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Abstract 

 

In this paper we have solved the Schrödinger equation with Morse potential and 

obtained radial wave functions and energy eigenvalues. We have also obtained 

normalization constants, expectation values and uncertainty for both position and 

momentum and an estimate of the speed of the system, considered for four diatomic 

molecules: H2, LiH, HCl and CO. Our computed energy eigenvalues are in perfect 

agreement with those in the literature and the results clearly demonstrates the 

usefulness of generalized Pekeris approximation in solving the Schrödinger equation 

for a given potential model. 
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1. Introduction 

The solutions of wave equations are of paramount importance in quantum mechanics because of the valuable information 

they reveal about the quantum mechanical system under review [1-4]. Information such as: energy of the system, 

frequency, wavelength, phase shifts, speed and momentum can be readily obtained once the wave function is known [4]. 

The solution of wave equation largely depends on the potential energy function used to solve the Schrödinger equation, 

while some potential energy functions give exact analytical solutions for all quantum states, n [5-6] where n  is the 

principal quantum number and   is the principal angular momentum quantum number, on the other hand, few potential 

energy functions give exact analytical solution only for the special case of 0 (s-wave solutions) [7]. Most of the known 

potential functions have no exact analytical solutions for all quantum states [8-10], therefore, for such potential models, the 

only means to obtain analytical solution is to employ approximate solution methods, various methods have been used by 

researchers to solve the Schrödinger equation, some of these methods include amongst others: power series solution 

methods [11-12], extended transformation method [13], J-matrix approach [14], asymptotic iteration method [15], 

factorization method [16-17], Nikiforov-Uvarov method [18-21], generalized pseudospectral method [22-23] and standard 

method [24-29]. The Morse potential has been regarded as very suitable for describing molecular vibrational spectra of 

diatomic and polyatomic molecules [30], and has been widely applied in many branches of physics such as molecular 

physics, solid state physics, chemical and particle physics [22]. The Morse potential is known to have exact solution for the 

case of s-wave, however, for the general case where 0 , only approximate analytical solutions are possible. Roy, [22] 

used the methods of generalized pseudospectral method to obtain accurate ro-vibrational spectroscopy of diatomic 

molecules in a Morse oscillator potential. The exact solutions for the vibrational levels of the Morse potential were obtained 

by Taseli [31] with the system confined in a spherical box of radius  . Various approximation models have been proposed 

for the centrifugal term potential of the Schrödinger equation [32-35], however, these models are not only restricted to 

exponential-type potentials, but are restricted to short range potentials and/or short screening parameters. Recently a 

generalized Pekeris approximation [24] was proposed in which the centrifugal term potential of the Schrödinger equation 

was approximated by terms of a Taylor series expansion, this new approximation technique gives excellent result when 

used to solve the Schrödinger equation for many potential models [28]. In this paper, we will apply the generalized Pekeris 

approximation to solve the Schrödinger equation with Morse potential and compare results with those in the literature 

where they exist. 
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2.  Theoretical Approach 

2.1  The Morse potential 

The Morse potential can be used to represent the effective interaction in many-electron atoms, also, it has important 

applications in solid-state, nuclear and plasma physics as well as field theory [22]. The Morse potential [31] is given by: 
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2 .         (1) 

where 
eD  is the potential strength, r  is the internuclear separation of the atoms of the molecule, d  is a positive constant 

and er  is the equilibrium internuclear separation. 

2.2  The Radial Schrödinger Equation 

The radial Schrödinger equation given in [20] can be expressed as: 
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where   is the mass of the molecule, 
nE  is the energy eigenvalue, 

nR  is the radial wave function and n  and   are the 

principal quantum number and principal angular momentum quantum numbers respectively. If we substitute Eq. (1) into 

Eq. (2), we obtain: 
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Let 
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ez


 .           (4) 

using Eq. (4), Eq. (3) transforms to: 
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Therefore, 
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where prime denotes derivatives with respect to z. The factor  2
/ rre

 occurring in Eq. (6) can be approximated by terms of a 

Taylor series expansion [24, 28]. In this work we have assumed that: 
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where  xx  and its inverse,  xx 1  are appropriately chosen functions and n , the energy determining parameter is an 

element in the domain of  xx 1 . The coefficients  ,2,1,0NcN
 are defined by: 
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where the function,   is given by [28]: 
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where 
Zm  .In the present work we have chosen: 

zex en r
 .           (10) 

and  

xx elog1  .           (11) 

Using Eq. (8) and Eq. (9), and taking 2m , we find: 
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where   ,1 . Substitute Eq. (7) in Eq. (6) and using Eq. (10) get: 
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By expanding out Eq. (15), we obtained: 
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To solve Eq. (15), we assume an ansatz [32] of the form: 
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where 
nN  is the normalization constant. 

