SOME CARDINALITIES OF SEMI-GROUP OF CONTRACTION MAPPINGS

${ }^{1}$ Akinwunmi S.A. and ${ }^{2}$ Makanjuola S.O.
${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Science, Federal University of Kahere, P.M.B 0182, Gombe
${ }^{2}$ Department of Mathematics, Faculty of Physical Science, University of Ilorin, P.M.B 1515, Kwara

Abstract
Let T_{n} be the set of full transformations and P_{n} be the set of partial transformations. It is shown that T_{n} forms a semi-group of order $n^{\boldsymbol{n}}$ and $P_{\boldsymbol{n}}$ forms a semi-group of $\operatorname{order}(n+1)^{n}$. Furthermore, we obtain that $|\alpha S|=\sum_{k=}^{n}\binom{n+2 p}{3 p},|\alpha S|=5 n+1=a+$ $(n-1) d,\left|O R C P_{n}\right|=\binom{n}{m}\binom{n+2}{(m-1)+2},|\alpha S|=\binom{n}{k}\binom{n-1}{k-1} \quad$ and $\quad|O D C P|=\binom{n+m}{2 m}\binom{n+1)+1}{m+1}$, $|\alpha S|=3 n+3$, if $O C P_{n}, O R C P_{n}$ and $O D C P_{n}$ represent the sub-semi-groups of order-preserving, order-reversing and order-decreasing partial contraction mappings respectively on $X_{n}=\{1,2,3 \ldots\}$ while $|Q|$ denotes the order of Q.

Keywords: Contraction mapping, Collapse, Height, Waist
2010 Mathematics Subject Classification: 16W22 and 06F05.

1. Introduction

A binary relation is any subset of the Cartesian product $A * B$ (say), where A and B are non-empty sets. A transformation is a relation between A and B in which all the elements of A are involve in the relationship and two elements of B have one pre-image in A. Given any non-empty sets A and B with a sub-set S of $A * B$, if for $a \in A, b \in B$. (ab) $\in S$, then " a is related to b by the relation S " which is written by $a S b$. Given $S \subset A * B$, set $\{x \mid x \in A$ and $(x, y) \in S$ for some $y \in B\}$ is called the domain while set $\{y \mid y \in B$ and $(x, y) \in S$ for some $x \in A\}$ is called the co-domain (range). Transformation is another name of mapping. Refer to [1] for an introduction to semi-group of mappings. Since empty set is a sub-set of every set (A_{i} say); for it is not, it means there is an element of empty set that is not in A_{i}. This is contrary to the definition of empty set. In the current article, we can conclude the empty set \varnothing in the mappings. Let $(-)$ stands for \varnothing and let $\left(\begin{array}{ll}a & b \\ x & c\end{array}\right)$ be represented by $(x y z)$ not (x, y, z) and not complicating the cycle notation. The mappings that included the empty set \varnothing are called partial transformation.
Let T_{n} be the set of full transformations (mappings) and P_{n} be the set of partial transformations. Then T_{n} forms a semigroup of order n^{n} and P_{n} forms a semi-group of order $(\mathrm{n}+1)^{\mathrm{n}}$. In [2] contraction mapping in P_{n} is defined as : for all $x, y \in \operatorname{dom}(\alpha),|\alpha x-\alpha y| \leq|x-y|$. The breadth of α is denoted by $b(\alpha)=|\operatorname{dom}(\alpha)|$. The height of α is denoted by $h(\alpha)=|\operatorname{Im}(\alpha)|$. The fix of α is given by $f(\alpha)=|f(\alpha)|$ and the collapse is denoted by $c(\alpha)$. Let S_{n} be the symmetric subgroup of the transformation semi-group T_{n}. Then $\left|S_{n}\right|=n$!. The n ! is always less than n^{n}, when $n>1$. Refer to [3, 4] for order symmetric semi-group $\left|S_{n}\right|$ and for the order of the alternating sub-group of the symmetric group $\left|A_{n}\right|$.
Let $X_{n}=\{1,2 \ldots\}$ be the set of n number of ordered elements of counting numbers representing symbols of mathematical intuitions and thought. For basics counting principles and combinatorics rules refer to [5, 6]. Let α be a mapping from subsets of X_{n} to sub-sets X_{n}. Then the set of all αS if equipped with the binary operation of composition of mappings forms the partial transformation semi-group.
A transformation $\alpha \in P_{n}$ is said to be order-preserving if for all $x, y \in \operatorname{dom}(\alpha): x \leq y$ implies $\alpha x \leq \alpha y$. It is orderreversing if $x \leq y$ implies $\alpha x \geq \alpha y$. It is order-decreasing if $\alpha x \leq x$. It is order-preserving or reversing if $x \leq y$ implies $\alpha x \leq \alpha y$ union $x \leq y$ implies $\alpha x \geq \alpha y$ and it is order-preserving and decreasing if $x \leq y$ implies $\alpha x \leq \alpha y$ intersection $x \leq y$ implies $\alpha x \leq x$.

