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Abstract 

 

A purely conformal mapping method for solving harmonic Dirichlet and Neumann 

problems of ideal fluid flows in domains whose boundaries have inconvenient 

geometries is presented. The method uses an appropriate mapping function to 

transform the given problem in a domain of the 𝒘 plane onto a standard domain in 

the 𝒛 plane where the complex potential for the uniform to the right is well known. 

The simplified problem was then solved using the composition of two analytic 

functions to obtain the required complex potential for the flow in the 𝒘 plane. The 

stream function and solution of the flow problem was then isolated from the complex 

potential and the streamlines of each flow generated to show the unique features of 

each flow and the flow pattern analyzed in terms of fluid speed by the spacing of the 

streamlines. The fluid velocity was also determined from the complex potential and 

the stagnation points on the boundary in each flow identified. This method gave exact 

general analytical solutions to the problems considered and could therefore be a 

useful alternative choice for solving Laplace’s equation for two dimensional fluid 

flows. 
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1. Introduction 

Most problems of fluid flow when modelled mathematically under the assumptions that the flows are non-viscous and 

incompressible lead to the problem of solving an elliptic second order linear partial differential equation 

∇2𝜓 = 0                                                                                            (1) 

called Laplace’s equation subject to some specified boundary conditions which depend on the problem in question. If the 

boundary condition is such that𝜓takes prescribed values along the boundary, then the problem is called a Dirichlet problem 

while a Neumann problem is one in which the normal derivative 
𝜕𝜓

𝜕𝑛
 takes prescribed values on the boundary. In this paper 

we shall consider both types of boundary value problems. It is well known in the theory of analytic functions of a complex 

variables that if a function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain Ω then its component functions 

𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are harmonic there. The solution to problem (1) therefore reduces to finding a function which is 

analytic in Ω and whose real and imaginary parts satisfy the boundary conditions. The complex variable method of 

conformal mapping is a useful intermediate step in the solution and analysis of ideal flows as is evident in the works in [1-

12] as  well as other none flow problems in electrostatics [1,2,10,12,13], electromagnetism [10,12],  thermal physics 

[1,2,10,15] and other areas of computational and applied mathematics[15-19].The technique involves the transformation of 

the problem from a domain with an inconvenient geometry in one complex plane into a domain with a simpler geometry in 

another complex plane by means of an appropriate mapping function which preserves the magnitude of the angles between 

curves as well as their orientation. Amongst a variety of conformal transformations, the ones commonly used in analyzing 

ideal fluid flows are the Joukowski map, the Karman-Trefftz map (a generalization of the Joukowski map), and the  
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Schwarz-Christoffel map. In this paper, we shall focus on the Schwarz-Christoffel and Joukowskimaps. The Schwarz-

Christoffel transformation which is given by [1] as 

𝑤 = 𝑓(𝑧) = 𝐴 ∫ ∏ (𝑠 − 𝑥𝑗)
−𝑘𝑗𝑑𝑠 + 𝐵𝑛−1

𝑗=1
𝑧

𝑧0
                                                   (2) 

or 
𝑑𝑤

𝑑𝑧
= 𝑓 ′(𝑧) = 𝐴 ∏ (𝑧 − 𝑥𝑖)

−𝑘𝑗𝑛−1
𝑗=1                                                                (3) 

is one that conformally maps the upper half Im z > 0 of the 𝑧 plane and the entire 𝑥 axis except for a finite number of 

points 𝑥1, 𝑥2, … , 𝑥𝑛−1,∞ in a one-to-one correspondence onto the interior of a given simple closed polygon and its 

boundary, respectively, such that 𝑤𝑗 = 𝑓(𝑥𝑗)(𝑗 = 1,2, … , 𝑛 − 1) and 𝑤𝑛 = 𝑓(∞) are the vertices of the polygon. The points 

𝑧 = 𝑥𝑗  (𝑗 = 1,2, … , 𝑛 − 1) are arranged such that the order relation 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 is satisfied. The complex 

constants 𝐴 and 𝐵 in formula (2) determine the size, orientation and position of the polygon, the 𝑘𝑗 ′s are real constants 

between −1 and 1 determined from the relation −𝜋 < 𝑘𝑗𝜋 < 𝜋 , where  𝑘𝑗𝜋 (𝑗 = 1,2, … , 𝑛 − 1) are the exterior angles at 

the vertices 𝑤𝑗  (𝑗 = 1,2, … , 𝑛 − 1) of the polygon, while the limits of integration 𝑧0 and 𝑧 are respectively fixed and 

variable points in the region Im z ≥ 0 of analyticity of the Schwarz-Christoffel function.  

