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Abstract 
 

In a finite semigroups S the index and period of an element 𝒂 ∈ 𝑺 are respectively the 

smallest values of integers m ≥ 1 and r ≥ 1 such that 𝒂𝒎+𝒓 = 𝒂𝒎. In the literature, it 

was shown that every element α of a finite full transformation semigroup 𝑻𝒏can be 

uniquely factorised into a product of a permutation and a element of period 1. In this 

paper, we extend this concept to element of the larger semigroup 𝑷𝒏, of all partial 

transformation of a finite set of n elements. We show that each 𝜶 ∈ 𝑷𝒏is factorisable 

into a product of a permutation and an element of period 1. In line with the literature, 

factorisation is used to count the number of all elements in 𝑷𝒏having period 1. 
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1 Introduction 

For a fix positive integer n, write𝑋𝑛 =  {1,2, . . . , 𝑛}, and denote by 𝑆𝑛,𝑇𝑛 and 𝑃𝑛the symmetric-group, full and partial 

transformations semigroups on 𝑋𝑛respectively. The semigroup 𝑇𝑛have been much studied over the last sixty years, see 

example [1,2 and 3]. Many general concepts in a semigroup have been characterised and examine of Green’s relations, 

ideals, product of idempotent, generating sets, rank and congruence’s, have all been examined in the full transformation 

semigroup 𝑇𝑛, see for example [1, 2, 4 and 5].  Ayik et al [6] studiedthe notion of index and period of elements in 𝑇𝑛. 

Let𝑆be a semigroup and 𝑎 ∈ 𝑆. If there exist positive integers m and r such that𝑎𝑚+𝑟 = 𝑎𝑚with 𝑎, 𝑎2, . . . , 𝑎𝑚+𝑟−1all 

pairwise distinct, then a is called an (𝑚 , 𝑟)  −  𝑝𝑜𝑡𝑒𝑛𝑡and the integers 𝑚, 𝑟are called the index and period of a 

respectively, denoted by index(a) and period(a). An element of index 𝑚and period 1 is called an m−potent, and that of 

both index and period equal to 1 is called an idempotent. 

In [6], it was proved that an (𝑚 , 𝑟) −  𝑝𝑜𝑡𝑒𝑛𝑡element 𝛼 of 𝑇𝑛can be uniquely factorized as 𝛼 =  𝜎𝛽where𝜎is a 

permutation in 𝑆𝑛of order 𝑟 and 𝛽is an 𝑚 −  𝑝𝑜𝑡𝑒𝑛𝑡element in 𝑇𝑛they used this factorisation to count the number of 

𝑚 −  𝑝𝑜𝑡𝑒𝑛𝑡𝑠in 𝑇𝑛. Here, we extent this idea to cover elements of the partial transformation semigroup 𝑃𝑛 

 

2 Preliminaries 

Let 𝑋𝑛
0 =  𝑋𝑛 ∪ {0} and denote the semigroup of all full transformations of 

𝑋𝑛
0𝑏𝑦𝑇𝑋𝑛

0, where 0α = 0. By a result of [7], quoted in [8] there is an isomorphism between 𝑃𝑛and a 

subsemigroup𝑋𝑛
0 𝑜𝑓 𝑇𝑋𝑛

0. This isomorphism proves to be a powerful tool in translating results on 𝑇𝑛to very similar 

results concerning  𝑃𝑛, [9]. For each 𝛼 ∈ 𝑃𝑛, the map 𝛼∗ ∈ 𝑇𝑋𝑛
0 , define by: 

 
For convenience the following result is recorded from [7], also to be found in [8]. 

Theorem 2.1 For each 𝛼 ∈ 𝑃𝑛, the mappings 𝛼 ↦  𝛼∗and 𝛼∗ ↦  𝛼∗ |𝑋𝑛 (the restriction of 𝛼∗to𝑋𝑛) are mutually inverse 

isomorphisms of 𝑃𝑛onto the subsemigroup𝑃𝑛
∗ 𝑜𝑓 𝑇𝑋𝑛

0 and vice-verse. 

Here, the following important remark is made and it will be effectively used throughout the next sections. 

Remark: For r ≥ 1,m≥ 1, an (𝑚, 𝑟) − 𝑝𝑜𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑃𝑛
∗ corresponds in these isomorphism’s to (𝑚, 𝑟)  −  𝑝𝑜𝑡𝑒𝑛𝑡𝑠in 𝑃𝑛. 

For each 𝛼 ∈ 𝑃𝑛, let 𝐹𝑖𝑥(𝛼) denote the set of all fixed points of α in 𝑑𝑜𝑚(𝛼), that is, 

𝐹𝑖𝑥(𝛼)  =  {𝑥 ∈ 𝑑𝑜𝑚(𝛼)|𝑥𝛼 =  𝑥}. 
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The set of all shifting points of α in 𝑑𝑜𝑚(𝛼) is denoted by𝑆ℎ𝑖𝑓𝑡(𝛼), that is 

𝑆ℎ𝑖𝑓𝑡(𝛼)  =  {𝑥 ∈ 𝑑𝑜𝑚(𝛼)|𝑥𝛼 ≠  𝑥} = 𝑑𝑜𝑚(𝛼) \ 𝐹𝑖𝑥(𝛼). 

