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Abstract 

 
Let 𝑿be a nonempty set. The full transformation, 𝑻(𝑿) on a set X is the mapping from 

𝑿into itself with a composition operation. This study is sequel to the work of Mendes-

Goncalves and Sullivan (2011), who studied the semigroup of transformations 

restricted by an equivalence E(X,σ). We considered the structures of the semigroup of 

transformations restricted by an equivalence, E(X,σ) on two classes of semigroups, the 

Complete regular semigroup and Inverse Semigroup, thus we showthat E(X,σ)  is 

completely regular but not an inverse semigroup on its largest regular subsemigroup 

for any non-trivial |𝑿| ≥ 𝟒and characterize the Starred Ideals of E(X,σ). 
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1 Introduction 

Let 𝑋be an arbitrary nonempty set. The semigroup of full transformation 𝑇(𝑋) on a set X is the mapping from X into itself 

under composition. The Semigroup of Transformations restricted by an equivalence is an offshoot of the semigroup of 

transformations with restricted range 𝑇(𝑋, 𝑌) which has been widely studied by various authors in [1 – 14] and a host of 

others. In [4], the author considered a subsemigroup of 𝑇(𝑋) determined by an equivalence relation Yon X defined thus: 

𝑇(𝑋, 𝑌) = {𝛼 ∈ 𝑇(𝑋): ∀ 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦)  ∈  𝑌 ⇒ (𝑥𝛼, 𝑦𝛼)  ∈  𝑌} 
stating T(X,Y) is regular if σ = {idx,X × X} holds, where idxis the identity relation on X, then T(X,σ) = T(X). Also [9], studied 

another subsemigroup of T(X) called the Semigroups of Transformations Restricted by an equivalence, E(X,σ) defined thus: 

𝐸(𝑋, 𝜎) = {𝛼 ∈ 𝑇(𝑋): ∀ 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦)  ∈  𝜎 ⇒  𝑥𝛼 = 𝑦𝛼} 
Unlike the full transformations semigroup T(X) which is known to be regular, E(X,σ) was characterised on its regular part 

which is known as Largest Regular Subsemigroup, 𝔼defined as: 

𝔼 = {𝛼 ∈   𝐸(𝑋, 𝜎): 𝐼𝑚(𝛼 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 𝜎⁄ }  
in order to characterize its Green’s relations and ideals. In [12] it was shown that the semigroup,𝐸(𝑋, 𝜎) is right abundant 

but not left regular whenever the equivalence σ on a set 𝑋is nontrivial. A result which is the dual of a similar result by [11] 

on 𝑇(𝑋, 𝑌 )stating that 𝑇(𝑋, 𝑌) is left abundant but not right abundant whenever 𝑌 = 𝑋and |𝑌 |  ≥  2.The cardinality of 

𝐸(𝑋, 𝜎)as determined in [12] is stated thus that, if |𝑋|  =  𝑛and |𝑋/𝜎|  =  𝑚, where 𝑛,𝑚are positive integers, then 

|𝐸(𝑋, 𝜎)|  =  𝑛𝑚. Recently, [13] stated that two semigroups of 𝐸(𝑋, 𝜎), 𝐸(𝑋, 𝜎1) 𝑎𝑛𝑑 𝐸(𝑋, 𝜎2) are isomorphic if and only 

if there exists a bijection 𝜃 ∶  𝑋 ⇒  𝑌such that (𝑥𝜎1)𝜃 =  (𝑥𝜎2)𝜃for all 𝑥 ∈  𝑋.In this paper, we extend the structure of 

𝐸(𝑋, 𝜎) by determining its completely regular semigroup, inverse semigroup and starred ideals. 
 

