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Abstract 

This investigation is concerned with the steady boundary layer stagnation-point flow 

and heat transfer past an exponential stretching sheet. The highly nonlinear coupled 

partial differential equations are simplified with the help of suitable similarity 

transformations. The reduced equations are then treated with homotopy analysis 

method (HAM). The heat transfer problem is modeled using two point convective 

boundary conditions. The effects of controlling parameters on the dimensionless 

velocity, temperature, skin friction coefficient and heat transfer rate are analyzed. It 

is found that the HAM results match well with numerical results obtained by Runge 

Kutta Fehlberg fourth-fifth order method for different assigned values of parameters. 

The results indicate that the stretching parameter reduces the hydrodynamic 

boundary layer thickness whereas Prandtl number reduces the thermal boundary 

layer thickness. 

 

Keywords: Stagnation point; Convective boundary condition; Heat transfer; stretching sheet; Series 

solution. 
 

NOMENCLATURE      Greek symbols 

,u v
 

 velocity component                                                  thermal diffusivity of the fluid 

sU  straining velocity of the plate                                   electrical conductivity 

wU  shrinking/stretching velocity of the plate                       
       

density of the base fluid 

Nc  convection parameter                                                              kinematic viscosity 

T     Temperature                                                                            stretching parameter 

L    length of the sheet                                                                   stream function 

Cfx local friction factor 

Nux local Nusselt number 

Pr Prandtl number 

Rex local Reynolds number 
 

1.   INTRODUCTION 

The study of boundary layer flow over a stretching surface has an important bearing on several industrial manufacturing processes such 

as extrusion of polymer, the cooling of metallic plates, filament extrusion from a dye, and in paper production, Ishak et al. [1]. The flow 

due to stretching surface is also involved in glass industry for blowing, floating or fibers spinning processes.  

Crane [2]was the first to study the flow over a linearly stretching sheet. An analytical similarity solution for the steady two-dimensional 

problem was obtained. Carragher and Crane [3] have discussed the characteristics of heat transfer in a two dimensional flow over a 

stretching sheet in the case when the temperature difference between the ambient fluid and the surface is proportional to a power of 

distance from a fixed point. Duttaet al. [4]studied the heat transfer problem for the case of uniform heat flux over a stretching surface. 

Chiam [5] has analyzed the heat transfer with variable thermal conductivity in a stagnation point over a stretching sheet. Several 

researchers investigated various physical features and aspects such as three-dimensional flow, magnetic field, suction, and viscoelasticity 

of the fluid [6,7, 8,9]. 
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The literature relating to boundary layer flow towards a stretching sheet is constantly growing. Verjravelu[10] provided the analysis of 

viscous fluid over a nonlinear stretching sheet. Mahapatra and Gupta [11] have studied the heat transfer characteristics in steady two-

dimensional stagnation point flow for an incompressible fluid past a stretching sheet with constant surface temperature. The 

characteristics of heat transfer of viscous fluid past a nonlinear stretching sheet is presented by Cortell[12].A thorough review can be 

observed in a series of paper [13, 14, 15, 16, 17, 18].Mukhopadhyay [19] investigated unsteady boundary layer flow and heat transfer 

past a porous stretching sheet in the presence of variable viscosity and thermal diffusivity. Nandeppanavar and Siddalingappa 

[20]examined nonlinear stretching sheet for the effect of viscous dissipation and thermal radiation on heat transfer. Sharma and Singh 

[21] studied the effects of variable thermal conductivity on a linear stretching sheet with MHD flow near stagnation point. 

There has not been much study on boundary layer flow which is caused by an exponentially stretching sheet though it is significant in 

many engineering processes. Magyari and Keller[22]were the first to study the heat transfer and boundary layer flow which is due to an 

exponentially stretching sheet. Numerical treatment of flow and heat transfer over an exponentially stretching surface with wall-mass 

suction was provided by Elbashbeshy [23]. Some other investigations regarding exponential stretching surface were given by [24, 25,26]. 

It is to be noticed that these researchers did not use convective boundary conditions in their studies. 

A theoretical study on the stagnation point flow past an exponentially stretching sheet via the homotopy analysis method is presented 

here. As in some other studies, in our study the exponential form of similarity transformation is used and the governing partial differential 

equations for the flow and heat transfer are transformed into nonlinear ordinary differential equations. The homotopy analysis method is 

an approximate analytical method that was established by [27, 28],which has been effectively applied on many science and engineering 

problems [29, 30, 31, 32, 33]. 

 

2.   MATHEMATICAL FORMULATION  

We consider the flow of viscous fluid over an exponentially stretching sheet. We assume that the flow is laminar, steady, incompressible, 

and two-dimensional boundary layer stagnation-point flow. Under such assumptions the continuity, momentum and energy equations 

describing the flow can be written as [19]: 
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where u  and v are the x(along the sheet) and y(normal to the sheet) components of the velocities, respectively, 




 
 
 

 is the kinematic 

viscosity of the fluid,   is the density,   is thermal diffusivity of the fluid, T  is the temperature, is the electrical conductivity. 

