋(𝑥) =
𝑘

𝑘 𝑥𝑘−1
𝑓𝑇 [𝑄𝑌 (

𝑥𝑘

𝑘)]

𝑓𝑌 [𝑄𝑌 (
𝑥𝑘

𝑘)]
 

where T and Y are two random variables having the same support, except if Y is uniformly distributed. FT (t) is the cdf of T 

and QY (y) is the quantile function of Y . Also, fT (t) and fY (y) are the pdfs of T and Y respectively. See [13] for the proof. 

 

Remark 1. If X is T -Power function{Y} distributed, then it follows that 

(i) 𝑋 = [𝐹𝑌(𝑇)]1/𝑘, in distribution 

(ii) 𝑄𝑋(𝑝) = {𝐹𝑌[𝑄𝑇(𝑝)]}1/𝑘, 

(iii) If 𝑇 = 𝑌 in distribution, then 𝑋 = 𝑃𝑜𝑤𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑘) in distribution and 

(iv) If 𝑌 = 𝑃𝑜𝑤𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑘) in distribution, then 𝑋 = 𝑇 in distribution. 
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The power function distribution has various forms. A simpler form is a one parameter power function distribution defined 

by [15] given by f(x) = kxk−1. See [16] for other functional forms of the power function distribution. 

  

2.2 T-power{log-logistic} 

Lemma 1. Let T and R be two random variables with cdfs FT (t) and FR(r) respectively. The cdf of a convoluted distribution 

derived from T and R is given by 

𝐹𝑋(𝑥) = 𝐹𝑇 [
𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
] 

where SR(r) is the survival function of random variable R. The corresponding pdf is given by 

𝑓𝑋(𝑥) =
𝑓𝑅(𝑥)

[𝑆𝑅(𝑥)]2
𝑓𝑇 [

𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
] 

Proof. 

Let T, R and Y be three random variables with cdfs FT (t), FR(r) and FY(y) respectively. By definition, the cdf of a 

convoluted random variable X defined by [6] is given by 
 

     
Y RQ F (x)

X Y R Y R
a

F ( ) ( ) Q F (x) Q F (x)T Tx f t dt P T F       (1) 

Let Y follows the log-logistic distribution with the standard quantile function QY (p) given by 

𝑄𝑌(𝑝) =
𝑝

1−𝑝
        (2) 

where p = FR(x). Let R be a random variable that follows the power function distribution with shape parameter k and scale 

parameter λ. The cdf of R is given by 

𝐹𝑅(𝑥) = (
𝑥

𝜆
)

𝑘
        (3) 

Substitute equation (2) and (3) into (1) to have 

𝐹𝑋(𝑥) = 𝐹𝑇 [
𝐹𝑅(𝑥)

1−𝐹𝑅(𝑥)
]       (4) 

But SR(x) = 1 – FR(x). So that 

𝐹𝑋(𝑥) = 𝐹𝑇 [
𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
]        (5) 

By differentiating equation (5) with respect to x will give the pdf given by 

𝑓𝑋(𝑥) =
𝑓𝑅(𝑥)

[𝑆𝑅(𝑥)]2
𝑓𝑇 [

𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
]        (6) 

Thus, equations (5) and (6) complete the proof. 

It should be noted that equation (6) can also be written as 

𝑓𝑋(𝑥) =
ℎ𝑅(𝑥)

𝑆𝑅(𝑥)
𝑓𝑇 [

𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
] 

The ratio [
𝐹𝑅(𝑥)

𝑆𝑅(𝑥)
] is called the odd-ratio of R random variable and hR(x) is its hazard function, which confirms that fX(x) is a 

weighted hazard function of the baseline distribution R. This is one of the major features of the T-R{Y} family of 

distributions defined by [13]. 

Lemma 2. Let T [0, ∞) be any random variable with cdf FT (t) and pdf fT (t), then the cdf and pdf of T - Power{log-logistic} 

family are respectively given by 

𝐹𝑋(𝑥) = 𝐹𝑇 (
𝑥𝑘

𝜆𝑘 − 𝑥𝑘
)  

and 

𝑓𝑋(𝑥) =
𝑘𝜆𝑘𝑥𝑘−1

(𝜆𝑘 − 𝑥𝑘)2
𝑓𝑇 (

𝑥𝑘

𝜆𝑘 − 𝑥𝑘
) , 𝑘, 𝜆 > 0; 0 ≤ 𝑥 ≤ 𝜆 

Proof 

Let R be a random variable that follows the Power function distribution with parameters k and λ, the cdf of R is given by 

𝐹𝑅(𝑥) = (
𝑥

𝜆
)

𝑘
        (7) 

and the survival function is given by 

𝑆𝑅(𝑥) = 1 − (
𝑥

𝜆
)

𝑘
        (8) 

Substitute equations (7) and (8) into (5) to have 

𝐹𝑋(𝑥) = 𝐹𝑇 (
𝑥𝑘

𝜆𝑘−𝑥𝑘
)        (9) 

and differentiating equation (9) with respect to x will give the pdf of the T -Power{log-logistic} family as 

𝑓𝑋(𝑥) =
𝑘𝜆𝑘𝑥𝑘−1

(𝜆𝑘−𝑥𝑘)2
𝑓𝑇 (

𝑥𝑘

𝜆𝑘−𝑥𝑘
) , 𝑘, 𝜆 > 0; 0 ≤ 𝑥 ≤ 𝜆               (10) 

Thus, equations (9) and (10) complete the proof 
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2.3 Gamma-power{log-logistic} distribution (GPLD) 

The Gamma-power{log-logistic} distribution (GPLD), which is a convolution of the gamma, power function and log-

logistics distributions using a T-R{Y} was first developed by [13]. Here, the power function is the baseline distribution. 

Many other distributions can be derived by replacing gamma distribution with any other distribution and/or replacing log-

logistic with other distribution, making sure that T and Y have the same support. For other T and Y already used, see [13]. 

The Weibull-Power function distribution by [16] is a special case of this family. It can be called Weibull-power{Cauchy} 

distribution. In this section, we will show how the T -Power{log-logistic} family was derived and in particular, the 

Gamma-Power{log-logistic} distribution. All of its important functions are also derived in this section. 

 

2.4 Derivation of GPLD 

One may be interested in modelling fluctuations in variables such as income of employees in a firm, expenditure of 

households in a community, strength of material produced by a machine, quantity of liquid in a reservoir, quantity of oil 

spilled in bbl, etc. Gamma distribution plays an important role in reliability theory and life testing for these mentioned 

variables. These variables are not just non-negative but also have known upper bounds. The power function distribution 

provides such a great flexibility with a real number λ as the upper bound and zero as the lower bound. 