[^0]For example; Let $\left|C P_{n}\right|$ be the order of set of all contraction mappings of P_{n}, for a (partial) $\alpha \in P_{n}: \alpha=\binom{123}{112}$ where $\operatorname{dom}(\alpha)=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\operatorname{Im}(\alpha)=\left(\begin{array}{ll}1 & 1\end{array}\right)$ then we need to show that $|\alpha x-\alpha y| \leq|x-y|$ whenever $x, y \in \operatorname{dom}(\alpha)$:
$|1-1| \leq|1-2|$ implies $0 \leq 1$
$|1-2| \leq|2-3|$ implies $1 \leq 1$
$|1-2| \leq|1-3|$ implies $1 \leq 2$
Therefore, if for all $x, y \in \operatorname{dom}(\alpha), \alpha$ satisfy contraction inequalities. Hence, α is a contraction mapping.
Let $\alpha \in P_{n}$. Then the elements of P_{n} can be represented as $\alpha\left(P_{n}\right)$. For economy of size, space and time viz:
$P_{0} \quad P_{1}$
(-) (1)
Stand for
$P_{0} \quad P_{1}$
$\binom{1}{\emptyset} \quad\binom{1}{1}$
(2 2) stands for $\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)$ and (-2) stands for $\left(\begin{array}{ll}1 & 2 \\ \varnothing & 2\end{array}\right)$ and down the road in. Authors in [5] said transformation semi-group were the most promising class of semi-groups for future study. We used the structure above to generate $\alpha\left(C P_{2}\right)$ as follows:
is 1 , that is $0 \cap 0$,

P_{0}	P_{1}
$(-)$	(1)

is 1 on $1 \cap 0$ and 1 on $1 \cap 1$. Then

P_{0}	P_{1}	P_{2}
$(--)$	$(11)(22)$	$(12)(21)$
	$(-1)(-2)$	
	$(1-)(2-)$	

is 1 on $2 \cap 0$, is 6 on $2 \cap 1$ and 2 on $2 \cap 2$.
The purpose of the current article is to present the combinatorial properties of the above mentioned semi-groups $S \subseteq P_{n}$. Combinatorics could be described as the act of arranging objects (elements) according to specified rule. Refer to [7] for the elementary knowledge on semi-group theory and algebraic structures. For a binary relation in any subset of the Cartesian product $A * B$ (say), where A and B are non-empty sets author in [8] categorized it to be two. The article is organized: In section 2, we define some basic preliminaries. In section 3, we consider $\left|\alpha_{i j}(S)\right|$ and thereby obtain explicit formula for $|S|$ in each case. The formula obtained in this way are in closed form when S is one of T_{n}, P_{n} or some of its sub-semi-groups and are expressed as sum involving binomial coefficient. In section 4, we have concluding remarks.

