STRUCTURE OF ELEMENTS IN FINITE PARTIAL TRANSFORMATION SEMIGROUPS

M.S. Idris, G.U. Garba and A.T. Imam
Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria

Abstract

In a finite semigroups S the index and period of an element $a \in S$ are respectively the smallest values of integers $m \geq 1$ and $r \geq 1$ such that $a^{m+r}=a^{m}$. In the literature, it was shown that every element α of a finite full transformation semigroup T_{n} can be uniquely factorised into a product of a permutation and a element of period 1. In this paper, we extend this concept to element of the larger semigroup P_{n}, of all partial transformation of a finite set of n elements. We show that each $\alpha \in P_{n}$ is factorisable into a product of a permutation and an element of period 1. In line with the literature, factorisation is used to count the number of all elements in P_{n} having period 1.

Mathematics Subject Classification (2018). 20M20
Keywords. index, period, decomposition, (m, r)-potent, m-potent

1 Introduction

For a fix positive integer n, write $X_{n}=\{1,2, \ldots, n\}$, and denote by S_{n}, T_{n} and P_{n} the symmetric-group, full and partial transformations semigroups on X_{n} respectively. The semigroup T_{n} have been much studied over the last sixty years, see example [1,2 and 3]. Many general concepts in a semigroup have been characterised and examine of Green's relations, ideals, product of idempotent, generating sets, rank and congruence's, have all been examined in the full transformation semigroup T_{n}, see for example [1,2,4 and 5]. Ayik et al [6] studiedthe notion of index and period of elements in T_{n}. LetSbe a semigroup and $a \in S$. If there exist positive integers m and r such that $a^{m+r}=a^{m}$ with $a, a^{2}, \ldots, a^{m+r-1}$ all pairwise distinct, then a is called an (m, r) - potentand the integers m, rare called the index and period of a respectively, denoted by index (a) and $\operatorname{period}(a)$. An element of index mand period 1 is called an m-potent, and that of both index and period equal to 1 is called an idempotent.
In [6], it was proved that an (m, r) - potentelement α of T_{n} can be uniquely factorized as $\alpha=\sigma \beta$ where σ is a permutation in S_{n} of order r and β is an m - potentelement in T_{n} they used this factorisation to count the number of m - potentsin T_{n}. Here, we extent this idea to cover elements of the partial transformation semigroup P_{n}

2 Preliminaries

Let $X_{n}^{0}=X_{n} \cup\{0\}$ and denote the semigroup of all full transformations of
$X_{n}^{0} b y T_{X_{n}^{0}}$, where $0 \alpha=0$. By a result of [7], quoted in [8] there is an isomorphism between P_{n} and a subsemigroup X_{n}^{0} of $T_{X_{n}^{0}}$. This isomorphism proves to be a powerful tool in translating results on T_{n} to very similar results concerning P_{n}, [9]. For each $\alpha \in P_{n}$, the map $\alpha^{*} \in T_{X_{n}^{0}}$, define by:

$$
x \alpha^{*}= \begin{cases}x \alpha & \text { if } x \in \operatorname{dom}(\alpha) \\ 0 & \text { if } x \notin \operatorname{dom}(\alpha)\end{cases}
$$

For convenience the following result is recorded from [7], also to be found in [8].
Theorem 2.1 For each $\alpha \in P_{n}$, the mappings $\alpha \mapsto \alpha^{*}$ and $\alpha^{*} \mapsto \alpha^{*} \mid X_{n}\left(\right.$ the restriction of α^{*} to X_{n}) are mutually inverse isomorphisms of P_{n} onto the subsemigroup P_{n}^{*} of $T_{X_{n}^{0}}$ and vice-verse.
Here, the following important remark is made and it will be effectively used throughout the next sections.
Remark: For $r \geq 1, m \geq 1$, an $(m, r)-$ potents in P_{n}^{*} corresponds in these isomorphism's to (m, r) - potentsin P_{n}. For each $\alpha \in P_{n}$, let $F i x(\alpha)$ denote the set of all fixed points of α in $\operatorname{dom}(\alpha)$, that is,
$F i x(\alpha)=\{x \in \operatorname{dom}(\alpha) \mid x \alpha=x\}$.