The other conformal map to be considered in this paper is the Joukowski transformation which is defined by [6] as 

𝑤 = 𝑧 +
𝑐2

𝑐
                                     (4) 

and  has critical points at 𝑧 = ±𝑐 which map into the critical points 𝑤 = ±2𝑐, respectively. This transformation is 

extensively used in aerodynamics (see for instance, [9], [11], and [12]) to simplify the oblong shape of an airfoil and the 

flow around it onto a pseudo circle and the flow exterior to it, respectively. It is also used in aerodynamics to model the lift 

around NACA family of four digit series airfoils based on a Joukowski transformation program developed by the National 

Aeronautics and Space Administration(NASA) and used by [6] in their research paper. In addition, it is used in 

aerodynamics to solve for the two dimensional potential flow around a class of airfoils called Joukowski airfoils (the ones 

also being researched into). Furthermore, the analytic pressure distribution on their upper and lower surfaces is quite 

valuable since its exact solution is often used as test case for measuring the performance and accuracy of other methods of 

computing pressure distribution on arbitrary airfoil. We note here that Joukowski airfoils are foil shapes generated by 

conformal transformation of circles whose centres are offset from the origin of the 𝑧 plane and the circle is made to pass 

through one of the critical points of the transformation 𝑧 = ±𝑐 and envelops the other (see figure 3(a)). The transformation 

(4) also maps the flow around the circle onto the flow exterior to the corresponding Joukowski airfoil. A detailed 

presentation of the manner in which the transformation (4) map circles into various profiles can be found in [1].In this 

research paper, we shall apply theSchwarz-Christoffel transformation in the solution and analysis of aharmonic Dirichlet 

problem of ideal fluid flow in a semi-infinite strip while the Joukowski transformation will be used to solve the harmonic 

Dirichlet and Neuman problems for the ideal flows in the domain Im z > 0 of the 𝑧 plane which is above the semi-circular 

are𝑤 = 𝑒𝑖𝜃(0 ≤ 𝜃 ≤ 𝜋) and the lines 𝑢 < −1 and 𝑢 > 1 and around aJoukowski airfoil, respectively. 
 

2. METHODOLOGY 

Consider an ideal fluid flow in a domain Ω of the 𝑤 plane whose boundary 𝜕Ω has an inconvenient geometry. The flow 

field is the solution of the mathematical problem (1) subject to some boundary conditions. In order to solve this problem the 

appropriate mapping function 𝑧 = 𝐺(𝑤) is used to simplify the given problem by transforming it onto a standard domain 

such as the upper half Im z > 0 of the 𝑧 plane or the domain exterior to the unit𝑧 = 𝑒𝑖𝜃(0 ≤ 𝜃 < 2𝜋) circle for which an 

analytic form of the solution for potential flow is well known. If 𝐹(𝑧) is the complex potential for the flow in the 𝑧 plane, 

then the function 𝐹(𝐺(𝑤)) = H(𝑤) is analytic in the problem domain of the 𝑤 plane and hence represent the complex 

potential for the flow there. IfF(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜓(𝑥, 𝑦), 𝑧 = 𝐺(𝑤) = 𝑔(𝑢, 𝑣) + 𝑖ℎ(𝑢, 𝑣), and H(𝑤) = Φ(𝑢, 𝑣) +
𝑖Ψ(𝑢, 𝑣), then 

Φ(𝑢, 𝑣) = 𝜙[𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)]       (5) 

and  

Ψ(𝑢, 𝑣)  = 𝜓[𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)]       (6) 

are respectively the velocity potential and the stream functions of the flow. The stream function Ψ(𝑢, 𝑣) is the required 

solution of the flow problem although its harmonic conjugate Φ(𝑢, 𝑣) is also a solution but not the one desired or really 

sought after. On setting 𝜙[𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)] = 𝑐1 and 𝜓[𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)] = 𝑐2, where 𝑐1and𝑐2 are real constants, the 

equipotential lines and streamlines of the flow are obtained, respectively. Alternatively, the equipotential lines and 