From Eq. (20), we find: 
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and 
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Substituting Eq. (21) and Eq. (22) in Eq. (16) and simplifying, we get:  

: 
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Eq. (23) reduces to the hypergeometric-type (Laguerre) differential equation if the last-two terms of the coefficient of 

 zFn
 separately varnish, this is true iff: 
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Therefore, by putting Eq. (24) and Eq. (25) in Eq. (23), the hypergeometric equation is: 
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Eq. (26) has solution of the form: 
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where  ubnF ;1,11   is the hypergeometric function 

 

2.3 The Normalization Constant 

Normalization of wave functions [4] requires that: 
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Putting Eq. (27) and Eq. (28) in Eq. (30) get: 
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Eq. (31) gives the normalization constant as: 
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when Eq. (29) is used in Eq. (31). 

 

2.4 Expectation and Uncertainty in Position 

2.4.1 Expectation in Position 

The expectation values in position [4] is given as: 
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By substituting Eq. (27) and Eq. (28) in Eq. (35), we obtained: 
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Following Eq. (35), we have: 
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Using Eq. (27) and Eq. (28) in Eq. (37), get: 
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2.4.2 Uncertainty in Position 

The uncertainty in position [4] is given by: 
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2.5 Expectation and Uncertainty in Momentum 

2.5.1 Expectation in momentum 

The expectation values in momentum [4] is given as: 
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is the momentum operator.  

Using Eq. (41) in Eq. (40) and the definition of scalar product [4], we have: 
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If we use Eq. (4) in Eq. (42), get; 
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Substituting Eq. (20) and Eq. (21) in Eq. (44) and simplifying, get: 
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thus, on putting Eq. (27) in Eq. (45),we get: 
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Similarly, 

    rRprRp nnn 

22 ˆ| .          (47) 

where 

2

2
22ˆ

rd

d
pn   .           (48) 

Substituting Eq. (48) in Eq. (47) and following Eq. (42), we find: 
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on using Eq. (21) and Eq. (22),Eq.  (49) transforms to: 
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using Eq. (27) and Eq. (28) in Eq. (50) leads to: 
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2.5.2 Uncertainty in Momentum 

The uncertainty in momentum [4] is given by: 
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2.6 Estimation of the Speed of the System 

Starting from the uncertainty principle [4], we have that: 
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In this work, we will assume that lnp  is of the order of np , that is: 
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The momentum, p of the system [4] is given by: 
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nln vp  .           (57) 

where 
nv  is the speed of the system. Thus, using Eq. (57) in Eq. (56), the minimum speed of the system is given by 

choosing the equality sign in Eq. (56), namely: 

n

n
r

v



2




.           (58) 

Eq. (58) will be used to compute the speed of the system 

 

2.7Energy Eigenvalues 

The polynomial condition [32] for Eq. (26) is given by: 

n
2
12

1

2

1

2




 .           (59) 

Using Eq. (17), Eq. (18) and Eq. (19) in Eq. (59), we find: 
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3. Discussion 

The data in Table 1 shows the input spectroscopic parameters [22] used in our computations, the analysis was carried out 

on four diatomic molecules: H2, LiH, HCl and CO to enable us compare result with those in the literature, the work was 

carried out on low lying states, 2,1,0, n . First, we considered the special case of s-wave ( 0 ). Eq. (60) reduces to: 
2
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.         (61) 

It is clear that Eq. (61) is independent of 
n and only vary with n .Tables 2 and 3 shows result of computed energy 

eigenvalues, for all the diatomic molecules considered, our results agrees perfectly with existing results, except in few 

isolated cases of s-wave where our result is slightly lower than those obtained in the literature [22]. Also shown in the 

Tables are normalization constants, expectation values for both position and momentum. We have also obtained estimates 

for the speeds of the ro-vibrational molecules, the estimated speeds are quite feasible within the contest of non-relativistic 

cases ,however, for LiH (with relatively large values of
n ),the speed and uncertainty inmomentum are not physically 

feasible for  states 10 and 20 and so also for HCl for states 20,21 and 22 

Figures 1 and 2 show plots of normalized radial wave functions for each of the four molecules, for the states: 01, 11 and 21. 