Correspondence Author: Idris M.S., Email: shagari200074@gmail.com, Tel: +2347032465439
Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January - June, 2020), 1-4

The set of all shifting points of α in $\operatorname{dom}(\alpha)$ is denoted byShift (α), that is
$\operatorname{Shift}(\alpha)=\{x \in \operatorname{dom}(\alpha) \mid x \alpha \neq x\}=\operatorname{dom}(\alpha) \backslash F i x(\alpha)$.
Since the semigroup P_{n} is finite, for each $\alpha \in P_{n}$, there must be positive integers m, r such that
$\alpha^{m+r}=\alpha^{m}$.
Thus, smallest such m and r are called index and period of α respectively. Let T_{n} be full transformation semigroup and P_{n} be partial transformation semigroup.
Let $\alpha \in P_{n}$. For each $x \in \operatorname{dom}(\alpha) \backslash \operatorname{im}(\alpha)$, the sequence
$x, x \alpha, x \alpha^{2}, \ldots$
either arrives into a cycle or at a terminal point.
In the former, we define length of the sequence $l^{\alpha}(x)$ to be the number of distinct terms in the sequence that are not in the cycle. In the latter, we define $l^{\alpha}(x)$ to be the number of distinct terms in the sequence.
Example 2.2 Let $\alpha^{*} \in \mathrm{P}^{*} 15$ be the map
$\left(\begin{array}{cccccccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 0 & 2 & 3 & 4 & 5 & 6 & 4 & 0 & 9 & 10 & 0 & 12 & 0 & 14 & 13 & 15\end{array}\right)$.
We can clearly see that for the above map α^{*}, we have
$x \in\{1,7,8,11\}=X_{n}^{0} \backslash i m\left(\alpha^{*}\right)$
, and so $l^{\alpha^{*}}(1)=3, l^{\alpha^{*}}(7)=1, l^{\alpha^{*}}(8)=3$ and $l^{\alpha^{*}}(11)=2$. There for we have the maximum of $l^{\alpha^{*}}(x)$ to be 3 . So the index of α^{*} is 3 and the period is 6 .
Is isomorphic to:
Example 2.3 Let $\alpha \in \mathrm{P}_{15}$ be the map
$\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 & 11 & 13 & 14 & 15 \\ 2 & 3 & 4 & 5 & 6 & 4 & 9 & 10 & 12 & 14 & 13 & 15\end{array}\right)$.
We can clearly see that for the above map α, we have
$x \in\{1,8,11\}=\operatorname{dom}(\alpha) \backslash \operatorname{im}(\alpha)$,
and so $l^{\alpha}(1)=3, l^{\alpha}(7)=1$ and $l^{\alpha}(11)=2$. Therefor the maximum of $l^{\alpha}(x)$ is 3 . We say that the index of this α is 3 and the period is 6 . Because the period of the maps α^{*} and α is the least common multiple of the lengths of the cycles. Here we can clearly see that maximum of
$l^{\alpha^{*}}(x)=l^{\alpha}(x)=3$.
The next Lemma shows that the index of each α in P_{n} can be conveniently defined in term of this length function.
Lemma 2.4 Let $\alpha \in P_{n}$.Thenindex $(\alpha)=\max \{l \alpha(x) \mid x \in \operatorname{dom}(\alpha) \backslash \operatorname{im}(\alpha)\}$.
Proof. It is clear that every path into a cycle of $\alpha \in P_{n}$, remains to be the same path into a cycle of $\alpha^{*} \in P_{n}^{*}$. Also a path into a terminal point of $\alpha \in P_{n}$, remains the same path into a fixed point of $\alpha^{*} \in P_{n}^{*}$. Therefore, by the definition of length of a path $l^{\alpha}(x)=l^{\alpha^{*}}(x)$ for allx $\in \operatorname{dom}(\alpha) \backslash \operatorname{im}(\alpha)$. Now, since $l^{\alpha^{*}}(x)=1$ for all $y \notin \operatorname{dom}(\alpha) \cup \operatorname{im}(\alpha)$ and in full transformation $T_{X_{n}^{0}}$ the index of each map α^{*} is obtained to be the maximum of $\left\{l^{\alpha^{*}}(x) \mid x \in X_{n}^{0} \backslash \operatorname{im}(\alpha)\right\}$, the result follows.
From the proof of Lemma 2.4, the below corollary 2.5 follows.
Corollary 2.5 For each $\alpha \in P_{n}$, index $(\alpha)=\operatorname{index}\left(\alpha^{*}\right) \operatorname{andperiod}(\alpha)=\operatorname{period}\left(\alpha^{*}\right)$.