Since the semigroup 𝑃𝑛is finite, for each 𝛼 ∈ 𝑃𝑛, there must be positive integers 𝑚, 𝑟such that 

𝛼𝑚+𝑟 = 𝛼𝑚. 

Thus, smallest such m and r are called index and period of 𝛼respectively. Let 𝑇𝑛be full transformation semigroup and 

𝑃𝑛be partial transformation semigroup. 

Let 𝛼 ∈  𝑃𝑛. For each𝑥 ∈  𝑑𝑜𝑚(𝛼) \ 𝑖𝑚(𝛼), the sequence 

  𝑥, 𝑥𝛼, 𝑥𝛼2, … 

either arrives into a cycle or at a terminal point. 

In the former, we define length of the sequence lα(x) to be the number of distinct terms in the sequence that are not in 

the cycle. In the latter, we define lα(x) to be the number of distinct terms in the sequence. 

Example 2.2 Let α∗ ∈ P∗
15 be the map 

. 

We can clearly see that for the above map α∗, we have 

 
, and so 𝑙𝛼∗

(1) = 3, 𝑙𝛼∗
(7) = 1, 𝑙𝛼∗

(8) = 3 and 𝑙𝛼∗
(11) = 2. There for we have the maximum of 𝑙𝛼∗

(𝑥)to be 3. So the 

index of α∗ is 3 and the period is 6 . 

Is isomorphic to: 

Example 2.3 Let α ∈ P15 be the map 

. 

We can clearly see that for the above map α, we have 

𝑥 ∈  {1,8,11}  =  𝑑𝑜𝑚(𝛼) \ 𝑖𝑚(𝛼), 

and so 𝑙𝛼(1) = 3, 𝑙𝛼(7) = 1 and 𝑙𝛼(11) = 2. Therefor the maximum of 𝑙𝛼(𝑥)is 3. We say that the index of this α is 3 and 

the period is 6. Because the period of the maps 𝛼∗and𝛼is the least common multiple of the lengths of the cycles. Here we can 

clearly see that maximum of 

𝑙𝛼∗
(𝑥)  = 𝑙𝛼(𝑥) = 3. 

The next Lemma shows that the index of each 𝛼 in 𝑃𝑛can be conveniently defined in term of this length function. 
 

Lemma 2.4 Let 𝛼 ∈  𝑃𝑛.Then𝑖𝑛𝑑𝑒𝑥(𝛼)  =  𝑚𝑎𝑥{𝑙𝛼(𝑥)|𝑥 ∈  𝑑𝑜𝑚(𝛼) \ 𝑖𝑚(𝛼)} . 
Proof. It is clear that every path into a cycle of 𝛼 ∈  𝑃𝑛, remains to be the same path into a cycle of𝛼∗ ∈ 𝑃𝑛

∗. Also a path 

into a terminal point of 𝛼 ∈  𝑃𝑛, remains the same path into a fixed point of𝛼∗ ∈ 𝑃𝑛
∗. Therefore, by the definition of 

length of a path 𝑙𝛼(𝑥) = 𝑙𝛼∗
(𝑥)for all𝑥 ∈ 𝑑𝑜𝑚(𝛼) \ 𝑖𝑚(𝛼). Now, since 𝑙𝛼∗

(𝑥) = 1for all 𝑦 ∉ 𝑑𝑜𝑚(𝛼) ∪ 𝑖𝑚(𝛼) and in 

full transformation 𝑇𝑋𝑛
0the index of each map α∗ is obtained to be the maximum of{𝑙𝛼∗

(𝑥)|𝑥 ∈ 𝑋𝑛
0\𝑖𝑚(𝛼)}, the result 

follows.  

From the proof of Lemma 2.4, the below corollary 2.5 follows. 

Corollary 2.5 For each𝛼 ∈ 𝑃𝑛,𝑖𝑛𝑑𝑒𝑥(𝛼)  =  𝑖𝑛𝑑𝑒𝑥(𝛼∗)and𝑝𝑒𝑟𝑖𝑜𝑑(𝛼)  =  𝑝𝑒𝑟𝑖𝑜𝑑(𝛼∗). 

 

3 Decomposition of each 𝜶 ∈ 𝑷𝒏 

In this section we decomposed each α in 𝑃𝑛, of index m and period r, as a product of permutation σ of order r and an 

𝑚 −  𝑝𝑜𝑡𝑒𝑛𝑡𝛽of index 𝑚. 