streamlines of the flow in the problem domain can be generated by finding the images of the equipotential lines and 

streamlines of the uniform flow in the simplified domain of the 𝑧 plane using the inverse function 𝑤 = 𝑓(𝑧) = 𝐺−1(𝑧). If 

the inverse function turns out to be multiple valued, then its appropriate branch should be found using the complex variable  
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method of branch cuts and then used. The fluid velocity 𝑣(𝑤) is simply the conjugate of the derivative of the complex 

potential and is 

𝑣(𝑤) =
𝑑H

𝑑𝑤

̅̅ ̅̅
=

𝑑𝐹

𝑑𝑧

̅̅ ̅̅
.

𝑑𝑧

𝑑𝑤

̅̅ ̅̅
 

or 

𝑣(𝑤) =
𝑑H

𝑑𝑤

̅̅ ̅
=

(
𝑑𝐹

𝑑𝑧
)

̅̅ ̅̅ ̅̅ ̅

(
𝑑𝑤

𝑑𝑧
)

̅̅ ̅̅ ̅̅ ̅                                                                 (7) 

where 
𝑑𝑤

𝑑𝑧
 is the derivative of the mapping function.The fluid speed is the modulus of the fluid velocity and from equation 

(7), we have that 

|𝑣(𝑤)| =
|
𝑑𝐹

𝑑𝑧
|

|
𝑑𝑤

𝑑𝑧
|
         (8) 

Equation (8) is important and shows that the fluid speed in the problem domain of the 𝑤 plane can be obtained from the 

corresponding one in the 𝑧 plane and the derivative of the mapping function. 

 

3. RESULTS  

In this section we present the solution to some harmonic Dirichlet problems and a Neumann problem in ideal fluid flows 

based on the purely conformal mapping techniques outlined in the methodology.  

 

Problem 1: (Flow in a Semi-Infinite Strip of Width 𝒂) 

We first consider the harmonic Dirichlet problem in equation (1) for the ideal fluid flow in a        semi-infinite strip shown 

in Figure 1(a) and described by the equation  

−
𝑎

2
≤ 𝑢 ≤

𝑎

2
, 𝑣 ≥ 0 

 

 

 

 

 

 

 

 

Figure 1(a): One-to-One Mapping of the Half Plane 𝐈𝐦 𝐳 ≥ 𝟎 in the 𝒛 plane Onto the Semi-Infinite Strip in the 𝒘 plane 

 
Figure 1(b): Equipotential (Blue) and Streamlines (Red) of flow in the Interior of a Semi-Infinite Strip  the 𝒘 plane. 
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Here, the Schwarz-Christoffel transformation 𝑤 = 𝑓(𝑧) that maps the upper half Im 𝑧 > 0 of the 𝑧 plane in a one-to-one 

manner onto the interior of the semi-infinite strip is found to be  

𝑤 =
𝑎

𝜋
sin−1 𝑧                                   (9) 

by considering the strip as a limiting form of a triangle with vertices at𝑤1 = −𝑎 2,   ⁄ 𝑤2 = 𝑎 2⁄ , and  𝑤3as the imaginary 

part of 𝑤3 tends to infinity or simply using the table of transforms given by [2]. The part 𝑥 ≤ −1 of the 𝑥 axis is mapped by 

the transformation (9) onto the vertical line 𝑥 = −𝑎 2,⁄  the part −1 < 𝑥 < 1 maps onto the segment −𝑎 2⁄ < 𝑢 < 𝑎 2⁄  of 

the strip, the part𝑥 ≥ 1 map onto the vertical line 𝑥 = 𝑎 2⁄ , while the points   𝑧 = −1 𝑎𝑛𝑑 𝑧 = 1 map into the points 

−
𝑎

2
and

𝑎

2
, respectively. The inverse of the transformation (9) is 

𝑧 = sin (
𝑤𝜋

𝑎
)         (10) 

and maps the interior of the semi-infinite strip and its boundaries in a one-to-one manner onto the upper half Im 𝑧 > 0 of 

the 𝑧 plane and the parts of the𝑥 axis as already stated. Now, the complex potential for the uniform flow to the right in the 

upper half Im z > 0 of the 𝑧 plane is analytic and well known and given by [1] and [6] as 

