STRUCTURE OF ELEMENTS IN FINITE PARTIAL TRANSFORMATION SEMIGROUPS

M.S. Idris, G.U. Garba and A.T. Imam

Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria

Abstract

In a finite semigroups S the index and period of an element $a \in S$ are respectively the smallest values of integers $m \ge 1$ and $r \ge 1$ such that $a^{m+r} = a^m$. In the literature, it was shown that every element a of a finite full transformation semigroup T_n can be uniquely factorised into a product of a permutation and a element of period 1. In this paper, we extend this concept to element of the larger semigroup P_n , of all partial transformation of a finite set of n elements. We show that each $\alpha \in P_n$ is factorisable into a product of a permutation and an element of period 1. In line with the literature, factorisation is used to count the number of all elements in P_nhaving period 1.

Mathematics Subject Classification (2018). 20M20 Keywords. index, period, decomposition, (m,r)-potent, m-potent

1 Introduction

For a fix positive integer n, write $X_n = \{1, 2, ..., n\}$, and denote by S_n, T_n and P_n the symmetric-group, full and partial transformations semigroups on X_n respectively. The semigroup T_n have been much studied over the last sixty years, see example [1,2 and 3]. Many general concepts in a semigroup have been characterised and examine of Green's relations, ideals, product of idempotent, generating sets, rank and congruence's, have all been examined in the full transformation semigroup T_n , see for example [1, 2, 4 and 5]. Ayik et al [6] studied the notion of index and period of elements in T_n . Let S be a semigroup and $a \in S$. If there exist positive integers m and r such that $a^{m+r} = a^m$ with $a, a^2, \ldots, a^{m+r-1}$ all pairwise distinct, then a is called an (m,r) – potent and the integers m, rare called the index and period of a respectively, denoted by *index(a)* and *period(a)*. An element of index mand period 1 is called an *m*-potent, and that of both index and period equal to 1 is called an idempotent.

In [6], it was proved that an (m, r) – potentelement α of T_n can be uniquely factorized as $\alpha = \sigma\beta$ where σ is a permutation in S_n of order r and β is an m - potentelement in T_n they used this factorisation to count the number of m - potents in T_n . Here, we extent this idea to cover elements of the partial transformation semigroup P_n

Preliminaries

Let $X_n^0 = X_n \cup \{0\}$ and denote the semigroup of all full transformations of

 $X_n^0 by T_{X_n^0}$, where $0\alpha = 0$. By a result of [7], quoted in [8] there is an isomorphism between P_n and a subsemigroup X_n^0 of $T_{X_n^0}$. This isomorphism proves to be a powerful tool in translating results on T_n to very similar results concerning P_n , [9]. For each $\alpha \in P_n$, the map $\alpha^* \in T_{X_n^0}$, define by: $x\alpha^* = \begin{cases} x\alpha & \text{if } x \in dom(\alpha) \\ 0 & \text{if } x \notin dom(\alpha). \end{cases}$

For convenience the following result is recorded from [7], also to be found in [8].

Theorem 2.1 For each $\alpha \in P_n$, the mappings $\alpha \mapsto \alpha^*$ and $\alpha^* \mapsto \alpha^* |X_n|$ (the restriction of $\alpha^* to X_n$) are mutually inverse isomorphisms of P_n onto the subsemigroup P_n^* of $T_{X_n^0}$ and vice-verse.

Here, the following important remark is made and it will be effectively used throughout the next sections. **Remark**: For $r \ge 1, m \ge 1$, an (m, r) – potents in P_n^* corresponds in these isomorphism's to (m, r) – potents in P_n . For each $\alpha \in P_n$, let $Fix(\alpha)$ denote the set of all fixed points of α in $dom(\alpha)$, that is, $Fix(\alpha) = \{x \in dom(\alpha) | x\alpha = x\}.$

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 1–4

Correspondence Author: Idris M.S., Email: shagari200074@gmail.com, Tel: +2347032465439

The set of all shifting points of α in $dom(\alpha)$ is denoted by $Shift(\alpha)$, that is

 $Shift(\alpha) = \{x \in dom(\alpha) | x\alpha \neq x\} = dom(\alpha) \setminus Fix(\alpha).$

Since the semigroup P_n is finite, for each $\alpha \in P_n$, there must be positive integers *m*, *r* such that $\alpha^{m+r} = \alpha^m$.

Thus, smallest such m and r are called index and period of α respectively. Let T_n be full transformation semigroup and P_n be partial transformation semigroup.

Let $\alpha \in P_n$. For each $x \in dom(\alpha) \setminus im(\alpha)$, the sequence $x, x\alpha, x\alpha^2, \dots$

either arrives into a cycle or at a terminal point.

In the former, we define length of the sequence $l^{\alpha}(x)$ to be the number of distinct terms in the sequence that are not in the cycle. In the latter, we define $l^{\alpha}(x)$ to be the number of distinct terms in the sequence.