3 Decomposition of each $\boldsymbol{\alpha} \in \boldsymbol{P}_{\boldsymbol{n}}$

In this section we decomposed each α in P_{n}, of index m and period r, as a product of permutation σ of order r and an m - potent β of index m.
Theorem 3.1 Let α be an element of P_{n} of index m and period r. Then there exist a permutation σ of order r in $\mathrm{S}_{n}($ the symmetric group of degree n) and an $m-$ potent β in $P_{n} \operatorname{such}$ that $\alpha=\sigma \beta$ and $\operatorname{Shift}(\sigma) \cap \operatorname{Shift}(\beta)=\emptyset$.

Proof. Let $\alpha \in P_{n}$ be of index mand period r. Then by Corollary 2.5 the map $\alpha^{*} \in P_{n}^{*}$ has index m and period r as well. Using the decomposition algorithms described in Theorem 2 of [6], α^{*} is expressible as a product, $\alpha^{*}=\sigma^{*} \beta^{*}$, where σ^{*} is a permutation of orderr in P_{n}^{*} and β^{*} is an $(m, r)-$ potents in $P_{n}^{*} \operatorname{such}$ thatShift $\left(\alpha^{*}\right) \cap \operatorname{Shift}\left(\beta^{*}\right)=\emptyset$.
Now $\alpha=\left.\alpha^{*}\right|_{X_{n}}=\left.\left(\alpha^{*} \beta^{*}\right)\right|_{X_{n}}=\left.\left.\alpha^{*}\right|_{X_{n}} \beta^{*}\right|_{X_{n}}=\sigma \beta$
, where σ is a permutation of order r since zero (0) is fixed by σ^{*}, and β is an m-potent in P_{n} by Lemma 2.4. It is clear that $\operatorname{Shift}(\sigma)=\operatorname{Shift}\left(\alpha^{*}\right)$ and $\operatorname{Shift}(\beta) \subseteq \operatorname{Shift}\left(\beta^{*}\right)$. ThusShift $(\sigma) \cap \operatorname{Shift}(\beta)=\varnothing$ as required.
Theorem 3.2 Let σ be a permutation of order r in S_{n} and let β be an $m-p o t e n t$ in P_{n} such that $\operatorname{Shift}(\sigma) \cap \operatorname{Shift}(\beta)=$ \emptyset. Let $\alpha=\sigma \beta$. Then, α has index m and period r.

Proof. This is a consequence of the corresponding result in full transformation in [6] along with Vagner representation. Theorem 3.3 Let α be an element of P_{n}. Then α is an $(m, r)-$ potent if and only if there exist a unique permutation σ of order r and a unique m - potent element β such that $\alpha=\sigma \beta$ and $\operatorname{Shift}(\sigma) \cap \operatorname{Shift}(\beta)=\emptyset$.

Proof. From Theorems 3.1 and 3.2, it is clear that the decomposition of α given by theorem 3.1 is unique. It follows from theorem 3.2 that α has index m and period r. It is also clear from theorem 3.1 that $\operatorname{Shift}(\sigma) \cap \operatorname{Shift}(\beta)=\emptyset$.