F(z) = 𝑣0𝑧                                   (11) 

where 𝑣0 is a positive real constant corresponding to the speed of the flow. Since the inverse map is analytic inside the strip, 

the composite function 

H(𝑤) = 𝑣0 sin (
𝑤𝜋

𝑎
)      (12) 

is also analytic in the interior of the semi-infinte strip and hence represents the complex potential for the flow there. If 

H(𝑤) = Φ(𝑢, 𝑣) + 𝑖Ψ(𝑢, 𝑣) and 𝑤 = 𝑢 + 𝑖𝑣, then the velocity potential and stream function of the flow are 

Φ(𝑢, 𝑣) = 𝑣0 sin
𝜋𝑢

𝑎
cosh

𝜋𝑣

𝑎
                                                           (13) 

and 

Ψ(𝑢, 𝑣) = 𝑣0 cos
𝜋𝑢

𝑎
sinh

𝜋𝑣

𝑎
                                                            (14) 

respectively. Hence the equipotential lines and streamlines of the flow are 

𝑣0 sin
𝜋𝑢

𝑎
cosh

𝜋𝑣

𝑎
= 𝑐1                                                                  (15) 

and  

𝑣0 cos
𝜋𝑢

𝑎
sinh

𝜋𝑣

𝑎
= 𝑐2                                                                   (16) 

respectively, where 𝑐1  𝑎𝑛𝑑 𝑐2 are real constants. The velocity of the flow is obtained from the complex potential of the 

flow in equation (12) as 

𝑣(𝑤) = H′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ =
𝜋𝑣0

𝑎
cos

𝜋

𝑎
�̅� = cos

𝜋𝑢

𝑎
cosh

𝜋𝑣

𝑎
+ 𝑖 sin

𝜋𝑢

𝑎
sinh

𝜋𝑣

𝑎
    (17) 

while the fluid speed is 

|𝑣(𝑤)| = √cos2 𝜋𝑢

𝑎
+ sinh2 𝜋𝑣

𝑎
                                                         (18) 

Problem 2: (Flow in the Upper Half 𝐈𝐦 𝐰 > 0 of the 𝒘 plane Bounded by the Semi-Circular Arc 𝒘 = 𝒆𝒊𝜽(𝟎 ≤ 𝜽 ≤
𝝅) and the Lines 𝒖 < −1 𝐚𝐧𝐝 𝒖 > 1) 

We next consider the harmonic Dirichlet problem in equation (1) for the ideal fluid flow in the domain Im w > 0 bounded 

by the semi-circular arc 𝑤 = 𝑒𝑖𝜃(0 ≤ 𝜃 ≤ 𝜋) and the parts 𝑢 < −1 and 𝑢 > 1 of the 𝑢 axis as shown in Figure 2(a). 
 

 

 

 

 

 

 

 

Figure 2(a): One-to-One Mapping of the Shaded Region in the 𝒘 plane Onto the Upper Half 𝐈𝐦 𝐳 > 0. 
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Figure 2(b): Equipotential Lines (Blue) and Streamlines (Red) of flow in the Domain of the First Diagram of figure 

2(a). 
This problem can be interpreted as a two dimensional flow over a solid cylinder that is cut into two equal parts through its 

axis and one part placed at the bottom of a deep flowing stream. Here the mapping function is the Joukowski 

transformation and it maps the half circle 𝑤 = 𝑒𝑖𝜃  (0 ≤ 𝜃 ≤ 𝜋) in a one-to-one manner onto the line segment −2 ≤ 𝑥 ≤ 2, 

the parts 𝑢 < −1 and 𝑢 > 1 of the 𝑢 axis in a one-to-one manner onto the portions 𝑥 < −2 and 𝑥 > 2 of the 𝑥 axis, 

respectively. It also maps the entire domain above the semi-circular arc in a one-to-one manner onto the entire upper half of 

the 𝑧 plane ([1] and [2]). The complex potential for the flow in the problem domain of the 𝑤 plane is therefore 

𝐻(𝑤) = 𝑣0 (𝑤 +
1

𝑤
)                                                                     (19) 

If 𝐻(𝑤) = Φ(𝑢, 𝑣) + 𝑖Ψ(𝑢, 𝑣) and 𝑤 = 𝑢 + 𝑖𝑣, then separation of the real and imaginary parts yield the velocity potential 

and stream function of the flow as 

Φ(𝑢, 𝑣) = 𝑣0 [
𝑢(𝑢2+𝑣2+1)