 

2.5 Cumulative distribution function of Gamma-Power{log-logistic} 

One of the most important ways of characterizing a probability distribution is through its cumulative distribution function (cdf). 
 

Theorem 1. Let X be a random variable that follows the Gamma-Power{log-logistic} distribution with parameters α, β, k 

and λ, then the cdf of X defined on a closed interval [0, λ] is given by. 

𝐹𝑋(𝑥) =
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘


𝑘

− 𝑥𝑘
) , 𝛼] ; 𝛼, 𝛽, 𝑘, > 0, 0 ≤ 𝑥 ≤  

where 𝛾 [𝛽 (
𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼] is an incomplete gamma function 

 

Proof 

Let T follows the gamma distribution with shape parameter  and scale parameter , that is 

𝑓𝑇(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑡𝛼−1 exp(−𝑡) ,,  > 0, 𝑡 ≥ 0 

The cdf of T is given by 

𝐹𝑇(𝑥) =
1

Γ(𝛼)
𝛾(𝛽𝑡)                   (11) 

Substitute equation (11) into (9) to have the cdf of GPLD 

𝐹𝑋(𝑥) =
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼] ; 𝛼, 𝛽, 𝑘, > 0, 0 ≤ 𝑥 ≤                   (12) 

Equation (12) completes the proof. Equation (12) is the cdf of the proposed gamma-power function log-logistic distribution 

(GPLD). 

 

2.6 Probability Density Function of GPLD 

The probability density function (pdf) of GPLD is derived by differentiating the cdf in equation (12) with respect to x. The 

pdf of the proposed Gamma-Power{log-logistic} distribution is therefore given by 

𝑓𝑋(𝑥) =
𝑘𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)] ; 𝛼, 𝛽, 𝑘, > 0, 0 ≤ 𝑥 ≤                 (13) 

From now hence forth the newly proposed Gamma-Power{log-logistic} distribution will be regarded as GPLD. 

Figure 3 illustrates some possible shapes of the density function of the GPLD, for selected parameter values. The density 

function can take various forms depending on the parameter values. It is obvious that the GPLD has higher flexibility than 

the gamma and the power function distributions, because of the additional parameters, which allow for a high degree of 

flexibility of the GPLD. It shows that for different parameter values α, β, k and for a constant λ, GPLD can be positively or 

negatively skewed and can be leptokurtic or platykurtic. The pdf has various shapes as displayed in Figure 3. So, the new 

distribution would be very useful in many practical situations for modelling positive real data sets. 
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Figure 3: The pdf of GPLD Distribution for λ = 1. Source: [13] 

 

2.7 Survival Function of GPLD 

Given the cdf in equation (12), the survival function of GPLD is given by 

𝑆𝑋(𝑥) = 1 −
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]                (14) 

2.8 Hazard Function of GPLD 

 

Theorem 2.  The hazard function of a random variable X that follows a GPLD with parameters α, β, k, λ exist and it is 

given by 

ℎ𝑋(𝑥) =
𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)]

(𝑘 − 𝑥𝑘)
𝛼+1

{Γ(𝛼) − 𝛾 [𝛽 (
𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]}

. 

Proof 

By definition, the hazard function of a random variable X is given by 

ℎ𝑋(𝑥) =
𝑓𝑋(𝑥)

𝑆𝑋(𝑥)
.         (15) 

Substitute the pdf in equation (13) and the survival function in equation (14) into equation (15), we derive the hX (x) of 

GPLD as 

ℎ𝑋(𝑥) =

𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)]

1 −
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]

. 

Solve further to arrive at 

ℎ𝑋(𝑥) =
𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1𝑒𝑥𝑝[−𝛽(

𝑥𝑘

𝑘−𝑥𝑘
)]

(𝑘−𝑥𝑘)
𝛼+1

{Γ(𝛼)−𝛾[𝛽(
𝑥𝑘

𝑘−𝑥𝑘
),𝛼]}

.            (16) 

Equation (16) completes the proof. 

 

2.9 Cumulative Hazard Function of GPLD 

By definition, the cumulative hazard function of a random variable X is given by 

HX (x) = −log[SX (x)]                 (17) 
 

Let X be random variable that follows a GPLD with survival function given in equation (14). The cumulative hazard 

function, HX (x) of GPLD is derived by substituting equation (14) into (17) to have 

𝐻𝑋(𝑥) = −𝑙𝑛 {1 −
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘


𝑘

−𝑥𝑘
) , 𝛼]}             (18) 

Equation (18) is the cumulative hazard function of GPLD. 
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2.10 Reverse Hazard Function of GPLD 

Theorem 3. The revered hazard function of a random variable X that follows a GPLD with parameters α,  

β , k, λ exist and it is given by 

 𝜏𝑋(𝑥) =
𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1𝑒𝑥𝑝[−𝛽(

𝑥𝑘

𝑘−𝑥𝑘
)]

(𝑘−𝑥𝑘)
𝛼+1

{𝛾[𝛽(
𝑥𝑘

𝑘−𝑥𝑘
),𝛼]}

 

 

Proof. 

By definition, the reversed hazard function of a random variable X is given by 

𝜏𝑋(𝑥) =
𝑓𝑋(𝑥)

𝑆𝑋(𝑥)
.         (19) 

Substitute the pdf in equation (13) and the cdf in equation (12) into equation (19), we derive the τX (x) of GPLD as 

𝜏𝑋(𝑥) =
𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1𝑒𝑥𝑝[−𝛽(

𝑥𝑘

𝑘−𝑥𝑘
)]

(𝑘−𝑥𝑘)
𝛼+1

{𝛾[𝛽(
𝑥𝑘

𝑘−𝑥𝑘
),𝛼]}

.               (20) 

 

2.11 Quantile Function of GPLD 

Definition 1. The quantile function of a random variable X is the value at which the probability of the random variable is 

less than or equal to the given probability. It is the inverse function of the cdf and it is defined as 

𝑄𝑋(𝑥) = 𝐹−1(𝑥).                  (21) 

Recall the pdf of T-Power{log-logistic} given in equation (10). 
 