2. Basic Preliminaries

We define the following terms which features in the proofs of our results.
Definition 2.1 [Partial Transformation P_{n}]: Let $X_{n}=\{1,2 \ldots\}$ be a natural ordering of numbers and $\alpha: \operatorname{dom}(\alpha) \subseteq$ X_{n} implies $\operatorname{Im}(\alpha) \subseteq X_{n}$. Then partial transformation P_{n} is the set of all functions $\alpha: \operatorname{dom}(\alpha) \subseteq X_{n}$ on X_{n}.
Definition 2.2 [Partial Contraction Mapping $C P_{n}$]: Let $X_{n}=\{1,2 \ldots\}$. Then a transformation $\alpha \in P_{n}$ is said to be partial contraction mapping if for all $x, y \in \operatorname{dom}(\alpha):|\alpha x-\alpha y| \leq|x-y|$.
Definition 2.3 [Breadth / Width, (α)]: This is the number of elements in the domain of α. That is $|\operatorname{dom}(\alpha)|=b(\alpha)$.
Definition 2.4 [Height / Length, $h(\alpha)$]: This is the number of elements in the image sets of α. That is $h(\alpha)=|\operatorname{Im}(\alpha)|$ and it is denoted by $h(\alpha)=p$.
Definition 2.5 [Collapse, $c(\alpha)$]: This is the order of the union of image sets of α which is greater than 2 .
That is $c(\alpha)=\mid \cup\left\{t(\alpha)^{-1}: t \in \operatorname{Im}(\alpha)\right.$ and $\left.\left|t(\alpha)^{-1}\right| \geq 2\right\} \mid$. It is denoted by $c(\alpha)=q$.
Definition 2.6 [Right waist, $\omega^{+}(\alpha)$]: This is the maximum element in the image sets of $(\operatorname{Im}(\alpha))$ of α. That is $\omega^{+}(\alpha)=$ $\max (\operatorname{Im}(\alpha))$. It is denoted by $\omega^{+}(\alpha)=k$.

Definition 2.7 [Left waist, $\omega^{-}(\alpha)$]: This is the minimum element in the image sets of $(\operatorname{Im}(\alpha))$ of α. That is $\omega^{-}(\alpha)=$ $\min (\operatorname{Im}(\alpha))$. It is denoted by $\omega^{-}(\alpha)=k^{-}$.
Definition 2.8 [Fix, $f(\alpha)]$: This is the order of the only element that maps itself. That is, $f(\alpha)=|f(x)|=\{x \in$ $\operatorname{dom}(\alpha): \alpha x=x\}$. It is denoted by $f(\alpha)=m$.

3. Results and Findings

The results of combinatorial study of any algebraic structure are theorems. The following theorems with their proofs are the outcome of the research in the current article.
Theorem 3.1: Let $=O C P_{n}$, then $|\alpha S|=\sum_{r=0}^{n}\binom{n+2 p}{3 p}$
Proof: Let $\alpha \in S$, and $X_{n}=\{1,2 \ldots n\}$, then $\alpha \in O C P_{n}$. The semi-group $O C P_{n}$ contains an empty map $\}$, since it is a partial transformation and α is a bijection; h element of the domain can be chosen from X_{n} in $\binom{n}{p}$ ways. Let $\operatorname{Im}(\alpha) \subseteq X_{n}$, if $|\operatorname{Im}(\alpha)|=0$, then $|h(\alpha)|=1$ and if $n=p,|h(\alpha)|=1$ (i; identity), then $|h(\alpha)|$ is also 1 for each n and $h ; h=\{1,2 \ldots\}$. For $f(n, p)=|\alpha \in S: h(\alpha)|=|\operatorname{Im}(\alpha)|=p$, where $x \in \operatorname{dom}(\alpha)$ implies $\alpha x \leq x$. If $\alpha x=i$, then $\alpha \in\{i, i-1, i-2 \ldots n\}$ also x has $n-i+1$ degree of freedom. Hence, $\sum_{i=0}^{n}(n-i+1)=1$ which is equivalent to $|\alpha S|=\sum_{r=0}^{n}\binom{n+2 p}{3 p} \forall n \geq 1$. The result follows immediately.

Table 3.2: Order of Element of $O C P_{n}$

$\frac{n}{\|\operatorname{Im}(\alpha)\|}=h$	0	1	2	3	4	5	$\|\alpha S\|=\sum_{r=0}^{n}\binom{n+2 p}{3 p}$
0	1						1
1	1	1					2
2	1	6	1				8
3	1	21	11	1			34
4	1	60	62	16	1		140
5	1	155	258	127	21	1	563

Theorem 3.3: Let $S=\left|O R C P_{n}\right|$, then $f(n, p)=\binom{5 n-4}{i}=5 n+i$.
Proof: Let $X_{n}=\{1,2 \ldots n\}$, given any $\alpha \in S$, then $\operatorname{dom}(\alpha) \subseteq X_{n}$ such that $h(\alpha)=|\operatorname{Im}(\alpha)|$. The image set of $O R C P_{n}$ can be chosen in $\binom{n}{p}$ ways such that $f\left(n, p_{n-1}\right)=5 n+1 \forall n \geq 2$. It is equivalent to the set of $X_{n}=a+(n-1) d$ for $a=6$, $d=5$ then $5 n+1=\binom{5 n-4}{i}$. Since for $p=0,1$. The concept of contraction coincides, but distinct otherwise. However, there is a bijection between n and p for $n \geq 2$. The result follows immediately.