𝑢2+𝑣2 ] = 𝑣0 [
(𝜌2+1) cos 𝜎

𝜌
]     (20) 

and  

Ψ(𝑢, 𝑣) = 𝑣0 [
𝑣(𝑢2+𝑣2−1)

𝑢2+𝑣2 ] = 𝑣0 [
(𝜌2−1) sin 𝜎

𝜌
]      (21) 

respectively, where𝑤 = 𝜌𝑒𝑖𝜎.The conjugate of the fluid velocity is 

𝑣(𝑤)̅̅ ̅̅ ̅̅ ̅ = 𝐹′(𝑤) = 𝑣0 (1 −
1

𝑤2) = 𝑣0 (
𝜌2𝑒2𝜎𝑖−1

𝜌2𝑒2𝜎𝑖 )    (22) 

while the fluid speed is 

|𝑣(𝑤)| = √𝜌2 − 2𝜌 cos 2𝜎 − 𝜌−2        (23) 

 

Problem 3:(Flow around a Circular Cylinder and Mapped Joukowski Airfoil) 

Finally, we shall consider equation (1) for the determination of the velocity field and pressure coefficient distribution 

around Joukowskiairfoils. In this problem, the mapping function is the Joukowski transformation (4) and we consider the 

case for which 𝑐 = 1. 

Now, suppose that H(𝑤) is the complex potential for the flow around a Joukowski airfoil in the 𝑤 plane. The composite 

function 

H[(𝑓(𝑧))] = F(𝑧)                                                              (24) 

where𝑤 = 𝑓(𝑧) = 𝑧 +
1

𝑧
 is the Joukowski map,is analytic in the domain exterior to the corresponding circle in the 𝑧 plane 

and hence represents the complex potential for the flow there. The complex potentialF(𝑧)for the flow around a circular 

cylinder is well known and given by [6]as 

F(𝑧) = 𝑣∞𝑒−𝑖𝛼𝑧 +
𝑣∞𝑅2𝑒𝑖𝛼

𝑧−𝑧0
−

iΓ

2π
ln(𝑧 − 𝑧0)                                         (25) 

where 𝑧0 is the circle centre, 𝑅 is the circle radius, 𝛼 is the flow angle of attack, and Γ is the circulation given asΓ =
−4π𝑣∞𝑅 sin(𝛼 + 𝛽) and 𝛽 is the acute angle between the straight line through the centre of the circle and parallel to the 𝑥 

axis and the radius of the circle from the circle centre to the critical point 𝑧 = 𝑐. The circulation in equation (25) is set at 

the value for which the Kutta condition is satisfied so that when the circle is transformed the critical point 𝑧 = 1 moves to 

the trailing edge 𝑤 = 2 of the joukowski airfoil while the other 𝑥 intercept of the circle becomes the leading edge of the 

airfoil. Differentiating equation (25) with respect to 𝑧, we obtain 
𝑑𝐹

𝑑𝑧
= 𝑣∞𝑒−𝑖𝛼 −

𝑣∞𝑅2𝑒𝑖𝛼

(𝑧−𝑧0)2 −
iΓ

2π(𝑧−𝑧0)
                                                  (26) 
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The fluid speed around a Joukowski airfoil is therefore 

|𝑣(𝑤)| =
|
𝑑𝐹

𝑑𝑧
|

|
𝑑𝑤

𝑑𝑧
|
                                   (27) 

The pressure coefficient distribution𝑐𝑝 on an airfoil in an inviscid and incompressible flow is given by [6] as  

𝑐𝑝 = 1 − (
𝑣

𝑣∞
)

2

                                   (28) 

Substituting equations (26) into equation (27) the pressure coefficient distribution on a Joukowski airfoil can now be 

computed. Figure 3(b) show the graph of the pressure coefficient distribution on the cambered Joukowski airfoil in figure 

3(a) at 100 flow angle of attack. 

