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Abstract 

 
An elegant mathematical solution procedure is developed and used to treat the 

problem of the dynamic interactions of a beam-load system. Two structural models 

are considered in this study, approximate analytical solutions of the governing 

differential equation describing the motions of the vibrating system are presented.  

Effects of some vital structural parameters on response characteristics and stability 

of thin beams traversed by travelling loads are established. Influence of the mass 

ratio and load distribution on the dynamic behaviour of the structural member 

carrying distributed moving masses is carefully scrutinized. Conditions under which 

the amplitude of vibration of this structure-mass system may grow without bound for 

both the moving force and moving mass models are clearly indicated.  Results further 

revealed that, for the same natural frequency, the critical speed for the beam-force 

system is higher than that of the beam-mass system. Hence, the risk of resonance 

effects is higher in a beam-mass system. 

 

Keywords: Vibration analysis, Distributed loads, boundary conditions, resonance, bearing member, vibrating 

system, Dynamic Characteristics. 
 

 

1.0 INTRODUCTION 

The basic understanding of the complexity of the interactions between structural members and the masses traversing them 

at different velocities is very vital as it helps in controlling structural vibrations and safe operations of such a system. Thus, 

the practical problem of vibration of structures due to the passage of moving loads is of technological importance and for 

this reason, there has been increasing need for continuous study of the behaviour of (elastic/inelastic) solid bodies traversed 

by travelling loads. Such studies are for instance very useful in the design of aircraft which are under the influence of 

various types of moving pressure loads during flight, design of bridges and runways and it also provides a safer, reliable 

and more economical design of structural members on which loads of various categories move [1]. Hence, many 

researchers in engineering, applied mathematics and other related fields have taken considerable interest in the problem of 

assessing the dynamic response of elastic structures under the action of moving loads [2-16]. The problem of elastic 

structures under the actions of moving loads has been extensively studied by many authors during the last few years.  

However, from historical point of view, most of the theories proposed by these authors and the applications of their solution 

techniques are limited to cases: one; where the complex interactions between structural members and loads traversing them 

at various velocities are modelled without incorporating foundation stiffness into the governing equation; two, where the 

inertia effects of the moving load is neglected in the governing equation of motion. Guiseppe and Alessandro [17], once 

described this type of beam model as the crudest approximation known to literature; Three, where the problem of complex 

interactions of beam-like structures and fast travelling loads has been significantly simplified by assuming the moving load 

to be a lumped mass see for instance [18-22] and the references therein. Nonetheless, in practice, moving loads are in the  

 
Correspondence Author: Omolofe B., Email: babatope_omolofe@yahoo.com, Tel: +2348035643019, +2348035486054 (TOA) 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 73 –88 



74 
 

Vibration Analysis of Beams…                    Omolofe and Adeloye                Trans. Of NAMP 
 

 

form of moving distributed mass rather than moving lumped mass; four, where only simply supported boundary conditions 

are employed to illustrate the characteristics of the vehicle-load interactions. Other boundary conditions of interest are 

rarely considered.  The reason for all these limitations is not far-fetched when all these all-important factors are involved in 

governing differential equation of motion, most known analytical procedures or computational techniques break down.  

Even when they appear to work, a great amount of computational labour is required to solve the resulting complex and 

much complicated governing differential equation of motion. 
 

Many authors who have made bold effort to address all or some of these aforementioned limitations in their studies, 

however, are constrained by some great mathematical difficulties in obtaining analytical solutions to the load-structure 

problems and resorted to numerical simulations [23-29]. It is very important to note that, when considering the dynamic 

characteristics of a vehicle-load interaction during the passage of the heavy subsystems, analytical method of solution is 

desirable as it gives more insights and useful information about the dynamical system [30-35]. In our recent study [36], an 

effort was made to investigate the behavioural study of a finite beam resting on elastic foundation and subjected to 

travelling distributed masses.  All the aforementioned limitations were addressed in this work. Nevertheless, boundary 

conditions other than the simple ones are not considered. The objective of this study, therefore, is to extend the work in [36] 

to cover more pertinent boundary conditions of interest. 
 