Example 2.2 Let $\alpha^* \in P^*_{15}$ be the map $\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 0 & 2 & 3 & 4 & 5 & 6 & 4 & 0 & 9 & 10 & 0 & 12 & 0 & 14 & 13 & 15 \end{pmatrix}$.

We can clearly see that for the above map α^* , we have

 $x \in \{1, 7, 8, 11\} = X_n^0 \setminus im(\alpha^*)$

, and so $l^{\alpha^*}(1) = 3$, $l^{\alpha^*}(7) = 1$, $l^{\alpha^*}(8) = 3$ and $l^{\alpha^*}(11) = 2$. There for we have the maximum of $l^{\alpha^*}(x)$ to be 3. So the index of α^* is 3 and the period is 6.

Is isomorphic to:

Example 2.3 Let $\alpha \in P_{15}$ be the map

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 & 11 & 13 & 14 & 15 \end{pmatrix}$ $\begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 4 & 9 & 10 & 12 & 14 & 13 & 15 \end{pmatrix}$

We can clearly see that for the above map α , we have

 $x \in \{1,8,11\} = dom(\alpha) \setminus im(\alpha),$

and so $l^{\alpha}(1) = 3$, $l^{\alpha}(7) = 1$ and $l^{\alpha}(11) = 2$. Therefor the maximum of $l^{\alpha}(x)$ is 3. We say that the index of this α is 3 and the period is 6. Because the period of the maps α^* and α is the least common multiple of the lengths of the cycles. Here we can clearly see that maximum of

 $l^{\alpha^*}(x) = l^{\alpha}(x) = 3.$

The next Lemma shows that the index of each α in P_n can be conveniently defined in term of this length function.

Lemma 2.4 Let $\alpha \in P_n$. Then $index(\alpha) = max\{l\alpha(x)|x \in dom(\alpha) \setminus im(\alpha)\}$.

Proof. It is clear that every path into a cycle of $\alpha \in P_n$, remains to be the same path into a cycle of $\alpha^* \in P_n^*$. Also a path into a terminal point of $\alpha \in P_n$, remains the same path into a fixed point of $\alpha^* \in P_n^*$. Therefore, by the definition of length of a path $l^{\alpha}(x) = l^{\alpha^*}(x)$ for all $x \in dom(\alpha) \setminus im(\alpha)$. Now, since $l^{\alpha^*}(x) = 1$ for all $y \notin dom(\alpha) \cup im(\alpha)$ and in full transformation $T_{x_n^0}$ the index of each map α^* is obtained to be the maximum of $\{l^{\alpha^*}(x)|x \in X_n^0 \setminus im(\alpha)\}$, the result follows.

From the proof of Lemma 2.4, the below corollary 2.5 follows. **Corollary 2.5** For each $\alpha \in P_n$, index $(\alpha) = index(\alpha^*)$ and $period(\alpha) = period(\alpha^*)$.

3 Decomposition of each $\alpha \in P_n$

In this section we decomposed each α in P_n , of index m and period r, as a product of permutation σ of order r and an $m - potent\beta$ of index m.

Theorem 3.1 Let α be an element of P_n of index m and period r. Then there exist a permutation σ of order r in S_n (the symmetric group of degree n) and an m - potent β in P_n such that $\alpha = \sigma\beta$ and $\text{Shift}(\sigma)\cap \text{Shift}(\beta) = \emptyset$.

Proof. Let $\alpha \in P_n$ be of index mand period r. Then by Corollary 2.5 the map $\alpha^* \in P_n^*$ has index m and period r as well. Using the decomposition algorithms described in Theorem 2 of [6], α^* is expressible as a product, $\alpha^* = \sigma^* \beta^*$, where σ^* is a permutation of order *in* P_n^* and β^* is an(m, r) – *potents in* P_n^* such that Shift $(\alpha^*) \cap$ Shift $(\beta^*) = \emptyset$. Now $\alpha = \alpha^*|_{X_n} = (\alpha^*\beta^*)|_{X_n} = \alpha^*|_{X_n}\beta^*|_{X_n} = \sigma\beta$

, where σ is a permutation of order *r* since zero (0) is fixed by σ^* , and β is an *m*-potent in P_n by Lemma 2.4. It is clear that $\text{Shift}(\sigma) = \text{Shift}(\alpha^*)$ and $\text{Shift}(\beta) \subseteq \text{Shift}(\beta^*)$. Thus $\text{Shift}(\sigma) \cap \text{Shift}(\beta) = \emptyset$ as required.

Theorem 3.2 Let σ be a permutation of order r in S_n and let β be an m - potent in P_n such that $\text{Shift}(\sigma) \cap \text{Shift}(\beta) =$ \emptyset .Let $\alpha = \sigma\beta$. Then, α has index m and period r.