 
Figure 3(a):Circle with Centre at 𝒛 = −𝟎. 𝟏 + 𝟎. 𝟏𝟓𝒊 and Corresponding Mapped  Cambered Joukowski Airfoil for 

the Case 𝒄 = 𝟏 in the Joukowski Transformation 

 
Figure 3(b): Pressure Coefficient Distribution Against Chordwise Position on the Cambered Joukowski Airfoil in 

figure 3(a) at 𝟏𝟎𝟎 Flow Angle of Attack (Blue Line-𝒄𝒑 on Lower Surface, Red Line-𝒄𝒑 on Upper Surface) 
 

Discussion 

Flow in a Semi-Infinite Strip of Width 𝒂 Units 

In analyzing this flow, we first note that the stream function in equation (14) is harmonic throughout the interior of the 

semi-infinite strip and vanished everywhere on its boundary. Figure 1(b) shows the streamlines and equipotential lines of 

flow generated in the strip of width 𝜋 units with 𝑎 = 𝜋 in the problem. As expected the equipotential and streamlines of the 

flow are orthogonal at their points of interception since they are level curves of the real and imaginary parts of an analytic 

function. Closer streamlines in the flow indicate regions of higher fluid speed. The fluid speed therefore decreases as the 

flow approaches the finite end of the semi-infinite strip as indicated by the pattern of the streamlines. This is expected and 

in agreement with reality. Notice that the points 𝑤 = (±
𝑎

2
, 0) corresponding to the vertices of the semi-infinite strip are 

stagnation points where the fluid speed in equation (18) vanishes identically. The streamlines indicate the actual path taken 

by the fluid particles in a steady flow while the equipotential lines are curves along which the fluid velocity is constant. 
 

Flow in the Upper Half 𝐈𝐦 𝐰 > 0 of the 𝒘 plane Bounded by the Semi-Circular Arc  𝒘 = 𝒆𝒊𝜽(𝟎 ≤ 𝜽 ≤ 𝝅) and the Lines 𝒖 <
−1 𝐚𝐧𝐝 𝒖 > 1 

In this problem too, the stream function of the flow in equation (21) is harmonic in the indicated domain and vanishes 

everywhere on the boundary. Figure 2(b) show streamlines and equipotential lines of the flow field generated using a 

MATLAB code. The streamline pattern show that the fluid speed is highest around the surrounding region of the semi-

circular arc or barrier. Observe that the flow speed decreases further away from this region and become gradually normal as 

indicated by the fairly straight and parallel streamlines. Notice from equation (22) that the points 𝑤 = (±1,0)are stagnation 

points on the boundary of the domain of flow. 
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Flow around a Circular Cylinder and Mapped Joukowski Airfoil 

The velocity field and hence pressure distribution on the upper and lower surfaces of an airfoil is primarily responsible for 

the lift on it. Figure 3(b) show MATLAB plot of the pressure coefficient distribution against chord wise position on the 

cambered Joukowski airfoil in figure 3(a). Observe that at each chordwise position the pressure distribution on the lower 

airfoil surface is higher than that on the upper airfoil surface. This airfoil therefore experiences lift on it due to the net 

upward vertical pressure. This is in agreement with experimental data on real airfoils in wind tunnels. 

 

Conclusion 

In applied mathematics two boundary value problems of great importance are the Dirchlet and Neumann problems. 

Consequently, we have in this research paper presented a simple but efficient method for solving such problems arising 

from ideal fluid flows in domains whose boundaries consists of inconvenient geometries. The method which is purely 

conformal based was applied to ideal flows in asemi-infinite strip, flow in the domainImz > 0above the semi-circular arc 

𝑤 = 𝑒𝑖𝜃(0 ≤ 𝜃 ≤ 𝜋)and parts of the  𝑢 axis −1 < 𝑢 and 𝑢 > 1, and flow around a circular cylinder and corresponding 

mapped joukowski airfoil. The method gave exact general analytic solutions which were visualized through its 

equipotential lines and streamlines pattern. However, the method is not without limitations. One obvious limitation has to 

do with the ability of identifying the mapping function to use for a particular problem. Unfortunately, there is no systematic 

way of knowing this function but its identification depends largely on someone’s experience and familiarity with the 

manner in which curves and regions are mapped by most analytic functions. Another limitation has to do with the fact that 

the method is conformal based and hence limited to problems which can be reduced to ones in two dimensions and have a 

high degree of symmetry. This technique is often difficult to apply when the symmetry is broken.  

In closing, we note that the problems considered in this paper were either of the Dirichlet or Neumann type and hence 

suggest that further research in this field should focus on extending the work to include domains with mixed boundary 

conditions of both the Dirichlet and Neumann types. 
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