The specific aim of this study among others is, to obtain the approximate analytical solutions of the governing equations of 

motions of elastic thin beam on elastic subgrade and under the actions travelling distributed loads for the problems of 

moving distributed forces and moving distributed masses, establish the dynamic effects of elastic bearing member  and 

other beam parameters on the response characteristics of the beam under moving loads, indicate the conditions under which 

the vibration amplitude of this dynamical systems grow without bound for both the moving force model and the moving 

mass model, indicate the influence of the mass ratio on the structure-load interactions of the vibrating system and to 

determine the effects of load distribution on the dynamic behaviour of the uniform thin beam under forced vibration. 

 

2.0  FORMULATION OF THE EQUATION OF MOTION 

Consider a homogeneous beam supported by elastic subgrade and under the actions of travelling masses M.  At time t=0, 

the mass is assumed to strike the beam at the point x = 0 and then continue to travel along with a constant velocity type of 

motion. The beam mechanical properties are assumed to be constant along the span L of the beam.  The deflection 

 ,W x t  describing the motion of the vibrating beam is given by the partial differential equation [36]  

           , , , , ,EIW x t F S W x t mW x t KW x t P x t     &&     (1) 

where the prime and the over-dot represent the partial derivatives with respect to the spatial coordinate x and the time t 

respectively, EI  is the flexural rigidity, F  is the axial force, K  is the foundation constant, S  is the shear rigidity and 

 ,P x t is the travelling distributed load.
 

The structure is assumed to be under general boundary and the initial conditions are taken to be 
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Considering the load-track inertia   ,P x t  can be given as 
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where the travelling force  ,fP x t   traversing this structural member is given as  
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where 
0P  is the constant travelling load and H is the Heaviside step function defined by the property, 
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where v is the travelling velocity.   approaches zero leads to 
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where     is the Dirac delta function. 

Operator   in (3) is given as 
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equation (7) would naturally reduce the formulation to that of concentrated moving mass problem. 

Substituting (3) into  (1) and taking into account (4) and (8) one obtains  
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 (9) 

Where (9) is the equation describing the motions of the beam under the actions of the travelling distributed masses.  

Evidently, obtaining an exact solution of the governing partial differential equation (9) is not possible.   Therefore, in what 

follows, an approximate analytical solution to the governing equation (9) above is sought. 

 

3.0 SOLUTION PROCEDURE 

To calculate the beam deflection  ,W x t , use is made of the mode superimposition method.  By this method, the beam 

deflection  ,W x t can be written as  
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where  iR t are coordinates in modal space and  iS x are the normal modes of free vibration written as 
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Where, 
i  is the mode frequency and the constants

iA , 
iB  and 

iC define the shape and amplitudes of the beam vibration.  

Their values depend on the boundary conditions associated with the structure. The following property 
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Shall be employed and also the function  txP ,  will be expressed as 
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where  ti are unknown functions of time. 

Thus, substituting the expressions (10) and (12) and (13) into (9) and after some rearrangements yields 
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To obtain an expression for  iR t , the expression on the left-hand side of equation (14) is required to be orthogonal to the 

function  jS x . Thus, multiplying equation (14) by  jS x and integrating from end x = 0 to end x=L leads to 
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When the ith particle of the system is considered, we have 
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Equation (18) is the transformed equation governing the motion of the beam resting on bi-parametric elastic foundation and 

subjected to travelling distributed masses.  In what follows, a closed-form solution of equation (18) is sought, to this end, 

two special cases of equation (18) shall be discussed.  
 

4.0  SOLUTION TO THE TRANSFORMED GOVERNING EQUATION 

This section seeks to obtain the solution of equation (18).  To do this, two special cases of equation (18) is considered: one, 

when only the force effect is considered and two when the inertia or gravitational effects of the travelling load is 

considered.     

Case 1: The beam-load travelling force System  
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Equation (20) is now the governing moving force model associated with this dynamical problem. 