This paper is arranged thus: In Section 2, we gave some basic definitions and examples to explain the semigroupof 

transformation restricted by an equivalence, (𝑋, 𝜎) , Section 3, we showed that the semigroup of transformation restricted  
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by an equivalence, 𝐸(𝑋, 𝜎)is completely regular for all nontrivial |𝑋| ≥ 4. We build on the last result insection 4 by 

showing that 𝐸(𝑋, 𝜎)is not an inverse semigroup for all non-trivial, |𝑋| ≥ 4. In section 5, using the left-right 

characterization in [3], we discussed the Green's Starred relations of 𝐸(𝑋, 𝜎)and finally in section 6, we characterize the 

starred-ideals of 𝐸(𝑋, 𝜎). 
 

2 Preliminaries 

Let X be a nonempty set and T(X) is the semigroup (under composition) of the full transformation from 𝑋 is to 𝑋(i.e. α:X ⟶
 X). Suppose σ is an equivalence a set X, we consider a subsemigroup of 𝑇(𝑋) defined as: 

𝐸(𝑋, 𝜎) = {𝛼 ∈ 𝑇(𝑋): ∀ 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦)  ∈  𝜎 ⇒  𝑥𝛼 = 𝑦𝛼} 
We adopt a convention introduced in [16] which states that if α ∈T(X) we write: 

𝛼 = (
𝐴𝑖
𝑥𝑖
) 

where the subscript 𝑖 belongs to some (unspecified) index set 𝐼, that the abbreviation {𝑥}  =  {𝑥𝑖 : 𝑖 ∈  𝐼}, the image of 𝛼is 

denoted by 𝑋𝛼 =  𝑖𝑚(𝛼) = {𝑥𝑖}and the partition of the set 𝑋 is denoted as 𝑥𝑖𝛼
−1 = 𝐴𝑖 also referred to as the =𝑑𝑜𝑚(𝛼) =

∪ 𝑥𝛼−1, which is the disjoint union of α for any 𝑥 ∈  𝑑𝑜𝑚(𝛼) and for any 𝛼 ∈  𝑑𝑜𝑚(𝛼), the image of 𝑥under 𝛼is denoted 

as 𝑥𝛼. If we fix an equivalence on σ on X, we can write X/σ = {Si} for the partition induced σ on X. In a partition each cells 

are disjoint (i.e. no overlapping/intersection) so A = A1 ∪A2,...,An where A1 ∩ A2 = ∅. 
 

Definition 2.1: A subset Y of X is a Partial cross-section of X/σ if every σ-class in X/σ contains atmost one element of Y i.e. 

∀A ∈X/σ, |A ∩ Y | ≤ 1 (i.e. the cardinality can either be 0 or 1). But if |A ∩ Y | = 1, we have a Cross-section. Equivalently, 

partial cross-section is when no two elements of the image come from the same equivalence class of σ. Thus partial cross-

section has nothing to do with the domain or kernel but with the image. 
 

Example 2.1:Considering a finite case. Let X = {1,2,3,4,5,6} and 

X/σ = {{1,2},{3,4},{5,6}} 

We define a map 

𝛼 = (
{123} {456}
4 2

) 

where A= {1,2}, B= {3,4}, C= {5,6} and Im(α2) = {2,4} = Z 

A ∩ Z = 2 and |A ∩ Z| = 1 

B ∩ Z = 4 and |B ∩ Z| = 1 

C ∩ Z = 0 and |C ∩ Z| = 0 

Thus |A ∩ Y | = |B ∩ Y | = 1 and |C ∩ Y | = 0. So this aPartial Cross-Section. 
 