Plots of the variation of   nnE   with 
n  are shown in Figures 3 and 4 where   nnE   is constant and independents of 

 as indicated in Figures 3(a) and 4(a) (s-wave). However, in Figures 3(b) and 4(b), where 0 ,   nnE   varies slowly 

with 
n  and then rapidly decreases. 

 

4. Conclusion 

In this paper we have solved the radial Schrödinger equation with Morse oscillator potential and obtained closed form 

expressions for normalized radial wave functions, energy eigenvalues, normalization constant, expectation values and 

uncertainty in position and momentum, we have also applied our results no four diatomic molecules viz H2, LiH, HCl and 

CO and compared result with those in the literature. This work can be extended to include high lying states, the method 

used in this work can also be tried on other potential models 

Table 1 Input spectroscopic parameters of selected molecules used in the present work 
Molecule  eVDe  [22]  mnre  [22]  uma  [22]  1mnd  [22] 

H2 4.7446 0.07416 0.50391 14.40558 

LiH 2.515287 0.15956 0.8801221 17.998368 

HCl 4.61907 0.12746 0.9801045 23.8057 

CO 11.2256 0.11283 0.8606719 25.9441 
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Table 2 Energy Determining Parameters, Energy Eigen Values (in eV), Normalization Constants, Expectation and 

Uncertainty Values and Speeds (in SI Units) for H2 and LiH 

H2 

n
 

n  nE  
nE

[22] 

nN   nr   2

nr
 

nr   npi
 

-

 2

np  
np

 

nv
 

00 … 4.544666447615 4.47601312 3.08E+15 7.65E-11 5.95E-21 1.02E-11 -7.32E-41 1.53E-102 7.32E-41 6205 

01 1.469635893836 4.461228520000 4.46122852 3.77E+15 7.73E-11 6.08E-21 1.02E-11 6.58E-40 2.58E-102 6.58E-40 6197 

02 1.177115787735 4.431799750003 4.43179975 4.04E+15 7.78E-11 6.16E-21 1.02E-11 -9.81E-41 5.86E-102 9.81E-41 6183 

10 … 4.157710391100 3.96231534 1.96E+16 8.11E-11 6.90E-21 1.79E-11 3.41E-40 1.42E-97 3.41E-40 3524 

11 1.751828886090 3.948116470000 3.94811647 3.17E+16 8.25E-11 7.12E-21 1.79E-11 -6.46E-40 1.08E-97 6.46E-40 3528 

12 1.462205451636 3.919864230000 3.91986423 3.34E+16 8.36E-11 7.30E-21 1.80E-11 7.64E-40 6.70E-97 7.64E-40 3509 

20 … 3.787969065594 3.47991882 8.11E+16 8.60E-11 7.95E-21 2.34E-11 1.23E-39 9.31E-93 1.23E-39 2690 

21 1.859533098177 3.466338750004 3.46633875 1.66E+17 8.76E-11 8.21E-21 2.33E-11 -1.01E-39 2.34E-93 1.01E-39 2703 

22 1.587964618394 3.439328390000 3.43932836 1.71E+17 8.91E-11 8.49E-21 2.35E-11 -3.00E-40 3.46E-92 3.00E-40 2682 

LiH 

n
 

n  nE  nE [22] 

nN  
 nr   2

nr  
nr   npi

 

-  2

np  
np

 

nv
 

00 … 2.378107059143 2.42886321 1.46E+13 1.62E-10 2.63E-20 8.72E-12 -1.45E-40 7.89E-84 1.45E-40 4139 

01 12.394182236109 2.427022100088 2.42702210 1.30E+13 1.52E-10 2.31E-20 7.90E-12 -3.95E-40 5.09E-95 3.95E-40 4565 

02 11.250966308041 2.423342440013 2.42334244 1.31E+13 1.52E-10 2.31E-20 7.89E-12 -1.96E-40 3.12E-95 1.96E-40 4572 

10 … 2.115286428924 2.26054805 7.94E+13 1.67E-10 2.81E-20 1.61E-11 -1.77E-40 4.82E-77 … 4139 

11 12.990527879036 2.258755590364 2.25875559 6.39E+13 1.48E-10 2.21E-20 1.36E-11 2.04E-40 3.73E-98 2.04E-40 2648 

12 11.922694819222 2.255173240005 2.25517324 6.49E+13 1.48E-10 2.20E-20 1.36E-11 -3.87E-40 1.83E-98 3.87E-40 2653 

20 … 1.867851467365 2.09827611 2.75E+14 1.72E-10 3.01E-20 2.13E-11 3.56E-41 1.91E-70 … 1690 

21 13.278900961347 2.096533040004 2.09653304 2.35E+14 1.46E-10 2.15E-20 1.71E-11 5.87E-40 8.95E-100 5.87E-40 2109 

22 12.252259084750 2.093049500070 2.09304950 2.40E+14 1.45E-10 2.14E-20 1.71E-11 9.36E-40 3.88E-100 9.36E-40 2114 

 