In what follows, an expression for  iR t  is sought.  To do this, equation (20) is subjected to a Laplace transform defined 

as 
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To obtain the Laplace inversion of (26), use is made of the following representations. 
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The Laplace inversion of equation (26) is defined as  
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Thus, in view of equation (28), noting (27), the Laplace inversion of equation (26) is given as 
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Evaluating integrals (30), above yields 
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Substituting equation (31) into (29) gives an expression for )(tRi  as 
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Thus, the beam deflection  ,W x t  in view of (10), gives 
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(33) 

as the equation representing the response of an elastic thin beam to travelling distributed forces. Equation (33) holds for all 

boundary conditions of interest.  
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Case II: The Moving Mass System 

This section seeks to obtain the solution of the governing equation (18) when 00  .  It 0 is set to zero in equation (18), 

the model corresponding to the moving mass of the governing equation (18) is obtained.  Thus, the solution of the entire 

equation (18) when no term of the governing differential equation is neglected is required.  In this case, obtaining an exact 

analytical solution of the governing equation becomes impossible. Thus, an asymptotic method of Struble discussed in [20, 

21] is resorted to. The modified frequency of the free system due to the presence of the gravitational effects of the travelling 

distributed masses may be obtained by this asymptotic method. To this effect, equation (18) is rearranged to take the form 
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Following the Struble’s technique procedures extensively discussed in [20, 21, 35], the homogeneous part of equation (34) 

is simplified to take the form 
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(37) 

is the so-called modified frequency corresponding to the frequency of the dynamical system due to the gravitational effects 

of the travelling mass. Equation (34) in view of (36) reduces to  
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The solution of equation (38) is obtained following the previous arguments and procedures as  
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which leads to 
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equation (40) represents the response of an elastic thin beam to travelling distributed masses. Equation (40) holds for all 

boundary conditions of interest. 

 

5.0 COMMENTS ON THE CLOSED FORM SOLUTIONS 

In any study that pertains to structural vibration, it is very crucial to pay particular attention to the occurrence of the 

phenomenon called resonance. This phenomenon may be experienced when the vibration of an elastic beam becomes 

unbounded. Conditions under which this may occur is established in this section. From equation (35), it is evident that the 

vibrating beam may experience resonance effects whenever    

L
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mf


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Similarly, equation (40) shows that the same beam under the actions of moving distributed masses will experience 

resonance effects whenever 

L
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mm


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Recall from (37) that 

 (44) 

which implies 

  (45) 

It can be deduced that the critical speed for the system under the actions of travelling distributed force is greater than that of 

moving distributed mass.   This implies that, for the same natural frequency, resonance is reached earlier in the moving 

distributed mass than in the moving distributed force system for all boundary conditions of interest. 

 

6.0 NUMERICAL RESULT AND DISCUSSION 

In this section, the analysis proposed in the previous sections is illustrated by considering a homogenous beam of modulus 

of elasticity 
29 /109012.2 mNE  , the moment of inertia  

231087698.2 kgmI  , the beam span mL 35

and the mass per unit length of the beam mkgm /291.2758 . The load is also assumed to travel with constant velocity 

smv /128.8 . The values of foundation moduli varied between 
3/0 mN and 

3/40000 mN , the values of axial force 

N  varied between  N0  and N7100.2  and the values of Shear moduli G varied between  N0  and N6100.3  . 

 
Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 73 –88 

 











































24242412242

),(
1

2

10

2

9

2

87

2
2

3

2

21

2

2

*

1

* 



 NNNNvNNN

jiH
mf

mf

mfmm

 


































24242412242

),(
1

2

10

2

9

2

87

2
2

3

2

21

2

2

*

1

* 








NNNNvNNN
jiH

L

v

mf

mf

i

mf



80 
 

Vibration Analysis of Beams…                    Omolofe and Adeloye                Trans. Of NAMP 
 

 