Example 2.2:Consider a finite case. Let X = {1,2,3,4,5,6} and the partition of the set X given as 

X/σ = {{1,2},{3,4},{5,6}} 

We define a map α1 thus 

𝛼1 = (
{1234} {56}
2 3

) 

Suppose we fix an equivalence σ on X thus 

σ = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6)} 

Recall that only the elements in the same kernel can be paired. Thus the kernel of α1: 

ker(α1) ={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), 

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6)} 

Comparing the elements in the fixed equivalence σ with ker(α1). We see that since σ ⊆ker(α1), then α1 ∈E(X,σ)∎ 

Example 2.3:We define a set α2 thus 

𝛼2 = (
{1} {23456}
2 5

) 

The equivalence σ is 

σ = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6)} 

Let the kernel of α2 be given as: 

ker(α2) ={(1,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,3),(3,4), 

(3,5),(3,6),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,3), 

(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6)} 

Thus, comparing the elements in the fixed equivalence σ with the elements in ker(α2), we see that σ  

⊈ker(α2) since (1,2) and (2,1) are in σ but not in ker(α2). Therefore since σ ⊈ker(α2) and α2 ⊈E(X,σ) ∎ 
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Example 2.4:We define a set α3 thus 

𝛼3 = (
{123} {456}
2 3

) 

Thus the fixed equivalence σ  = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6)} 

Let the kernel of α3 be given as: 

ker(α3) ={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), 

(4,4),(4,5),(4,6),(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)} 

Thus, comparing the elements in the fixed equivalence σ with the elements in ker(α3), we see that since  

σ⊆ker(α3) then α3 ∈E(X,σ)∎ 

 

Example 2.5:We define a set α4 thus 

𝛼4 = (
{12345} {6}

4 5
) 

Thus, σ = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6)} 

We define the kernel of α4 as: 

ker(α4) ={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4), 

(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3), 

(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),(6,6) 

Comparing the elements in the fixed equivalence σ with the elements in ker(α4), we see that 𝜎4  ⊈ker(α4) since (5,6) and 

(6,5) are in σ but not in ker(α4). Therefore since σ ⊈ker(α4) and α4⊈E(X,σ) ∎ 

So far we have considered five (4) examples. Summarily, we have some αi for i = {1,...,4} of the set X which make up the 

equivalence set of the semigroup of transformations restricted by an equivalence, E(X,σ) ∎ 

The followings are the characterization of regularity of E(X,σ): 

Theorem 2.7[9]: Let σ be an equivalence relation on a set X. Then the following statements hold: 

(i) If σ = 1x = Idx, the identity equivalence on X, then E(X,σ) = T(X). Where σ = 1x, then σ contains a constant map 

Xawith range a given as 𝛼 =  (
𝑋𝑎
𝑎
). 

(ii) If 𝜎 =  𝑋 ×  𝑋 (The Universal Relation), then 𝐸(𝑋, 𝜎)  =  𝐾(𝑋), where 𝐾(𝑋)is the set of all constant mapping in 

𝑇(𝑋). 
Also [9], characterized E(X,σ) on its largest regular subsemigroup, 𝔼 thus 

 

Theorem 2.8 [9]:Let α,β∈E(X,σ), then 

(i) 𝛼 ℒ 𝛽 if and only if (α,β ∈𝔼,Xα = Xβ); 

(ii) 𝛼 ℛ 𝛽 if and only if (α,β ∈𝔼,ker(α)= ker(β)), where ker(α)= xα−1;x ∈Xα; 

(iii) 𝛼 𝒟 𝛽 if and only if (α,β ∈𝔼,|Xα| = |Xβ|);  

(iv)  𝛼 𝒥 𝛽 if and only if (ker(α)= ker(β)or |Xα| = |Xβ|); 

(v)        𝒟 = 𝒥. 

 

3 Completely Regular Semigroup of E(X,σ) 

A semigroup is said to be Completely Regular if every element in S is in some subgroup of the semigroup, thus it is referred 

to as “Union of Groups”. This is an important subclass of the class of regular semigroups and the class of inverse 

semigroups. The work of [17] laid the ground work in his paper using the term “Semigroups Admitting Relative Inverses” 

to refer the term “Completely Regular Semigroup”. Historically, the term “Completely Regular Semigroup” stems from the 

Russian literature written by, [21] titled ”Semigroup” in which the author often refer to completely regular semigroup as 

“Clifford Semigroup”. It is observed that in a completely regular semigroup, eachℋ − 𝑐𝑙𝑎𝑠𝑠 is a group and the semigroup 

is the union of these groups. Thus, if e is the identity of G, a subgroup of S within G, we have ea= ae= a, aa−1 = a−1a = e, 

hence a ℋe ∈S. Thus the ℋ − 𝑐𝑙𝑎𝑠𝑠, ℋ𝑎which coincides with ℋ𝑒is a group. 