Lemma 3. Let T be a random variable with pdf fT(x), then random variate, 𝑋 =  (
𝑇

1+𝑇
)

1/𝑘

follows T-Power{log-logistic} 

family of distribution in equation (10), provided T is supported on the interval 0 to ∞, i.e., T ∈ [0, ∞). The log-logistic 

parameters, scale = shape = 1, where k and λ are the parameters from the power function distribution. 

 

Proof. 

It is easy to see the result from Remark 1i. 

Lemma 4. It follows from Lemma 1 that the quantile functions of T-Power function{log-logistic} distribution is given by 

𝑄𝑋(𝑝) =  [
𝑄𝑇(𝑝)

1+𝑄𝑇(𝑝)
]

1/𝑘

                  (22) 
 

Proof. 

It is easy to see the result from Remark 1ii. 
 

Theorem 4.  If T (α, β) follows a gamma distribution with parameters α and β, then the quantile of GPLD with parameters 

α, β, k, λ is given by  

where QT(_,_) is the quantile function of gamma distribution with parameters _, _; and k and _ are the parameters from 

the power function distribution. 

𝑄𝑋(𝑝) =  (
𝑄𝑇(𝛼,𝛽)(𝑝)

1 + 𝑄𝑇(𝛼,𝛽)(𝑝)
)

1/𝑘

 

where QT (α,β) is the quantile function of gamma distribution with parameters α, β; and k and λ are the parameters from the power 

function distribution. 
 

Proof. 

Following Remarks (1i) and (1ii), and Lemma (3) and (4). Just substitute the quantile function of gamma distribution into 

Lemma (4) to have 

𝑄𝑋(𝑝) =  (
𝑄𝑇(𝛼,𝛽)(𝑝)

1+𝑄𝑇(𝛼,𝛽)(𝑝)
)

1/𝑘

                  (23) 

where k is a shape parameter and λ is a scale parameter from the power function distribution. It is easy to generate T using 

R codes. The rgamma generates random values of gamma distribution, T. Then, use the transformation in Theorem (4) with 

known α and β to generate random variates that follow GPLD.  

The quantile function returns the value x such that 

F (x) = P (X ≤ x) = p 
 

The quantile function of a particular distribution is used in Monte Carlo method to simulate random variates that follows 

such distribution. The quantile function can be used to partition a distribution into different non-overlapping continuous 

sections. We can determine the quartiles, octiles, deciles and percentiles using the quantile function. 
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2.12 Asymptotes of GPLD 

2.12.1 Vertical Asymptotes of GPLD 

This is the value x will approach for fX(x) to approach 1.  

 lim
𝑥→𝑎

𝑓𝑋(𝑥) = ∞        (24) 

For GPLD, the functions fX (x) and hX (x) will be undefined if 

𝑘 − 𝑥𝑘 = 0         (25) 

and x = λ. Thus, the vertical asymptote of fX (x) is given by 

 lim
𝑥→

𝑓𝑋(𝑥) = ∞.        (26) 

and the vertical asymptote of hX(x) is given by 

 lim
𝑥→

ℎ𝑋(𝑥) = ∞.                     (27) 
 

So, equations (26) and (27) are the vertical asymptotes of the pdf and hazard function of GPLD respectively. 

 

2.12.2 Horizontal Asymptotes of GPLD 

If fX(x) and hX(x) are the pdf and hazard functions of GPLD distribution. Then the horizontal asymptotes are horizontal lines 

that the functions approach as x → ∞. 

 lim
𝑥→∞

𝑓𝑋(𝑥) = 𝑎                    (28) 

The horizontal asymptote of fX(x) is given by 

 lim
𝑥→∞

𝑓𝑋(𝑥) = 0                    (29) 

and the horizontal asymptote of hX(x) is given by 

 lim
𝑥→∞

ℎ𝑋(𝑥) = 0                    (30) 

 

So, equations (29) and (30) are the horizontal asymptotes of the pdf and hazard function of GPLD respectively. Note that x 

is bounded above and so this may not exist in the real sense of GPLD. 

 

2.13 Moment of GPLD 

The moment of a distribution is a very important function for deriving the mean of the distribution. The series expansion of 

the pdf of GPLD is given by 

𝑓𝑋(𝑥) =
𝑘𝛽𝛼

Γ(𝛼)
∑ ∑

(−1)𝑖(𝛼+𝑖+𝑗)!𝑥𝑘(𝛼+𝑖+𝑗)−1

𝑖!𝑗!𝑘(𝛼+𝑖+𝑗)
∞
𝑗=0

∞
𝑖=0                   (31) 

If i = j = 0, the series expansion of the pdf of GPLD given in equation (31) will reduce to 

𝑓𝑋(𝑥) =
𝛼!𝑘𝛽𝛼

Γ(𝛼)𝛼𝑘 𝑥𝛼𝑘−1                   (32) 

See the complete proof in [13]. 
 

The rth moment of GPLD using the linear expansion pdf in equation (31) is given by 

𝐸(𝑋𝑟) =
𝑘𝑟𝛽𝛼

Γ(𝛼)
∑ ∑

(−1)𝑖(𝛼+𝑖+𝑗)!

𝑖!𝑗![𝑘(𝛼+𝑖+𝑗)+𝑟]
∞
𝑗=0

∞
𝑖=0       (33) 

If r = 1, we have the mean of GPLD given by 

𝐸(𝑋) =
𝑘𝛽𝛼

Γ(𝛼)
∑ ∑

(−1)𝑖(𝛼+𝑖+𝑗)!

𝑖!𝑗![𝑘(𝛼+𝑖+𝑗)+1]
∞
𝑗=0

∞
𝑖=0                    (34) 

If i = j = 0, the mean of GPLD becomes 

𝐸(𝑋) =
(𝛼−1)!𝛼𝑘𝛽𝛼

Γ(𝛼)(𝛼𝑘+1)
                    (35) 

and the variance is given by 

𝑉𝑎𝑟(𝑋) =
𝛼!𝑘2𝛽𝛼

Γ(𝛼)(𝛼𝑘+2)
|1 −

𝛼!𝑘𝛽𝛼(𝛼𝑘+2)

(𝛼𝑘+1)
|                  (36) 

 

2.14 Gini Index of GPLD 
The Gini index or coefficient measures the inequality among values of a distribution. A Gini index of zero expresses perfect 

equality, where all values are the same (for example, where everyone has the same income). A Gini index of one (or 100%) 

expresses maximal inequality among values. For instance, if a large number of people, where only one person has all the 

income or consumption, and all others have none, then the Gini index will be very nearly one [17]. 
 