The velocity boundary conditions can be expressed as[19]: 

( , 0) ( ), v(x,0) 0, ( , ) ( )u x U x u x U xw s    .      (4) 

The shrinking/stretching velocity Uw  and the straining velocity Us are given by 

U = expw

x
c

L

 
 
   

and
U = exps

x
a

L

 
 
 

                                                                                       (5) 

where c is stretching/shrinking velocity rate with c > 0 for stretching and c < 0 for shrinking, and a > 0 straining velocity rate, L  is 

length of the sheet. 

The bottom surface of the plate is assumed to be heated by convection from a hot fluid at temperature T
f

and this is deemed to provide 

aheat transfer coefficient h
f

. The boundary conditions at the sheet surface and far into the cold fluid may be written as 

( , 0) ( , 0)
dT

k x h T T x
f f

dy
   

 
          (6) 

( , )T x T  
.          (7) 

To obtain the nondimensionalized form of momentum and energy equations, we define an independent variable  as well as a dependent 

variable f  in terms of the stream function  as 
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We define a dimensionless temperature   as 

T T

T T
f


 


 

           (10) 

Using Eqs. (8) - (10), the momentum and energy equations can be reduced into ordinary differential equations 
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The boundary conditions of the problem are: 
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 is convection parameter,  is stretching parameter, and Pr  is Prandtl number. 

Quantities of the physical interest are the local friction factor, C
fx

 and the local Nusselt number, Nux .  These quantities can be expressed 

as 
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where Re
U xw

x


  is the local Reynolds number. 

3.   HOMOTOPY ANALYSIS SOLUTION 

We express  f   and     by a set of base functions 

  exp 0, 0
k

n k n    ,                    (15) 

in the form 
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where ,, ,
k k

a bm n m n
 are the coefficients. We follow the rule of solution expression for determining the initial approximations, auxiliary linear 

operators, and the auxiliary functions. Therefore, according to the rule of solution expression, we choose the initial guesses )0 ( ,f  ( )0    

based on boundary condition (12) and linear operators L1 and L2 in the following way: 
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(18) 

The operators L1, L2 have the following properties: 

L1   0,1 2 3C C e C e
 

        L2   054C e C e
 
         (19) 

where  1 5C ii    are arbitrary constants. Let  0,1q   represent an embedding parameter and 0h  be the auxiliary parameter to adjust 

the convergence rate of the perturbation series. Then we construct the following zeroth order deformation of the problem, which is: 

 1 q  L1    ˆ ; 0f q f     = q
f

h N1  ˆ ;f q   ,                                                             (20) 

 1 q  L2    ˆ ; 0q     
 = q h N2    ˆˆ ; , ;q f q     ,                                         (21) 

subject to the conditions that: 

     ˆ ˆ ˆ0; 0, 0; , ; 1f q f q f q    
       

(22) 

      ˆ ˆ ˆ0; 1 0 : , ; 0Ncq q q                (23) 

where the nonlinear operators are defined as: 
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Setting 0q   and 1q   we have: 

       ˆ ˆ; 0 , ;10f f f f    
       

(26) 

       ˆ ˆ; 0 , ;10        
       

(27) 
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Defining further: 
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and expanding  ˆ ; ,f q   ˆ ;q   by means of  Taylor’s theorem with respect to q , we obtain: 
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The auxiliary parameters are properly chosen so that series (29)-(30) converge at 1q   and thus: 
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f f fm
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The resulting problems at the mth order deformation are: 
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f
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The general solution of Eqs. (33) - (34) are: 

       *
exp exp1 2 3f f C C Cm m                        (39) 

       *
exp exp

54
C Cm m                   (40) 

where  *
fm   and  *

m   are the particular solution and the constants are to be determined by the boundary condition Eq. (35). 

 

4.   CONVERGENCE OF THE HAM SOLUTION 

According to Liao [27], the convergence rate of the HAM solution strongly depends on the value of non-zero auxiliary parameter h . So it 

is important to ensure that the solution series Eqs. (33)-(34) are convergent. Note that the solution series contain the auxiliary parameters 

f
h and 

h and, thus, provides us with a simple way to adjust and control the convergence of the solution series. As pointed out by Liao 

[28], the valid region of h  is a horizontal line segment. Convergence of the series solution up to 40th order of approximations is 

presented in Table 1. It is found from Table 1 that the convergence is achieved up to 28th order of approximation. 
 

Table 1: Convergence of HAM solution for different order of approximations at 0.1, Pr 1, 0.5Nc    and 1.2
f   h h .   