Theorem 3.1 Let α be an element of 𝑃𝑛of index 𝑚 and period 𝑟. Then there exist a permutation σ of order r in Sn (the 

symmetric group of degree n) and an 𝑚 − 𝑝𝑜𝑡𝑒𝑛𝑡 𝛽 in 𝑃𝑛such that 𝛼 =  𝜎𝛽 and Shift(𝜎)⋂Shift(𝛽)  =  ∅. 

 

Proof. Let 𝛼 ∈ 𝑃𝑛be of index 𝑚and period 𝑟. Then by Corollary 2.5 the map 𝛼∗ ∈ 𝑃𝑛
∗has index m and period r as well. 

Using the decomposition algorithms described in Theorem 2 of [6], 𝛼∗is expressible as a product, 𝛼∗ =  𝜎∗𝛽∗, where σ∗ 

is a permutation of order𝑟 𝑖𝑛 𝑃𝑛
∗ and 𝛽∗is an(𝑚, 𝑟) − 𝑝𝑜𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑃𝑛

∗such thatShift(𝛼∗)⋂ Shift(𝛽∗)  =  ∅. 

Now 𝛼 =  𝛼∗|𝑋𝑛
=  (𝛼∗𝛽∗)|𝑋𝑛

= 𝛼∗|𝑋𝑛
𝛽∗|𝑋𝑛

=  𝜎𝛽 

, where 𝜎is a permutation of order r since zero (0) is fixed by 𝜎∗, and 𝛽is an m−potent in 𝑃𝑛by Lemma 2.4. It is clear 

that Shift(𝜎)  =  Shift(𝛼∗) and Shift(𝛽) ⊆ Shift(𝛽∗). ThusShift(𝜎)⋂Shift(𝛽)  =  ∅as required. 

Theorem 3.2 Let 𝜎 be a permutation of order r in 𝑆𝑛and let 𝛽 be an 𝑚 −  𝑝𝑜𝑡𝑒𝑛𝑡 in 𝑃𝑛such that Shift(𝜎)⋂ Shift(𝛽)  =
 ∅.Let 𝛼 =  𝜎𝛽. Then, 𝛼 has index 𝑚 and period 𝑟. 
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Proof. This is a consequence of the corresponding result in full transformation in [6] along with Vagner representation.  

Theorem 3.3 Let 𝛼 be an element of𝑃𝑛. Then α is an (𝑚, 𝑟)  −  𝑝𝑜𝑡𝑒𝑛𝑡 if and only if there exist 𝑎 unique permutation 𝜎 

of order 𝑟 and a unique m − potent element β such that𝛼 =  𝜎𝛽 andShift(𝜎)⋂ Shift(𝛽)  =  ∅. 

Proof. From Theorems 3.1 and 3.2, it is clear that the decomposition of α given by theorem 3.1 is unique. It follows 

from theorem 3.2 that α has index m and period r. It is also clear from theorem 3.1 that Shift(σ)∩Shift(β) = ∅. 

 

4 Formula for the number of m−potent in 𝑷𝒏 

in this section we identify the number of m − potent elements in the partial transformation semigroup 𝑃𝑛. First, we start by 

partitioning the integers of 𝑚 −  𝑝𝑜𝑡𝑒𝑛𝑡paths in 𝑃𝑛. 

Let 𝑃𝑚+1(𝑛 +  1) be the set of all partitions of the integer 𝑛 +  1 into 𝑚 +  1 non-zero parts. 

Theorem 4.1 The number of m − potent elements in𝑃𝑛
∗is 

. 

Proof. First it can be noticed that, by the power of Vagner representation, it suffices to count the number of m−potent 

elements in𝑃𝑛
∗. From Theorem 1 in [6] every𝑚 − 𝑝𝑜𝑡𝑒𝑛𝑡 𝛼∗ 𝑖𝑛 𝑃𝑛

∗ admits a partition of 𝑋𝑛 ∪ {0} into 𝑚 +
1parts𝐴0, 𝐴1, . . . 𝐴𝑚, in which elements of𝐴𝑗+1are mapped in to elements of (𝐴𝑗  for 𝑗 =  0,1,2, . . . , 𝑛 − 1).This can be 

done in |𝐴𝑗||𝐴𝑗+1|ways. Now, given a partition 𝑘0, 𝑘1, . . . 𝑘𝑚, of n + 1 into m + 1 non-zero parts, we can assign sets 

𝐴0, 𝐴1, . . . 𝐴𝑚, with |𝐴𝑗| = 𝑘𝑗for each j in 

 
ways. Thus, the number of𝑚 − 𝑝𝑜𝑡𝑒𝑛𝑡 𝛼∗  𝑖𝑛 𝑃𝑛

∗admitting the partition 

𝐴0, 𝐴1, . . . 𝐴𝑚, is 

 

. Therefore, the total number of m − potent elements in is 

. 
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