Table 3.4: Order of Element of $O R C P_{n}$

$\frac{n}{\|I m(\alpha)\|}=h$	0	1	2	3	4	5	$\sum_{r=0}^{n} f(n, p)=\binom{5 n-4}{i}$
0	1						1
1	1	1					2
2	1	6	1				8
3	1	21	11	1			34
4	1	60	62	16	1		140
5	1	155	258	127	21	1	563

Theorem 3.5: Let $=O D C P_{n}$, then $|\alpha S|=2^{n-1}$
Proof: Let $X_{n}=\{1,2 \ldots n\}$, then if a (partial) transformation $\alpha \in S$ such that $\operatorname{dom}(\alpha) X_{n}$, there exist 2^{n} elements having the property of $|\operatorname{Im}(\alpha)|=2$. Since k is the maximum of elements in the image set of α, that is $\left|\omega^{+}(\alpha)\right|=k$, then implies that $\alpha \in O D C P_{n}$ is a bijection. $|\alpha S|=1$ if $|\operatorname{Im}(\alpha)|=0$. For $|\operatorname{Im}(\alpha)|=2$ when $n=2$, we have 2 elements, and 2^{2} elements when $|\operatorname{Im}(\alpha)|=3$ when $n=3$, then $|\operatorname{Im}(\alpha)|=k$ when $k \geq n \geq 2$ we have 2^{n} elements. Since the mapping was defined from $X_{n} \rightarrow X_{n}$, and $\operatorname{Im}(\alpha)$ is $=0,1,2 \ldots n$. Then $\left|O D C P_{n}\right|$ occurs exactly in 2^{n-1} ways. Hence, the proof is complete.

Table 3.6: Order of Element of $O D C P_{n}$

$\frac{n}{\left\|\omega^{+}(\alpha)\right\|}=k$	0	1	2	3	4	5	$\left\|O D C P_{n}\right\|=2^{n-1}$
0	1						1
1	1	1					2
2	1	3	2				6
3	1	7	10	4			22
4	1	15	38	24	8		86
5	1	31	129	116	56	16	349

Theorem 3.7: Let $S=\left|O R C P_{n}\right|$, then $|\alpha S|=\binom{n}{m}\binom{n+2}{(m-1)+2}$
Proof: Let $\alpha: X_{n} \rightarrow X_{n}$ and $\operatorname{Im}(\alpha)$ is such that $i=0,1,2 \ldots$ since m elements of domain in a set X_{n} can be chosen from X_{n} in $\binom{n}{m}$ ways and each partial bijection $\alpha: \operatorname{dom}(\alpha) \rightarrow \operatorname{Im}(\alpha)$ which can be done in $\binom{n}{m}$ ways. Then if $\alpha \in S$, and $\binom{n+2}{(m-1)+2}$ element when $|\operatorname{Im}(\alpha)|=2$. We observed that $\binom{n}{m}$ and $\binom{n+2}{(m-1)+2}$ are equivalent to $n+2$ which yield $|\alpha S|$ to occur in $\binom{n+2}{(m-1)+2}$ ways. The result follows immediately.
Table 3.8: Order of Element of $O R C P_{n}$

$\frac{n}{\|f(\alpha)\|}=m$	0	1	2	3	4	5	$\|\alpha S\|=\binom{n}{m}\binom{n+2}{(m-1)+2}$
0	1						1
1	1	1					2
2	3	4	1				8
3	13	15	5	1			34
4	48	64	21	6	1		140
5	193	249	86	27	7	1	563