Order of approximations  0f    0  

1 1.5330 -0.25470 

5 1.5617 -0.26949 

10 1.5630 -0.27072 

20 1.5630 -0.27627 

28 1.5630 -0.27807 

30 1.5630 -0.27807 

40 1.5630 -0.27807 

[ RKF-45 ] [1.5630] [-0.27807] 
 

5.   RESULTS AND DISCUSSION 

The system of (11) with boundary conditions of (12) has been solved analytically via homotopy analysis method (HAM)for various 

values of different parameters such as the convection parameter Nc , stretching parameter   and Prandtl number Pr . To illustrate the 

HAM solution, values of the dimensionless velocity, temperature, friction factor and local Nusselt number have been plotted in Figs. 1-

5.The Runge-Kutta Fehlberg fourth-fifth order numerical method has been employed in addition to the HAM to cross-validate the present 

results. A comparison of the present results of the dimensionless velocity and temperature with the numerical method is presented in 

Table 2. The results were found to be in good agreement and we therefore have high confidence that our HAM results are accurate. The 

values of Nusselt number are presented in Table 3fordifferent values of controlling parameters. 
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In Fig. 1 the effect of stretching parameter  on the dimensionless velocity is presented. The dimensionless velocity is found to decrease 

with an increase in stretching parameter  .Increasing the stretching parameter, due to less difference between the sheet and free stream 

velocities, the momentum boundary layer gets thinner. According to Fig. 2, we can observe that the increase in convection parameter Nc  

causes a turn down in the dimensionless temperature and as a result the boundary layer thickness decreased and heat transfer rate will 

increase. Effects of stretching parameter  and Prandtl number on the dimensionless temperature have been considered in Fig. 3. The 

dimensionless temperature is found to be in decreasing manner with both stretching parameter and Prandtl number. It is important to note 

that the boundary layer thickness decreases with an increase in   in both cases. An increase in Prandtl number results in the reduction of 

thermal boundary layer thickness because an increase in Prandtl number would result in a decrease of fluid thermal conductivity. 

Fig.4 is prepared to show the influence of stretching parameter   on skin friction coefficient. We observed that an increase in stretching 

parameter  the friction factor monotonically reducing. Finally, in Fig. 5, the variation of Nusselt number, which represent the heat 

transfer rate at the surface in terms of   0 is presented for various values of convection parameter with two values of stretching 

parameter  . It is noticed that, the increase in stretching parameter and Prandtl number provide an increase in heat transfer coefficient, 

but this increase is significant in case of convection parameter Nc . 

 

Table 2   Comparison of HAM and numerical (RKF-45) results for dimensionless velocity and temperature when 0.5, 0.5, Pr 1Nc     

 
  

 f       

HAM RKF-45 HAM RKF-45 

0.0 0.0 0.0 0.414270 0.414270 

0.5 0.342692 0.342692 0.271431 0.271431 

1.0 0.790757 0.790757 0.151232 0.151232 

1.5 1.276084 1.276084 0.069778 0.069778 

2.0 1.772551 1.772551 0.026204 0.026204 

2.5 2.271833 2.271832 0.007919 0.007919 

3.0 2.771710 2.771710 0.001911 0.001911 

3.5 3.271693 3.271693 0.000366 0.000366 

4.0 3.771691 3.771691 0.000054 0.000055 

4.5 4.271691 4.271691 0.0000060 0.0000060 

5.0 4.771691 4.771691 0.0 0.0 
 

Table 3: Local Nusselt number for different values of Nc , , and Pr  

 

 

 

 

 

 

 

 

 

 

 

       
           Fig. 1. Effect of stretching parameter   on                    Fig. 2. Effect of convective parameter 

Nc
                Fig. 3. Effects of stretching parameter and 

                       dimensionless velocity          on dimensionless temperature                                            Prandtl numberon dimensionless temperature 
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      Fig. 4.Variation of skin friction coefficient   Fig. 5. Variation of heat transfer rate against Prandtl 

                  stretching parameter               number, stretching and convection parameters 
 

6.   CONCLUSION 
This paper deal with the analytical study ofstagnation point flow and heat transfer past over anexponential stretching sheet. The validity of our solutions is 

verified by the numerical results. We analyzed the convergence of the obtained series solutions, carefully. Unlike perturbation methods, the HAM does not 

depend on any small physical parameters. Thus, it is valid for both weakly and strongly nonlinear problems. Besides, The HAM provides us with a 
convenient way to control the convergence of approximation series, by means of auxiliary parameter ћ, which is a fundamental qualitative difference in 

analysis between the HAM and other methods. Graphs are plotted to analyze the variation of the pertinent flow parameters including the stretching 

parameter  , Prandtl numberPr, and convection parameter Nc . From the present analysis, we note that the behavior of stretching parameter   on the 

dimensionless velocity and temperature is found to be same, i.e. decreases. 

It is presumed that, with the help of the present model, the physics of the flow along the vertical channel can be utilized as the basis for many engineering 

and scientific applications. The findings of the present problem are also of great interest in engineering, industrial, and environmental applications, such as 
extrusion of polymer, the cooling of metallic plates, filament extrusion from a dye, and in paper production.  
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