6.1 Clamped-Clamped ends condition 

Fig.1 displays the transverse displacement response of a clamped-clamped uniform beam under the action of uniform 

partially distributed forces moving at a constant velocity for the various values of axial force N  and for fixed values of 

subgrade moduli K  and shear modulus G . The Figure shows that as N  increases, the response amplitude of the uniform 

beam decreases. Similar results are obtained when the fixed-fixed beam is subjected to partially distributed masses 

travelling at a constant velocity as shown in Fig.7. For a various travelling time t , the displacement response of the beam 

for various values of subgrade moduli K  and for fixed values of axial force 20000N  and shear modulus 

30000G  are shown in Fig.2. It is observed that higher values of subgrade moduli K  reduce the deflection of the 

vibrating beam. The same behaviour characterizes the response of the clamped-clamped beam under the actions of uniform 

partially distributed masses moving at a constant velocity for various values of subgrade moduli K as shown in Fig.8. 

Also, Figs.3 and 9 display the deflection profile of the clamped-clamped uniform beam respectively to partially distributed 

forces and masses travelling at a constant velocity for various values of shear modulus and fixed values of axial force 

20000N  and subgrade moduli 40000K . These figures clearly show that as the value of the shear moduli 

increases, the deflection of the clamped-clamped uniform beam under the action of both moving forces and masses 

travelling at constant velocity decreases. 
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Fig.1: Displacement response of a clamped-clamped 

structural members resting on elastic foundation and under 

the actions of uniform partially distributed forces for 

various values of foundation modulus K and for fixed 

values of N = 20000, G = 30000. 

Fig.3:Deflection Profile of a clamped-clamped structural 

members resting on elastic foundation and under the actions of 
uniform partially distributed forces for various values of shear 

modulus G and for fixed values of K=40000 and N = 20000. 

Fig.4: Response Amplitude of a clamped-clamped structural 

members resting on elastic foundation and under the actions of 

uniform partially distributed forces for various values of the load 

width   and for fixed values of G = 30000, K=40000 and $N = 

20000$. 

Fig.2: Displacement response of a clamped-clamped 

structural members resting on elastic foundation and 

under the actions of uniform partially distributed forces 

for various values of foundation modulus N and for fixed 

values of K = 40000, G = 30000. 
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Fig.4 displays the response amplitude of a clamped-clamped uniform beam under the action of uniform partially distributed forces 

travelling at a constant velocity for various values of load width and for fixed values of subgrade moduli axial force N = 20000, subgrade 

moduli K=40000 and shear modulus G = 30000. The figures show that as the values of the load width increases, the effects of the width 

on the response amplitude of the uniform beam increases as the load progresses on the structure. Similar results are obtained when the 

clamped-clamped beam is subjected to partially distributed masses travelling at a constant velocity as shown in Fig.10.  For a various 

travelling time t , the response of the beam for various values of travelling load positions x  and for fixed values of axial force, subgrade 

modulus and shear modulus G = 30000 are shown in Fig 5. It is observed that the impact of the travelling load is greatest in the middle of 

this vibrating solid structure. The same behaviour characterizes the response of the clamped-clamped beam under the actions of uniform 

partially distributed masses moving at a constant velocity for different travelling load positions as shown in Fig.11. 

The Dynamic deflections of the clamped-clamped uniform beam under distributed forces and masses for various values of the velocity v  

of the motion are respectively displayed in Figs. 6 and 12.  These figures clearly show that as the value of the velocity of the motion 

increases, the deflection amplitude of the clamped-clamped uniform beam under the action of both moving force and mass respectively 

decreases. For a various travelling time t , the response amplitude of the clamped-clamped uniform beam under travelling masses is 

shown in Fig. 13. It is observed that the larger the value of the mass ratio,
* , the larger the response amplitude of the beam. 