4 Formula for the number of m-potent in $\boldsymbol{P}_{\boldsymbol{n}}$

in this section we identify the number of m-potent elements in the partial transformation semigroup P_{n}. First, we start by partitioning the integers of m - potentpaths in P_{n}.
Let $P_{m+1}(n+1)$ be the set of all partitions of the integer $n+1$ into $m+1$ non-zero parts.
Theorem 4.1 The number of m - potent elements in P_{n}^{*} is
$\sum_{\left\{k_{0}, k_{1}, \ldots, k_{m}\right\} \in P_{m+1}(n+1)}\binom{n+1}{k_{0}, k_{1}, \ldots, k_{m}} k_{0}^{k_{1}} k_{1}^{k_{2}} \cdots k_{m-1}^{k_{m}}$.
Proof. First it can be noticed that, by the power of Vagner representation, it suffices to count the number of m-potent elements in P_{n}^{*}. From Theorem 1 in [6] everym - potent α^{*} in P_{n}^{*} admits a partition of $X_{n} \cup\{0\}$ into $m+$ 1 parts $A_{0}, A_{1}, \ldots A_{m}$, in which elements of A_{j+1} are mapped in to elements of (A_{j} for $j=0,1,2, \ldots, n-1$).This can be done in $\left|A_{j}\right|^{\left|A_{j+1}\right|}$ ways. Now, given a partition $k_{0}, k_{1}, \ldots k_{m}$, of $n+1$ into $m+1$ non-zero parts, we can assign sets $A_{0}, A_{1}, \ldots A_{m}$, with $\left|A_{j}\right|=k_{j}$ for each j in
$\binom{n+1}{k_{0}, k_{1}, \ldots, k_{m}}=\frac{(n+1)!}{k_{0}!k_{1}!\cdots k_{m}!}$
ways. Thus, the number of m - potent α^{*} in P_{n}^{*} admitting the partition
$A_{0}, A_{1}, \ldots A_{m}$, is
$\binom{n+1}{k_{0}, k_{1}, \ldots, k_{m}} k_{0}^{k_{1}} k_{1}^{k_{2}} \cdots k_{m-1}^{k_{m}}$
. Therefore, the total number of m - potent elements in $\mathcal{P}_{n \mathrm{is}}^{*}$
$\sum_{\left\{k_{0}, k_{1}, \ldots, k_{m}\right\} \in P_{m+1}(n+1)}\binom{n+1}{k_{0}, k_{1}, \ldots, k_{m+1}} k_{0}^{k_{1}} k_{1}^{k_{2}} \cdots k_{m-1}^{k_{m}}$.

References

[1] Howie, J.(1966). Idempotent rank in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 116A:116-167.
[2] Howie, J. M.(1980). Products of idempotents in a finite full transformation semigroup. Proc. Roy. Soc. Edinburgh 86A:243-254.
[3] Vorobev, N. N.(1953), On Symmetric associative systems, LeningrandGos. Ped. Inst. Uch. Zap., 89, 161-166 (Russian).
[4] Howie, J. M.(1984). Product of idempotents in a finite full transformation semigroup: some improved bounds Proc. Roy. Soc. Edinburgh 98A:25-35.
[5] Howie, J. M, McFadden, K. B.(1990). Subsemigroup generated by the idempotent of a full transformation semigroup. J. London maths sec, 42:707716.
[6] Ayik, G., Ayik, H., Howie, H. M. (2005). On factorisations and generators in transformations semigroups. Semigroup Forum 70(2):225-237.
[7] Vagner, V. V.(1964). Representations of ordered semigroups, Mat. Sb. (N.S.) 38 (1956), 203-240; translated in Amer. Math. Soc. Transl. 36(2): 295-336.
[8] Clifford, A. H., Preston, G. B. (1967). The Algebraic Theory of Semigroups, Mathematical Surveys of the American Mathematical Society, Vol. 2, Providence, R. L.
[9] Garba, G. U. (1990). Idempotents in partial transformation semigroup. Proc. Roy. Soc. Edinburgh 116A:359-366.
Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January - June, 2020), 1-4
[10] Ayik, G., Ayik, H., Unlu, Y., and Howie, J. M. (2005b). The structure of element in finite full transformations semigroups. Bull. Austral. Math. Sec. Vol. 71: 69-74.
[11] Ayik, G., Ayik, H., Unlu", Y., Howie, H. M. (2008). Rank properties of the" semigroup of singular transformations on a finite set. Communications in Algebra 36:2581-2587.
[12] Zhao, P., You, T., and Chen, Y. (2016). On the (m,r)-potent ranks of certain semigroups transformations. Journal of Algebra and Its Applications,15:1-9.