Definition 2. Let X be a continuous random variable with survival function SX (x), and has a finite mean µ, the Gini index, 

G, which is zero for all negative values of X is given by 

𝐺 = 1 −
1

𝜇
∫ [𝑆𝑋(𝑥)]2∞

0
𝑑𝑥        (37) 
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Theorem 5. Let X be a random variable that follows a GPLD with survival function SX (x) and with µ, the Gini index, G of 

X is only dependent on parameter λ and it is given by 

𝐺 = |1 − ( − 2 +
3

3
)| 

Proof. For GPLD, the Gini index is derived by 

𝐺 = 1 −
1

𝜇
∫ [𝑆𝑋(𝑥)]2

0
𝑑𝑥         (38) 

where SX (x) = 1 −FX (x) given in equation (14) and µ is the mean of GPLD. So that equation (38) can become 

Put equations (40) and (41) into (39) to have 

𝐺 = 1 −
1

𝜇
∫ [1 − 𝐹𝑋(𝑥)]2

0
𝑑𝑥.       (39) 

Let  

𝑤 = 𝐹𝑋(𝑥)         (40) 

So, 
𝑑𝑤

𝑑𝑥
= 𝑓𝑋(𝑥) 

𝑑𝑥 =
𝑑𝑤

𝑓𝑋(𝑥)
                     (41) 

 

Put (40) and (41) into (39) to have 

𝜇(1 − 𝐺) = ∫ (1 − 𝑤)2


0

𝑑𝑤

𝑓𝑋(𝑥)
 

𝜇(1 − 𝐺)𝑓𝑋(𝑥) = ∫ (1 − 𝑤)2


0

𝑑𝑤 = ∫ (1 − 2𝑤 + 𝑤2)2


0

𝑑𝑤 

𝜇(1 − 𝐺)𝑓𝑋(𝑥) =  − 2 +
3

3
                  (42) 

Continuous sum of both sides of equation (42) on the bounded interval [0, λ], that is, integrate for side with respect to x. 

𝜇(1 − 𝐺) ∫ 𝑓𝑋(𝑥)


0
𝑑𝑥 = ∫ ( − 2 +

3

3
)



0
𝑑𝑥     (43) 

But we know that 

∫ 𝑓𝑋(𝑥)


0

𝑑𝑥 = 1 

So, that equation (43) becomes 

𝜇(1 − 𝐺) = ( − 2 +
3

3
) 𝑥                   (44) 

Sum through equation (44) to have 

𝑛𝜇(1 − 𝐺) = ( − 2 +
3

3
) ∑ 𝑥𝑖

𝑛

𝑖=1

 

𝜇(1 − 𝐺) = ( − 2 +
3

3
)

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

= ( − 2 +
3

3
) �̅� 

where n is the number of observation, that is xi, i = 1, 2, ..., n. 
 

Taking expectation of both sides gives 

𝜇(1 − 𝐺) = ( − 2 +
3

3
) 𝐸(�̅�) = ( − 2 +

3

3
) 𝜇     (45) 

Solving for G from equation (45), we have the Gini index of GPLD as 

𝐺 = |1 − ( − 2 +
3

3
)| = |1 −  (1 −  +

2

3
)|                 (46) 

Equation (46) completes the proof and G depends only on parameter λ. When λ = 1, the Gini index for GPLD is a constant 

value and it is equal to 2/3 or 66.7%. The world Gini index for 2008 was 70% and that of 2013 was 65%. So, the Gini index 

of GPLD for λ = 1 can be used as an approximation to world Gini index. 
 

2.15 Order Statistics of GPLD 

2.15.1 1st Order Statistics of GPLD 

Lemma 5. Let X1, X2, ..., Xn be a random sample from the GPLD distribution and X(1), X(2), . . . , X(n), such that, X(1) ≤ X(2) ≤ 

.... . . ≤ X(n), are order statistics obtained from the sample. Then the pdf fX1(x) of the 1st 

order statistics, X(1) is given by 
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𝑓𝑋1
(𝑥) =

𝑛𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘 − 𝑥𝑘)
𝛼+1 {1 −

1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘 − 𝑥𝑘
) , 𝛼]}

𝑛−1

𝑒𝑥𝑝 [−𝛽 (
𝑥𝑘

𝑘 − 𝑥𝑘
)] 

Proof. 

By definition, 1st order statistic of a random variable X is given by 

𝑓𝑋1
(𝑥) = −

𝑑

𝑑𝑥
∏ [1 − 𝐹𝑋(𝑥)]𝑛𝑛

𝑖=1 = 𝑛[1 − 𝐹𝑋(𝑥)]𝑛−1𝑓𝑋(𝑥) = 𝑛[𝑆𝑋(𝑥)]𝑛ℎ𝑋(𝑥)              (47) 

 

Substitute the cdf and pdf of GPLD in equations (12) and (13) into (47) to have the 1st order statistic of GPLD derived as 

𝑓𝑋1
(𝑥) =

𝑛𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 {1 −

1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]}

𝑛−1

𝑒𝑥𝑝 [−𝛽 (
𝑥𝑘

𝑘−𝑥𝑘
)]                 (48) 

Equation (48) completes the proof. 

 

2.15.2 nth Order Statistics of GPLD 

Lemma 6. Let X1, X2, ..., Xn be a random sample from the GPLD distribution and X(1), X(2), . . . , X(n), such that, X(1) ≤ X(2) ≤ 

.... . . ≤ X(n), are order statistics obtained from the sample. Then the pdf fXn (x) of the nth order statistics, X(n) is given by 

𝑓𝑋𝑛
(𝑥) =

𝑛𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘 − 𝑥𝑘)
𝛼+1 {

1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘 − 𝑥𝑘
) , 𝛼]}

𝑛−1

𝑒𝑥𝑝 [−𝛽 (
𝑥𝑘

𝑘 − 𝑥𝑘
)] 

Proof. 

By definition, nth order statistic of a random variable X is given by 

𝑓𝑋𝑛
(𝑥) = −

𝑑

𝑑𝑥
∏ [1 − 𝐹𝑋(𝑥)]𝑛𝑛

𝑖=1 = 𝑛[𝐹𝑋(𝑥)]𝑛−1𝑓𝑋(𝑥) = 𝑛[𝐹𝑋(𝑥)]𝑛𝑋(𝑥)              (49) 
 

Substitute the cdf and pdf of GPLD in equations (12) and (13) into (49) to have the nth order statistic of GPLD derived as 

𝑓𝑋𝑛
(𝑥) = 𝑛 [

1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]]

𝑛−1
𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)].                     (50) 

Solve equation (50) further to have 

𝑓𝑋𝑛
(𝑥) =

𝑛𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 {

1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]}

𝑛−1

𝑒𝑥𝑝 [−𝛽 (
𝑥𝑘

𝑘−𝑥𝑘
)]               (51) 

Equation (51) completes the proof. 