Figures 14 and 15 depict the comparison of the response characteristics of the moving force and moving mass cases of a clamped-

clamped uniform beam traversed by a moving distributed load travelling at a constant velocity for fixed values of 0N , 0K ,

0G and 20000N , 40000K , and 30000G . From these figures, it is seen that the dynamic deflection of the beam 

under the actions of the moving load is greatly affected when the structural parameters N , K  and G  are incorporated into the 

governing equation of motion. Figure 16 compares the deflection profiles of the moving force model of the beam for the two sets of 

values 0K , 0N , 0G  and 20000N , 40000K  and 30000G . It is deduced from this figure that the 

amplitude of deflection for the set of values 0K , 0N , 0G  is much higher than that of the set of values 20000N , 

40000K  and 30000G . Similar result is obtained for a moving mass model of this structural member as shown in figure 17.
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Fig.5:Transverse displacement response of a clamped-clamped 
structural members resting on elastic foundation and under the 

actions of uniform partially distributed forces for various values 

of axial force N and for fixed values of K = 40000, G = 30000. 

Fig.6: Displacement response of a clamped-clamped structural 

members resting on elastic foundation and under the actions of 
uniform partially distributed forces for various values of foundation 

modulus K and for fixed values of N = 20000$, G = 30000. 

Fig.7: Transverse displacement response of a clamped-clamped structural 

members resting on elastic foundation and under the actions of uniform 

partially distributed masses for various values of axial force N and for 

fixed values of K = 40000, G = 30000. 

Fig.8: Displacement response of a clamped-clamped structural members 

resting on elastic foundation and under the actions of uniform partially 

distributed masses for various values of foundation modulus K and for fixed 

values of N = 20000, G = 30000. 
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Fig.9: Deflection Profile of a clamped-clamped structural 

members resting on elastic foundation and under the actions of 

uniform partially distributed masses for various values of shear 

modulus G and for fixed values of K=40000 and N = 20000. 

Fig.10: Response Amplitude of a clamped-clamped structural 
members resting on elastic foundation and under the actions of 

uniform partially distributed masses for various values of the load 

width   and for fixed values of G = 30000, K=40000 and N = 20000.  

Fig.11: Response of a clamped-clamped structural members 

resting on elastic foundation to uniform partially distributed 

masses for various values of the load position x  and for fixed 

values of G = 30000, K=40000 and N = 20000. 

Fig.12: Response characteristics of a clamped-clamped structural 

members resting on elastic foundation to uniform partially 

distributed masses for various values of the travelling load velocities 

v  and for fixed values of G=30000, K=40000 and N = 20000. 

Fig.13: Response of a clamp-clamp structural members resting 
on elastic foundation to uniform partially distributed masses for 

various values of the mass ratio *  and for fixed values of G = 

30000, K=40000 and N=20000. 

Fig.14: Comparison of the dynamic characteristic of moving 
force and moving mass cases of a uniform clamped-clamped 

beam for fixed values of G=0, K=0 and N=0. 



83 
 

Vibration Analysis of Beams…                    Omolofe and Adeloye                Trans. Of NAMP 
 

              
                   

 

 

 

 
 

  

 
 

6.2 Clamped-Free ends condition 
Fig.18 displays the transverse displacement response of a cantilever uniform beam under the actions of uniform partially distributed 

forces moving travelling at a constant velocity for the various values of axial force N and for fixed values of subgrade moduli 

40000K  and shear modulus 30000G . The Figure depicts that as N increases, the response amplitude of the non-uniform beam 

decreases. Similar results are obtained when the cantilever beam is subjected to partially distributed mass travelling at a constant velocity 

as shown in Fig.24. For various travelling time t , the displacement response of the travelling for various values of subgrade moduli K  

and for fixed values of axial force 20000N  and shear modulus 30000G  is shown in Fig.19. It is observed that higher values of 

subgrade moduli K  reduce the deflection of the vibrating beam. The same behaviour characterizes the response of the clamped-free 

beam under the actions of uniform partially distributed masses moving at a constant velocity for various values of subgrade moduli K  

as shown in Fig.25. Also, Fig.20 and 26 display the deflection profile of the cantilever beam respectively to partially distributed forces 

and masses travelling at a constant velocity for various values of shear modulus G  and for fixed values of axial force 20000N
and subgrade moduli 40000K . These figures clearly show that as the value of the shear modulus increases, the deflection of the 

cantilever beam under the action of both moving forces and masses travelling at constant velocity decreases. 
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Fig.15: Comparison of the dynamic characteristic of 

moving force and moving mass cases of a uniform 
clamped-clamped beam for fixed values of G=30000, 

K=40000 and N=20000. 