Theorem 3.9: Let $S=O C P_{n}$, then $|\alpha S|=\binom{n}{k}\binom{n-1}{k-1}$ and $2^{n}-1$.
Proof: Let : $\operatorname{dom}(\alpha) \subseteq X_{n} \rightarrow \operatorname{Im}(\alpha) \subseteq X_{n}$. Since contraction elements yield zero mapping in composition of mapping and domain can be empty in partial transformation, then if $|\operatorname{Im}(\alpha)|=0$, we observed that $|\alpha S|=1$ for each n. For the second statement Let $\operatorname{Im}(\alpha)\left\}\right.$ denotes an empty map, if $|\operatorname{Im}(\alpha)|=k_{i}$ (where $i=1$) the identity element in $O C P_{n}$, since k is the maximal elements in the image set of α, then $n\left(k_{i}\right)$ element of $\operatorname{Im}(\alpha)$ can occurs from X_{n} in $2^{n}-1$ ways for each value of $n=\{1,2, \ldots\}$. The result follows immediately.

Table 3.10: Order of Element of $O C P_{n}$

$\frac{n}{\left\|\omega^{+}(\alpha)\right\|}=k$	0	1	2	3	4	5	$\|\alpha S\|=2^{n}-1$
0	1						1
1	1	1					2
2	1	3	4				8
3	1	7	12	14			34
4	1	15	32	44	48		140
5	1	31	80	129	157	165	563

Theorem 3.11: Let $S=O D C P_{n}$, then $|\alpha S|=\binom{n+m}{2 m}\binom{(n+1)+1}{m+1}$
Proof: Let $\alpha \in O D C P_{n}$, and let $\operatorname{dom}(\alpha) \subseteq X_{n}$ such that $\operatorname{Im}(\alpha) \subseteq X_{n}$. Since the empty map is the sub-set of $O D C P_{n}$ and $\alpha \in S$ is bijection then $|\alpha S|=1$, if $|\operatorname{Im}(\alpha)|=0$ and if $|\operatorname{Im}(\alpha)|=1,|\alpha S|=1$. Similarly, $|\operatorname{Im}(\alpha)|=2$ when $n=2$, then we observed that $|\operatorname{Im}(\alpha)|=m$ when $m=1,2 \ldots$ and $n=1,2 \ldots$ we have $\binom{n+m}{2 m}$ element. It follows from theorem 3.7 that if $\alpha \in S$ and m elements of domain in a set X_{n} can be chosen from X_{n} and α is a bijection such that $\operatorname{dom}(\alpha) \rightarrow \operatorname{Im}(\alpha)$, then $\binom{(n+1)+1}{m+1}$ elements when $|\operatorname{Im}(\alpha)|=3$ and $n=3$ can be chosen from X_{n} which implies that $|\alpha S|$ for $n \geq m \geq 3$ can occur in $\binom{n+m}{2 m}\binom{n+1)+1}{m+1}$ ways. Hence the result.

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 31 -36

Table 3.12: Order of Element of $O D C P_{n}$

$\frac{n}{\|f(\alpha)\|}=m$	0	1	2	3	4	5	$\|\alpha S\|=\binom{n+m}{2 m}\binom{n+1)+1}{m+1}$
0	1						1
1	1	1					2
2	2	3	1				6
3	6	10	5	1			22
4	22	37	20	6	1	86	
5	85	146	82	28	7	1	349

Theorem 3.13: Let $=O D C P_{n}$, then $|\alpha S|=3 n+3$
Proof: Let $X_{n}=\{1,2 \ldots\}$, then if $X_{n} \rightarrow X_{n}$ and the image of $\alpha \operatorname{Im}(\alpha)$ is such that $i=1,2, \ldots$ let $\alpha \in S$, then we observed that n elements of $\operatorname{dom}(\alpha)$ can be chosen from X_{n} in $n(3)$ ways for $n=3,4 \ldots$ and $p=2,3 \ldots$ Then the number of order of $|S|$ for $\alpha \in O D C P_{n}$ is $3 n+3$, when $n=3$ and $p=n-1$. Since empty map is an element of $O D C P_{n}$ and p elements of domain of α can be chosen from X_{n}. If $\alpha \in S|\operatorname{Im}(\alpha)|=0$ when $|\alpha S|=1$ and when $|\operatorname{Im}(\alpha)|=P_{k}$ where $k=\{0,1 \ldots\}$ and $n=\{0,1 \ldots\}$ we have that $|\operatorname{Im}(\alpha)|=|\alpha S|=i$ (identity element). The result follows immediately.
Table 3.14: Order of Element of $O D C P_{n}$