 

2.15.3 General Order Statistics of GPLD 

Lemma 7. Let X(1), X(2), ..., X(n) denote the order statistics of a random sample that follows GPLD distribution, X1, X2, ..., 

Xn, from a continuous population with cdf, FX(x) and pdf fX(x). Then the pdf fX(j)(x) of GPLD is given by 

𝑓𝑋(𝑗)
(𝑥) =

𝑛! 𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

(j − 1)! (𝑛 − 𝑗)! Γ(𝛼)(𝑘 − 𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘 − 𝑥𝑘
)] 

where 

 = {
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘 − 𝑥𝑘
) , 𝛼]}

𝑗−1

{1 −
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘 − 𝑥𝑘
) , 𝛼]}

𝑛−𝑗

 

Proof. 

By definition, jth order statistic of a random variable X is given by 

𝑓𝑋(𝑗)
(𝑥) =

𝑛!

(j−1)!(𝑛−𝑗)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑗−1[𝐹𝑋(𝑥)]𝑛−𝑗      (52) 

 

Substitute the cdf and pdf of GPLD in equations (12) and (13) into (52) to have the jth order statistic of GPLD derived as 

𝑓𝑋(𝑗)
(𝑥) =

𝑛!𝑘𝜆𝑘𝛽𝛼𝑥𝛼𝑘−1

(j−1)!(𝑛−𝑗)!Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)]               (53) 

where 

 = {
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]}

𝑗−1

{1 −
1

Γ(𝛼)
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]}

𝑛−𝑗

    (54) 

Equation (53) completes the proof. 

 

2.16 Odd Ratio of GPLD 

Definition 3. Let X be a random with cdf FX(x). The odd ratio is given by 

𝑂𝑅 =
𝐹𝑋(𝑥)

1−𝐹𝑋(𝑥)
         (55) 

The odd-ratio is a non-decreasing function, which made it possible for the proofing of Lemma (1). It is a very useful 

function in survival analysis. Its first derivative is the inverse of its survival function. 
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Lemma 8. Let X be a random variable that follows the GPLD with cdf FX(x), its odd-ratio exists and it is given by 

𝑂𝑅 =
𝛾 [𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]

Γ(𝛼) − 𝛾 [𝛽 (
𝑥𝑘

𝑘−𝑥𝑘
) , 𝛼]

 

Proof. 

Substitute the cdf of GPLD into equation (55) of Definition (5) to have. 

𝑂𝑅 =

1

Γ(𝛼)
𝛾[𝛽(

𝑥𝑘

𝑘−𝑥𝑘
),𝛼]

1−
1

Γ(𝛼)
𝛾[𝛽(

𝑥𝑘

𝑘−𝑥𝑘
),𝛼]

                   (56) 

Solve equation (56) further to have the odd-ratio of GPLD given by 

𝑂𝑅 =
𝛾[𝛽(

𝑥𝑘

𝑘−𝑥𝑘
),𝛼]

Γ(𝛼)−𝛾[𝛽(
𝑥𝑘

𝑘−𝑥𝑘
),𝛼]

                    (57) 

Equation (57) completes the proof. 

2.17 Likelihood Ratio of GPLD 

The likelihood ratio lr is the ratio of two probabilities. 

 

Lemma 9. If fX(x) be the pdf of GPLD with parameters (α, β, k1, λ) and gX(x) be the pdf of GPLD with parameters (α, β, k2, 

λ), such that k1 > k2. Then 

lim
𝑥→0

𝑙(𝑥) = log (
𝑘1𝜆𝛼𝑘2

𝑘2𝜆𝛼𝑘2
) ≥ 0. 

Proof. 

The likelihood ratio of fX(x) and gX(x) is defined as 

𝑙𝑟 =
𝑓𝑋(𝑥)

𝑔𝑋(𝑥)
           (58) 

Substitute the pdf of GPLD into equation (58) to have 

𝑙𝑟 =
𝑘1

𝑘2
(

𝜆𝑘2−𝑥𝑘2

𝜆𝑘1−𝑥𝑘1
)

𝛼+1

𝜆𝑘1−𝑘2𝑥𝛼(𝑘1−𝑘2) 𝑒𝑥𝑝 {−𝛽 [(
𝑥𝑘1

𝑘1−𝑥𝑘1
) − (

𝑥𝑘2

𝑘2−𝑥𝑘2
)]}              (59) 

Take the log of equation (59) to have 

𝑙𝑜𝑔𝑙𝑟 = log 𝑘1 − 𝑙𝑜𝑔𝑘2 + (𝛼 + 1)𝑙𝑜𝑔 (
𝜆𝑘2−𝑥𝑘2

𝜆𝑘1−𝑥𝑘1
) + (𝑘1 − 𝑘2)𝑙𝑜𝑔𝜆 + [𝛼(𝑘1 − 𝑘2)]𝑙𝑜𝑔𝑥 − 𝛽 [(

𝑥𝑘1

𝑘1−𝑥𝑘1
) − (

𝑥𝑘2

𝑘2−𝑥𝑘2
)]       (60) 

Take the limit of loglr as x tends to zero, where l(x) = loglr 

lim
𝑥→0

𝑙(𝑥) = log 𝑘1 − 𝑙𝑜𝑔𝑘2 + (𝛼 + 1)(𝑘2 − 𝑘1)𝑙𝑜𝑔𝜆 + (𝑘1 − 𝑘2)𝑙𝑜𝑔𝜆               (61) 

Solve equation (61) further to arrive at 

lim
𝑥→0

𝑙(𝑥) = log (
𝑘1𝜆𝛼𝑘2

𝑘2𝜆𝛼𝑘2
) ≥ 0.                    (62) 

Equation (62) completes the proof. 

 

2.18 Monotone Likelihood Ratio Property of GPLD 
In statistics, the monotone likelihood ratio property (MLRP) is a property of the ratio of two probability density functions (pdfs). 
 