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 1–4

Idris, Garba and Imam

Proof. This is a consequence of the corresponding result in full transformation in [6] along with Vagner representation. **Theorem 3.3** Let α be an element of P_n . Then α is an (m, r) - potent if and only if there exist a unique permutation σ of order r and a unique m – potent element β such that $\alpha = \sigma\beta$ and Shift $(\sigma) \cap$ Shift $(\beta) = \emptyset$.

Proof. From Theorems 3.1 and 3.2, it is clear that the decomposition of α given by theorem 3.1 is unique. It follows from theorem 3.2 that α has index *m* and period *r*. It is also clear from theorem 3.1 that Shift(σ) \cap Shift(β) = \emptyset .

4 Formula for the number of *m*-potent in P_n

in this section we identify the number of m – *potent* elements in the partial transformation semigroup P_n . First, we start by partitioning the integers of m – *potent* paths in P_n .

Let $P_{m+1}(n + 1)$ be the set of all partitions of the integer n + 1 into m + 1 non-zero parts.

Theorem 4.1 The number of m – potent elements in P_n^* is

$$\sum_{\{k_0,k_1,\dots,k_m\}\in P_{m+1}(n+1)} \binom{n+1}{k_0,k_1,\dots,k_m} k_0^{k_1} k_1^{k_2} \cdots k_{m-1}^{k_m}$$

Proof. First it can be noticed that, by the power of Vagner representation, it suffices to count the number of *m*-potent elements inP_n^* . From Theorem 1 in [6] every *m* - potent α^* in P_n^* admits a partition of $X_n \cup \{0\}$ into m + 1 parts A_0, A_1, \ldots, A_m , in which elements of A_{j+1} are mapped in to elements of $(A_j \text{ for } j = 0, 1, 2, \ldots, n - 1)$. This can be done in $|A_j|^{|A_{j+1}|}$ ways. Now, given a partition k_0, k_1, \ldots, k_m , of n + 1 into m + 1 non-zero parts, we can assign sets $A_{j-1}A_{j-1} = k_j$ for each *i* in

$$\binom{n+1}{k_0, k_1, \dots, k_m} = \frac{(n+1)!}{k_0!k_1! \cdots k_m!}$$

ways. Thus, the number of $m - potent \alpha^*$ in P_n^* admitting the partition

$$\binom{A_0, A_1, \dots, A_m, \text{ is}}{\binom{n+1}{k_0, k_1, \dots, k_m}} k_0^{k_1} k_1^{k_2} \cdots k_{m-1}^{k_m}$$

. Therefore, the total number of m – *potent* elements in \mathcal{P}_n^* is

$$\sum_{\{k_0,k_1,\dots,k_m\}\in P_{m+1}(n+1)} \binom{n+1}{k_0,k_1,\dots,k_{m+1}} k_0^{k_1} k_1^{k_2} \cdots k_{m-1}^{k_m}$$

References

- [1] Howie, J.(1966). Idempotent rank in finite full transformation semigroups. *Proc. Roy. Soc. Edinburgh* 116A:116-167.
- [2] Howie, J. M.(1980). Products of idempotents in a finite full transformation semigroup. *Proc. Roy. Soc. Edinburgh* 86A:243-254.
- [3] Vorobev, N. N.(1953), On Symmetric associative systems, *LeningrandGos. Ped. Inst. Uch. Zap.*, 89, 161-166 (Russian).
- [4] Howie, J. M.(1984). Product of idempotents in a finite full transformation semigroup: some improved bounds *Proc. Roy. Soc. Edinburgh* 98A:25-35.
- [5] Howie, J. M, McFadden, K. B.(1990). Subsemigroup generated by the idempotent of a full transformation semigroup. *J. London maths sec*, 42:707716.
- [6] Ayik, G., Ayik, H., Howie, H. M. (2005). On factorisations and generators in transformations semigroups. *Semigroup Forum* 70(2):225-237.
- [7] Vagner, V. V.(1964). Representations of ordered semigroups, *Mat. Sb. (N.S.)* 38 (1956), 203-240; translated in *Amer. Math. Soc. Transl.* 36(2): 295-336.
- [8] Clifford, A. H., Preston, G. B. (1967). *The Algebraic Theory of Semigroups*, Mathematical Surveys of the American Mathematical Society, Vol. 2, Providence, R. L.
- [9] Garba, G. U. (1990). Idempotents in partial transformation semigroup. *Proc. Roy. Soc. Edinburgh* 116A:359-366.

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 1–4

Structure of Elements in...

- [10] Ayik, G., Ayik, H., Unlu, Y., and Howie, J. M. (2005b). The structure of element in finite full transformations semigroups. *Bull. Austral. Math. Sec. Vol.* **71**: 69 74.
- [11] Ayik, G., Ayik, H., Unlu[°], Y., Howie, H. M. (2008). Rank properties of the[°] semigroup of singular transformations on a finite set. *Communications in Algebra* 36:2581-2587.
- [12] Zhao, P., You, T., and Chen, Y. (2016). On the (m,r)-potent ranks of certain semigroups transformations. Journal of Algebra and Its Applications,15:1-9.