$\frac{n}{\|\operatorname{Im}(\alpha)\|}=h$	0	1	2	3	4	5	$\|\alpha S\|=3 n+3$
0	1						1
1	1	1					2
2	1	4	1				6
3	1	11	9	1			22
4	1	26	46	12	1		86
5	1	57	185	90	15	1	349

Table 3.15: Calculated values of $\alpha(S)$ for small value of n

n	1	2	3	4	5	$6 \ldots .$.
$C P_{n}$	1	2	2	2	2	$2 \ldots \ldots$
$O C P_{n}$	1	3	7	15	31	$63 \ldots$.
$O R C P_{n}$	1	4	5	6	7	$8 \ldots$.
$O D C P_{n}$	3	9	27	81	245	$729 \ldots \ldots$

Table 3.16 Formula for the $\alpha(S)$ generated by a semi-group $S \subseteq P$

S	Formula
$C P_{n}$	$\binom{n-1}{p-1}$
$O C P_{n}$	$\sum_{r=0}^{n}\binom{n+2 p}{3 p},\binom{n}{k}\binom{n-1}{k-1}$
$O R C P_{n}$	$5 n+1,\binom{n}{m}\binom{n+2}{(m-1)+2}$
$O D C P_{n}$	$3^{n}, 3 n+3,\binom{n+m}{2 m}\binom{n+1)+1}{m+1}$

4. Concluding Remarks

Remark 4.1: For all the semi-group presented, $f(n, m)=1$ whenever $n=m$. Similarly, $f(n, k)=1$ whenever $k=0$ and $\left|O C P_{n}\right|=\left|O C P_{n}\right|=2^{n}$. However, there exist bijection between the sets of the semi-groups of P_{n} for $n \geq 2$.

Remark 4.2: The combinatorial nature of integer sequences and their triangular arrangement arise naturally and thus make it essentially important to find their cardinalities, general formula, hence make it applicable to mathematics and science as a whole. (OIES)
Remark 4.3: The transformation semi-group was the most promising class of semi-groups for future study [7]. The forecast was justified because many researchers have worked extensively on the subject. Such as [8, 9] and their supervisor [2]. But few have worked on contraction mapping among them are: [9, 13].
Acknowledgements: We would like to thank Professor K. Rauf, for his useful suggestions and encouragement. We sincerely thank also Babayo Muhammed. A. and the Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

5. References:

[1] Howie, J.M; Monograph on Semigroup of mappings. School of Mathematics and Statistics, University of Saint Andrews, North Haught, United Kingdom. 2006.
[2] Howie, J.M; Fundamentals of Semigroup Theory. Clarendon Press, Oxford. 1995.
[3] Joseph, J.R; A First Course in Abstract Algebra. Prentice-Hall, Upper Saddle River, New Jersey. 2005.
[4] Kurosh, A.G; The Theory of Groups. Chelsea, London. 1953.
[5] Evis, H and Newson, V.C; An Introduction to Foundation and Fundamentals Concept of Mathematics. Holt, Reint, Winson. 1997.
[6] Howie, J.M; Semigroup: Past, Present and Future. Proceedings of the International Conference on Algebra and Its Applications. 2002.
[7] Cliiford, A.G and Preston, B; The Algebraic Theory of Semigroups. Mathematical Surveys of the American Mathematical Society, Vol. 1 No 7, Province R.1. 1961.
[8] Sheth, I.H; Abstract Algebra. Second Edition. Phi-Learning Private Limited, New Delhi-110001. 2009.
[9] Ganyushkin, O and Mazorchuk, V; An Introduction to Classical Finite Transformation Semigroup. SpringerVerlag, London. 2009.
[10] Umar, A. Semigroup of Mappings. Technical Report Series, King Fahd University of Petroleum and Minerals, Bahrain, Saudi Arabia, 357 (TR): 1-30. 2006.
[11] Malik, D.S; Mordeson, N.J and Sen, M.K; Introduction to Abstract Algebra. Scientific Word Publishers, United States of America. 2007.

[^0]: Correspondence Author: Akinwunmi S.A., Email: sakinwunmi@ fuksahere.edu.ng, Tel: +2348066148496, +2348057077273 (MSO)
 Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 31 -36