Definition 4. Let fX (x) and gX (x) be the pdfs of two distributions with respect to x with this property, if for every x2 > x1 

𝑓𝑋(𝑥2)

𝑔𝑋(𝑥2)
=

𝑓𝑋(𝑥1)

𝑔𝑋(𝑥1)
                   (63) 

that is, if the ratio is non-decreasing in the argument x. 

If the functions are first-differentiable, the property is sometimes stated as 
𝜕

𝜕𝑥
[

𝑓𝑋(𝑥)

𝑔𝑋(𝑥)
] ≥ 0                   (64) 

Then fX(x) and gX(x) have the MLRP in x. 
 

For two distributions that satisfy the definition with respect to some argument x, we say they have the MLRP in x. For a family of 

distributions that all satisfy the definition with respect to some statistic T (X), we say they have the MLR in T (X), where T (X) is a 

sufficient statistic. The MLRP is used to represent a data-generating process that enjoys a straightforward relationship between the 

magnitude of some observed variable and the distribution it draws from. If fX (x) satisfies the MLRP with respect to gX (x), the higher 

the observed value x, the more likely it was drawn from distribution f rather than g. As usual for monotonic relationships, the 

likelihood ratio’s monotonicity comes in handy in statistics, particularly when using maximum-likelihood estimation. Also, 

distribution families with MLR have a number of well-behaved stochastic properties, such as first-order stochastic dominance and 

increasing hazard ratios. Monotone likelihoods are used in several areas of statistical theory, including point estimation and hypothesis 

testing, as well as in probability models. 
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Theorem 6. If x1, x2, ..., xn is a random sample from gamma distribution with parameters α, β having pdf 

gX(x) and x(1), x(2), . . . , x(n), such that, x(1) ≤ x(2) ≤ .... . . ≤ x(n), are order statistics obtained from the 

 

sample, then fX (x) and gX(x) have the monotone likelihood ratio property in x, where fX(x) is the pdf of GPLD, such that 
𝜕

𝜕𝑥
[

𝑓𝑋(𝑥)

𝑔𝑋(𝑥)
] ≥ 0 

 

Proof. 

Recall the pdf of gamma distribution given as 

𝑔𝑋(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1 exp(−𝛽𝑥) ;  𝛼, 𝛽 > 0, 𝑥 ≥ 0      (65) 

and the pdf, fX(x) of GPLD given in equation (13). The likelihood ratio of fX(x) and gX(x) is given as 

𝑙𝑟 =
𝑓𝑋(𝑥)

𝑔𝑋(𝑥)
=

𝑘𝑘𝛽𝛼𝑥𝛼𝑘−1

Γ(𝛼)(𝑘−𝑥𝑘)
𝛼+1𝑒𝑥𝑝[−𝛽(

𝑥𝑘

𝑘−𝑥𝑘
)]

1

Γ(𝛼)
𝛾[𝛽(

𝑥𝑘

𝑘−𝑥𝑘
),𝛼]

              (66) 

If we solve equation (66) further, we have 

𝑙𝑟 =
𝑘𝑘𝛽𝛼𝑥𝛼(𝑘−1)

(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)]               (67) 

To complete the proof, from Definition (4), we have to show that lr is a non-decreasing function of x for all 

x 0 for the parameter space (, , k, ). To do this, we have to take the first derivative of lr with respect to 

x. 
𝜕𝑙𝑟

𝜕𝑥
=

𝜕

𝜕𝑥

𝑘𝑘𝛽𝛼𝑥𝛼(𝑘−1)

(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)]      (68) 

𝜕𝑙𝑟

𝜕𝑥
=

𝑘𝑘𝛽𝛼𝑥𝛼(𝑘−1)

(𝑘−𝑥𝑘)
𝛼+1 𝑒𝑥𝑝 [−𝛽 (

𝑥𝑘

𝑘−𝑥𝑘
)] (𝐴 − 𝐵)     (69) 

where 

𝐴 =
𝑘(𝛼+1)𝑥𝑘−𝛼(𝑘−1)(𝑘−𝑥𝑘)

𝑥(𝑘−𝑥𝑘)
       (70) 

and 

𝐵 = 𝛽 [
𝑘𝑥𝑘

𝑥(𝑘−𝑥𝑘)
+

𝑘(𝑥𝑘)
2

𝑥(𝑘−𝑥𝑘)
2 − 1]       (71) 

Note that x ≥ 0 and max(x) < λ, so the term (λk − xk) > 0. Also, A, B > 0 and A > B. Thus, the derivative in (69) is greater 

than zero. 

 

2.19 Maximum Likelihood Estimation (MLE) 

Recall the pdf in (13), the MLE is derived thus. 

The likelihood of (13) gives 

𝐿(,, 𝑘,) =
𝑘𝑛

𝑘𝑛
𝛽𝛼𝑛

[Γ(𝛼)]𝑛
∏

𝑥𝑖
𝛼𝑘−1

(
𝑘

−𝑥𝑖
𝑘)

𝛼+1
𝑛
𝑖=1 𝑒𝑥𝑝 [−𝛽 ∑ (

𝑥𝑖
𝑘


𝑘

−𝑥𝑖
𝑘
)𝑛

𝑖=1 ]   (72) 

Take the log to have 

𝑙 = 𝑙𝑜𝑔𝐿(,, 𝑘,) = 𝑛𝑙𝑜𝑔𝑘 + 𝑛𝑘𝑙𝑜𝑔 + 𝑎𝑛𝑙𝑜𝑔− 𝑛𝑙𝑜𝑔Γ(𝛼) + (𝛼𝑘 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=1 − (𝛼 + 1) ∑ 𝑙𝑜𝑔 (

𝑘
− 𝑥𝑖

𝑘)𝑛
𝑖=1 −

𝛽 ∑ (
𝑥𝑖

𝑘


𝑘

−𝑥𝑖
𝑘
)𝑛

𝑖=1                    (73) 

The maximum likelihood estimation parameters of the GPLD are given by differentiating ` partially with respect to each of 

the parameters and equating the results to zero and solve for each parameter. 
𝜕𝑙

𝜕𝛼
= −𝑛𝑙𝑛𝛽 + 𝑘 ∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1 − ∑ ln (

𝑘
− 𝑥𝑖

𝑘)𝑛
𝑖=1        (74) 

𝜕𝑙

𝜕𝛽
=

𝛼𝑛

𝛽
− ∑ (

𝑥𝑖
𝑘


𝑘

−𝑥𝑖
𝑘
)𝑛

𝑖=1         (75) 