Table 3 Energy Determining Parameters, Energy Eigen Values (in eV), Normalization Constants, Expectation and 

Uncertainty Values and Speeds (in SI Units) for HCl and CO 
HCl 

n
 

n  
nE  nE [22] 

nN   nr   2

nr  nr   npi

 

-  2

np  
np  

nv
 

00 … 4.385824021659 4.43556394 7.44E+13 1.29E-10 1.67E-20 6.21E-12 2.51E-40 5.65E-88 2.51E-40 5214 

01 0.031499185705 4.432977530007 4.43297753 6.75E+13 1.29E-10 1.66E-20 6.20E-12 5.09E-41 2.67E-88 5.09E-41 5227 

02 0.065209459848 4.427806300010 4.42780630 6.83E+13 1.29E-10 1.66E-20 6.20E-12 -3.49E-40 2.88E-88 3.49E-40 5226 

10 … 3.937459812337 4.07971006 4.24E+14 1.33E-10 1.77E-20 1.16E-11 9.67E-40 6.21E-81 9.64E-40 2792 

11 0.016163980075 4.077201439997 4.07720144 3.27E+14 1.31E-10 1.73E-20 1.15E-11 3.54E-40 5.92E-82 3.53E-40 2815 

12 0.031801947172 4.072185790001 4.07218579 3.30E+14 1.31E-10 1.73E-20 1.15E-11 -6.65E-40 6.39E-82 6.65E-40 2814 

20 … 3.513265932831 3.73873384 1.55E+15 1.36E-10 1.88E-20 1.54E-11 5.97E-40 4.41E-74 … … 

21 0.012001357805 3.736303829992 3.73630383 1.07E+15 1.34E-10 1.81E-20 1.52E-11 -1.69E-39 8.27E-76 … … 

22 0.023355837494 3.731445389996 3.73144539 1.08E+15 1.34E-10 1.81E-20 1.52E-11 7.15E-40 8.95E-76 … … 

CO 

n
 

n  nE  
nE [22] 

nN   nr   2

nr
 

nr
 

 npi

 

-  2

np  np  

nv
 

00 … 10.801329183390 11.09153532 6.52E+16 1.14E-10 1.30E-20 4.76E-12 3.14E-39 9.23E-110 3.14E-39 7744 

01 0.013211493054 11.091058749995 11.09105875 4.68E+16 1.13E-10 1.28E-20 4.74E-12 -4.78E-40 6.11E-111 4.78E-40 7791 

02 0.025482294090 11.090105650005 11.09010565 4.69E+16 1.13E-10 1.28E-20 4.74E-12 -5.64E-40 6.13E-111 5.64E-40 7791 

10 … 9.977306050656 10.82582206 4.41E+17 1.16E-10 1.36E-20 9.06E-12 1.19E-39 1.98E-102 1.19E-39 4074 

11 0.007050366330 10.825349590096 10.82534959 1.75E+17 1.13E-10 1.29E-20 8.88E-12 1.82E-40 5.30E-106 1.82E-40 4154 

12 0.013513592772 10.824404650011 10.82440465 1.76E+17 1.13E-10 1.29E-20 8.88E-12 -8.02E-40 5.33E-106 8.02E-40 4154 

20 … 9.185974251903 10.56333028 1.96E+18 1.19E-10 1.42E-20 1.20E-11 -1.19E-40 2.79E-95 1.19E-40 3071 

21 0.005335117545 10.562861899813 10.56286190 4.77E+17 1.13E-10 1.30E-20 1.16E-11 -1.69E-39 2.75E-101 1.69E-39 3175 

22 0.010199106939 10.561925159903 10.56192516 4.77E+17 1.13E-10 1.30E-20 1.16E-11 4.84E-41 2.77E-101 4.84E-41 3175 
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Fig.1 Plot of Radial wave function for (a) H2 (b) LiH  Fig. 2 Plot of Radial Wave Function for (a) HCL (b) CO 

 

Fig. 3 Energy Eigenvalues of H2     Fig. 4 Energy Eigenvalues of LiH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

         Fig. 5 Energy Eigenvalues of HCl    Fig. 6 Energy Eigenvalues of CO 
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