Fig.16: Comparison of the deflection profiles of the clamped-

clamped moving force uniform beam for values K=G=N=0 

versus G = 30000, K=40000 and N = 20000. 

Fig.17: Comparison of the deflection profiles of the 
clamped-clamped moving mass uniform beam for values 

K=G=N=0 versus G = 30000, K=40000 and N=20000. 

Fig.18: Response Amplitude of a cantilever structural members resting on elastic 

foundation and under the actions of uniform partially distributed forces for various values 

of the axial force N and for fixed values of G = 30000, K=40000 and N = 20000. 

Fig.19: Displacement response of a cantilever structural members resting on elastic 

foundation and under the actions of uniform partially distributed forces for various values of 

foundation modulus K and for fixed values of N = 20000, G = 30000. 
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Fig.21 displays the response amplitude of a clamped-free uniform beam under the action of uniform partially distributed 

forces travelling at a constant velocity for various values of load width   and for fixed values of axial force 20000N , 

40000K  and shear modulus  30000G . The Figures show that as the width increases, the effects of the width on the 

response amplitude of the uniform beam increases as the load progresses on the structure. Similar results are obtained when 

the cantilever beam is subjected to partially distributed masses travelling at a constant velocity as shown in Fig.27. For a 

various travelling time t , the response of the beam for various values of travelling load positions   and for fixed values of 

axial force 20000N , subgrade modulus 40000K  and shear modulus 30000G  are shown in Fig.22. It is observed 

that the impact of the travelling load is greatest in the middle of this vibrating solid structure. The same behaviour 

characterizes the response of the cantilever beam under the actions of uniform partially distributed masses moving at a 

constant velocity for different travelling load positions as shown in Fig.28. 

The Dynamic deflections of the clamped-free uniform beam under distributed forces and masses for various values of the 

velocity v  of the motion are respectively displayed in Figs. 23 and 29.  These figures clearly show that as the value of the 

velocity of the motion increases, the deflection amplitude of the clamped-free uniform beam under the action of both 

moving force and mass respectively decreases. For various travelling time t , the response amplitude of the clamped-free 

uniform beam under travelling masses is shown in Fig. 30. It is observed that the larger the value of the mass ratio, * , the 

larger the response amplitude of the beam. 

Figures 31 and 32 depict the comparison of the response characteristics of the moving force and moving mass cases of a 

clamped-free uniform beam traversed by a moving distributed load travelling at a constant velocity for fixed values of 

0N , 0K , 0G  and 20000N ,  40000K  and  30000G . From these figures, it is seen that the dynamic  
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Fig.20: Deflection Profile of a cantilever structural members 

resting on elastic foundation and under the actions of 

uniform partially distributed forces for various values of 
shear modulus G and for fixed values of K=40000 and N = 

20000. 

Fig.21: Response Amplitude of a cantilever structural members 
resting on elastic foundation and under the actions of uniform 

partially distributed forces for various values of the load width   

and for fixed values of G = 30000, K=40000 and N = 20000. 

Fig.22: Response of a cantilever structural members 

resting on elastic foundation to uniform partially 

distributed forces for various values of the load position 

x  and for fixed values of G = 30000, K=40000 and N = 

20000. 

Fig.23: Response characteristics of a cantilever structural 

members resting on elastic foundation to uniform partially 

distributed forces for various values of the travelling load 

velocities v  and for fixed values of G = 30000, K=40000 and N 

= 20000. 
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deflection of the beam under the actions of the moving load is greatly affected when the structural parameters N , K and G  are 

incorporated into the governing equation of motion. Figure 33 compares the deflection profiles of the moving force model of the beam 

for the two sets of values 0N , 0K , 0G   and 20000N ,  40000K  and  30000G . It is deduced from this figure that 

the amplitude of deflection for the set of values 0N , 0K , 0G   is much higher than that of the set of values 20000N , 

40000K  and  30000G . Similar result is obtained for a moving mass model of this structural member as shown in figure 34. 