𝜕𝑙

𝜕𝑘
=

𝑛

𝑘
+ 𝑛𝑙𝑛 + 𝛼 ∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1 − 𝑘(𝛼 + 1) ∑

𝑥𝑖
𝑘−1

(𝑘−𝑥𝑖
𝑘)

𝑛
𝑥=0 − 𝛽𝑘𝑘 ∑

𝑥𝑖
𝑘−1

(𝑘−𝑥𝑖
𝑘)

2
𝑛
𝑖=1     (76) 

𝜕𝑙

𝜕
=

𝜕

𝜕
𝑛𝑙𝑜𝑔𝑘 + 𝑛𝑘𝑙𝑜𝑔 + 𝑎𝑛𝑙𝑜𝑔 − 𝑛𝑙𝑜𝑔Γ(𝛼) + (𝛼𝑘 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖=1 − (𝛼 + 1) ∑ 𝑙𝑜𝑔(𝑘 − 𝑥𝑖

𝑘)𝑛
𝑖=1 − 𝛽 ∑ (

𝑥𝑖
𝑘

𝑘−𝑥𝑖
𝑘)𝑛

𝑖=1        (77) 

Equate (75) to zero and solve for  to obtain 
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�̂� =
�̂�𝑛

∑ (
𝑥𝑖

𝑘


𝑘

−𝑥𝑖
𝑘

)𝑛
𝑖=1

                       (78) 

Equate (74) to zero gives 

�̂� = exp [
1

𝑛
∑ log(𝑘 − 𝑥𝑖

𝑘)𝑛
𝑖=1 −

𝑘

𝑛
∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖=1 ]                 (79) 

Insert (78) into (79) to have 
�̂�𝑛

∑ (
𝑥𝑖

𝑘

𝑘−𝑥𝑖
𝑘

)𝑛
𝑖=1

= exp [
1

𝑛
∑ log(𝑘 − 𝑥𝑖

𝑘)𝑛
𝑖=1 −

𝑘

𝑛
∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖=1 ]              (80) 

Solve for �̂� in (80) gives 

�̂� =
1

𝑛
∑ (

𝑥𝑖
𝑘

𝑘−𝑥𝑖
𝑘)𝑛

𝑖=1 exp [
1

𝑛
∑ log(𝑘 − 𝑥𝑖

𝑘)𝑛
𝑖=1 −

𝑘

𝑛
∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖=1 ]                                                                                               (81) 

The equations obtained by setting the partial derivatives ` with respect to k to zero is not in closed form and the values of 

the parameter k must be found by using numerical methods. The estimate of k, denoted by �̂̂� is estimated using Newton-

Raphson numerical method. The R package (maxLik or optim) can also be used to estimate this parameter [18]. 

The parameter λ is estimated by 

̂ = max(𝑥𝑖) + 𝜎�̅�         (82) 

or λ is the least upper bound 

̂ = Sup(𝑥𝑖)          (83) 

where 𝜎�̅� is the standard error of X and x is the value of a random variable X, that is x ∈ X. 

 

3 Results and Discussion 

 

3.1 Simulation Study 

 

The maximum likelihood method for estimating the performance of GPLD is evaluated using Monte Carlo simulation for a 

total of eighteen parameter combinations with 1000 replications. Three diff erent sample sizes n = 20, 200 and 1000 were 

considered, for small, medium and large samples respectively. The actual values, maximum likelihood estimates, absolute 

bias and standard errors of the parameter estimates were presented in Table 1. From Table 1, it is noted that the maximum 

likelihood parameter estimates performed well for estimating the distribution parameters. As the sample size increases, the 

absolute bias and standard error decrease. 

 

Table 1. Actual values, Average Estimates and Standard errors for various parameter values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Consistency of the Parameter Estimates 

Table 1 shows that the estimates of parameters are consistent as shown by the values of absolute biases and standard errors. 

The absolute biases and standard errors converge to zero as the sample size, n increases from 20 to 200 to 1000. 
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3.3 Application 

In this section, two applications to real data sets were provided to illustrate the uses and importance of the proposed 

Gamma-Power function distribution (GPLD), especially in medicine and survival analysis. The distribution parameters 

were estimated by the method of maximum likelihood and three goodness-of-fit criteria and three goodness-of-fit statistics 

were evaluated to compare the flexibility of the GPLD distribution with other known existing distributions: Gamma, 

Weibull and Normal distributions. The goodness-of-fit criteria used are log-likelihood, Akaike information criterion (AIC), 

Bayesian information criterion, while the goodness-of-fit statistics include Kolmogorov-Smirnov statistic (K-S), Cramer-

von Mises statistic (W) and Anderson-Darling statistic (A). These criteria and statistics were computed to compare the 

fitted distributions to the datasets. The required computations were carried out in the R-language [18]. 

 

3.3.1 Application 1: Deaths per 100 COVID-19 concluded cases 

The first real data set represents Deaths per 100 COVID-19 concluded cases. COVID-19 concluded cases are those 

individuals that were once infected but have either died or recovered. If these concluded cases are subtracted from the 

infected cases, we have the active cases. The data used here was derived by 

100x
RD

D
Y

tt

t
t




         84 

where Dt is the deaths at time t, Rt is the deaths at time t. The denominator Dt + Rt is the number of concluded cases. Yt 

represents the number of COVID-19 deaths out of every 100 concluded cases per day. 

 

Table 2. COVID-19 induced deaths per 100 closed cases in Nigeria 

 

 

 

 

 

 

 

Table 2 shows the dataset, also depicted in Figure 4 and shows that there is a gap in the histogram with positive skewness 

(2.2221) and kurtosis (7.3552). Table 3 displays the maximum likelihood estimates of the parameters with their 

corresponding standard errors in brackets. Table 3 shows all the parameters of the GPLD distribution and other 

distributions. 

 

Table 3. MLE of Parameters and Standard Errors for Death per 100 COVID-19 concluded cases 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Goodness-of-fit Criteria and Statistics for Death per 100 COVID-19 concluded cases 

 

 

 

 

 
 

Table 4 clearly shows that the GPLD distribution provides the best fit to the first data. Figures 5 also support the results in 

favour of the GPLD model. 
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3.3.2 Application 2: Time (in minutes) between successive COVID-19 induced deaths 

The COVID-19 data are reported on daily basis. The data given is the number of COVID-19 induced deaths per 24 hours. 

So, to get the time (in hours) between successive COVID-19 induced deaths, we have 









tD

24 . 