Figures 35 and 36 depict the comparison of the clamped-clamped and clamped-free uniform beam under moving load for both the 

moving force and the moving mass. It is deduced from the Figures that for both cases, the amplitude of the deflection for the clamped-

free beam is much higher than that of the clamped-clamped beam. This implies that the clamped-clamped beam is more stable under a 

travelling uniform partially distributed masses than that of the clamped-free beam. As higher values of the structural parameters G , K , 

N , are required in the case of the clamped-free beam than in the case of a clamped-clamped beam. 
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Fig.24:Transverse displacement response of a cantilever 

structural members resting on elastic foundation and under 

the actions of uniform partially distributed masses for 

various values of axial force N and for fixed values of K = 

40000, G = 30000. 

Fig.25: Displacement response of a cantilever structural 

members resting on elastic foundation and under the actions 

of uniform partially distributed masses for various values of 

foundation modulus K and for fixed values of N = 20000, G 

= 30000. 

Fig.26: Deflection Profile of a cantilever structural members resting on 

elastic foundation and under the actions of uniform partially distributed 

masses for various values of shear modulus G and for fixed values of 

K=40000 and N = 20000. 

Fig.27: Response Amplitude of a cantilever structural members resting on 

elastic foundation and under the actions of uniform partially distributed masses 

for various values of the load width   and for fixed values of G = 30000, 

K=40000 and N=20000.  

Fig.28: Response of a cantilever structural members resting on elastic 

foundation to uniform partially distributed masses for various values of the 

load position x  and for fixed values of G = 30000, K=40000 and 

N=20000. 

Fig.29: Response characteristics of a cantilever structural members resting on 

elastic foundation to uniform partially distributed masses for various values of the 

travelling load velocities v  and for fixed values of G=30000, K=40000 and N = 

20000 
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Fig.30: Response of a cantilever structural members resting on 

elastic foundation to uniform partially distributed masses for 

various values of the load position *  and for fixed values of G 

= 30000, K=40000 and N=20000. 

Fig.31: Comparison of the dynamic characteristic of moving 
force and moving mass cases of a uniform clamped-free beam 

for fixed values of G = 0, K=0 and N=0. 

Fig.32: Comparison of the dynamic characteristic of moving 

force and moving mass cases of a uniform clamped-free beam 

for fixed values of G = 30000, K=40000 and N=20000. 

Fig.33: Comparison of the deflection profiles of the 

clamped-free moving force uniform beam for values 
K=G=N=0 versus G = 30000, K=40000 and N = 20000. 

Fig.34: Comparison of the deflection profiles of the clamped-

free moving mass uniform beam for values K=G=N=0 versus 
G = 30000, K=40000 and N = 20000. 

Fig.35: Comparison of the dynamic characteristic of moving 

force clamped-clamped and clamped-free uniform beam for 
fixed values of G = 30000, K=40000 and N=20000. 

Fig.36: Comparison of the dynamic characteristic of moving mass 

clamped-clamped and clamped-free uniform beam for fixed 

values of G = 30000, K=40000 and N=20000. 
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7.0. CONCLUDING REMARKS 

The problem of the complex dynamic interactions of elastic beams and the load traversing them is investigated in this 

study. Approximate analytical solutions for the moving force and moving mass models are presented.  

Results and analysis establish the effects of some vital structural parameters on response characteristics and stability of thin 

beams traversed by travelling loads are established. Influence of the mass ratio and load distribution on the dynamic 

behaviour of the structural member carrying distributed moving masses is carefully scrutinized. Conditions under which the 

amplitude of vibration of this structure-mass system may grow without bound for both the moving force and moving mass 

models are clearly indicated.  Results further revealed that, for the same natural frequency, the critical speed for the beam-

force system is higher than that of the beam-mass system. Hence, the risk of resonance effects is higher in a beam-mass 

system.  Finally, the proposed mathematical procedure and analysis in this present study is applicable to all class of these 

problems. 
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