Table 5. Time (in hours) between two successive COVID-19 induced deaths in Nigeria 

 

 

 

 

 

 
 

The skewness and kurtosis of the data are 0.8293 and 2.0329 respectively. The data is positively skewed and peaked as 

depicted in Figure 5. 
Table 6. Maximum likelihood estimates of parameters and standard errors for minutes between COVID-19 induced deaths 

 

 

 

 

 

 

 

 

 

 

 
 

The maximum likelihood estimates of the parameters of the fitted distributions with their corresponding standard errors in brackets are 

given in Table 4. All the parameters of the GPLD are significant at the 5% significance level. The GPLD provides a better fit to the yarn 

data than the WPC, PC, Gamma and Power function distributions as shown in Table 5. 
 

Table 7. Goodness-of-fit Statistics and Criteria for minutes between COVID-19 induced deaths 

 

 

 

 

 

 
Table 5 shows that GPLD AIC, A and W approach zero faster than that of others, and has the smallest K-S statistic value compared to the other models. 

 

    
Figure 4 and 5. Histogram and Times Plots of deaths per    Figure 6. Expected Closed and Active Cases 

100 and time between deaths 
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Figure 6 shows that in the coming days, the closed cases will increase while the active cases will reduce as time (in days) 

increases. At a point, there will be equilibrium point, where closed cases equate active cases. As time increase, closed cases 

approach 100%, while active cases approach 0%. This shows that there is hope for better days ahead if susceptible 

individuals are compliant to NCDC recommendations of physical distancing, wearing of face mask, washing of hands with 

alcohol base sanitisers, not touching of surfaces and so on. 

 

4 Conclusion 

This research developed a new univariate continuous probability distribution called Gamma-Power function distribution 

with log-logistic quantile function (GPLD) using the T-R{Y} framework. The GPLD is a member of the T-Power{Y} 

family and results on its statistical properties are presented, such as the cumulative distribution function, density function, 

the quantile function, survival function, hazard function, cumulative hazard function, moments, and Shannon entropy. The 

maximum likelihood estimation of the parameters of the model were derived. GPLD distribution was applied to two real 

datasets on COVID-19 concluded cases and the results of its performance were compared favourably with Gamma, Weibull 

and Normal distributions. This is a clear indication that a convoluted distribution is a better model compared to known 

individual distributions. The Weibull distribution is also shown to be a member of this T -Power function family of 

distributions. The GPLD can be used to fit generalized regression model on COVID-19 induced death rate and time 

between successive COVID-19 deaths. The GPLD would be used on data, where gamma distribution does not provide a 

good fit. 

 

References 

[1] WHO (2020). There is a current outbreak of coronavirus (COVID-19) disease. https://www.who.int/health-topics/coronavirus. 

[2] WHO-China Joint Mission on Coronavirus Disease 2019 (2020). Report of the WHO China Joint Mission on Coronavirus 

Disease 2019 (COVID-19), 16-24 February 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-

mission-on-covid-19final-report.pdf. 

[3] NCDC (2020). Nigeria Centre for Disease Control. COVID-19 Situation Report.www.covid19.ncdc. gov.ng  

[4] Famoye, F., Akarawak, E., and Ekum, M.I. (2018). Weibull-Normal Distribution and its Applications. Journal of Statistical 

Theory and Applications 17(4), 719–727. DOI: 10.2991/jsta.2018.17.4.12. 

[5] Aljarrah, M.A., Lee, C., Famoye, F. (2014). On generating T-X family of distributions using quantile functions, Journal of 

Statistical Distributions and Applications 1(2), doi:10.1890/13-1452.1. 

[6] Alzaatreh, A., Lee, C. and Famoye, F. (2014). T-normal family of distributions: a new approach to generalize the normal 

distribution. Journal of Statistical Distributions and Applications 1(16), 1-18. 

[7] Eugene, N., Lee, C. and Famoye, F. (2002). Beta-Normal distribution and its applications, Communications in Statistics - 

Theory and Methods 31(4), 497-512. 

[8] Alzaatreh, A., Lee, C., Famoye, F. (2013). A new method for generating families of continuous distributions, METRON 71,63–

79. DOI 10.1007/s40300-013-0007-y. 

[9] Zubair, M., Alzaatreh, A., Cordeiro, G.M., Tahir, M.H. and Mansoor, M. (2018). On Generalized Classes of Exponential 

Distribution using T-X Family Framework Filomat 32(4), 1259-1272. 

[10] Arowolo1 O. T., Nurudeen T. S., Akinyemi J. A., Ogunsanya A. S. and Ekum M. I. (2019). Reduced Beta Skewed Laplace 

Distribution with Application to Failure-Time of Electrical Component Data. Annals of Statistical Theory and Applications 

(ASTA) 1, 31-41. 

[11] Ogunsanya A. S., Sanni O.O. and Yahya W. B. (2019). Exploring Some Properties of Odd Lomax-Exponential Distribution. 

Annals of Statistical Theory and Applications (ASTA) 1, 21-30. 

[12] Ekum, M. I., Adamu, M. O. and Akarawak, E. E. (2020). T-Dagum: A Way of Generalizing Dagum Distribution Using Lomax 

Quantile Function. Journal of Probability and Statistics, 1-17. ID 1641207, https://doi.org/10.1155/2020/1641207. 

[13] Ekum, M. I., Adamu, M. O., Adeleke, I. A., Akarawak, E. E. and Arowolo, O. T. (2020). Class of Generalized Power Function 

Distributions: Properties and Applications. preprint, Dept. of Mathematics, University of Lagos. matekum@yahoo.com. 

[14] Ahsanullah, M., Shakil, M. and Golam Kibria, B.M.G. (2013). A characterization of the power function distribution based on 

lower records, ProbStat Forum 6, 68–72. 

[15] Azedine, G. (2013). Characterization of the power function distribution based on lower records, Applied Math-ematical 

Sciences 7, 5259–5267. 

[16] Tahir, M., Alizadehz M., Mansoor M. Cordeiro G. M. Zubair M. (2014). The Weibull-power function dis-tribution with 

applications. Hacettepe university bulletin of natural sciences and engineering series b: mathematics and statistics, DOI: 

10.15672/HJMS.2014428212. 

[17] Blomquist, N. (1981). A comparison of distributions of annual and lifetime income: Sweden around 1970. Review of Income 

and Wealth. 27(3): 243–264. 

[18] R Development Core Team R- A Language and Environment for Statistical Computing (R Foundation for Statistical 

Computing, Austria, Vienna, 2009). 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 15–30 