Next is the have the characterization of a completely regular semigroup. 

Theorem 3.1[20]: 
Let S be a semigroup. Then the following statements are equivalent: 

(1) S is completely regular. 

(ii) Every element in S in a subgroup of S. 

(iii) Every ℋ − class in S is a group. 
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Remark 3.2:It is well known that 𝐸(𝑋, 𝜎)is not regular except on its regular part called largest regular subsemigroup 

which was defined by [9] as 𝔼= {α ∈(𝑋, 𝜎) : 𝐼𝑚(𝛼)is a partial cross − section of X/σ}.Thus, we consider a nontrivial 

domain for a set of X, where |X| ≥ 4. 

Theorem 3.3:For any non-trivial X, where |X| ≥ 4. The largest regular subsemigroup𝔼of E(X,σ) is a completely regular 

semigroup. 

Proof:It is clear that 

𝐸(𝑋, 𝜎)  =  {𝛼 ∈  𝑇(𝑋) ∶  𝜎 ∈  𝑘𝑒𝑟(𝛼)  =  𝛼 ∘  𝛼−1} 
with count |𝐸(𝑋, 𝜎)| = nm in ([21]). Thus for a set X = {1,2,3,4}, with two partition classes as 

X/σ = {{1,2}{3,4}} 

we have that |𝑋|  =  𝑛 =  4 and |𝑋/𝜎|  =  𝑚 =  2, thus 

|E(X4,σ)| = nm = 42 = 16 

We write all the 16 elements of |E(X4,σ)| as: 

𝐸(𝑋, 𝜎) =  

{
 
 
 

 
 
 (

1234
1

) (
1234
2

) (
1234
3

) (
1234
4

)

(
12 34
1 2

) (
12 34
2 1

) (
12 34
1 3

) (
12 34
3 1

)

(
12 34
1 4

) (
12 34
4 1

) (
12 34
2 3

) (
12 34
3 2

)

(
12 34
2 4

) (
12 34
4 2

) (
12 34
3 4

) (
12 34
4 3

)}
 
 
 

 
 
 

 

 

Therefore, we select all the elements that satisfies the condition of the largest regular subsemigroup of 𝐸(𝑋, 𝜎), 𝔼which are 

partial cross section of the kernel classes as defined above which are twelve (12) out of the 16. From these we have 

elements of height 1 and 2 which forms the ℋ − classes thus: 

 

(
1234
1

) (
1234
2

) (
1234
3

) (
1234
4

) 

 

(
12 34
1 3

) 

(
12 34
3 1

) 

(
12 34
2 3

) 

(
12 34
3 2

) 

(
12 34
1 4

) 

(
12 34
4 1

) 

(
12 34
2 4

) 

(
12 34
4 2

) 

 

It is clear from this that, all the elements are idempotent and the largest regular subsemigroup 

𝔼is completely regular ∎ 
 

4 Inverse Semigroup of E(X,σ) 

The semigroup S is said to be an Inverse Semigroup if every element of S, has exactly one inverse. Equivalently, a 

semigroup is an inverse semigroup if it is regular and its idempotent commute. Thus an inverse semigroup is an example of 

a regular semigroup. Examples of Inverse Semigroup are Groups, Semilattices, Clifford Semigroup and Symmetric Inverse 

Semigroup. 

This result is the characterization of inverse semigroup 
 

Theorem 4.1 [20]:Let S be a semigroup. Then the following statements are equivalent: 

(1) S is an inverse semigroup. 

(ii) S is regular and its idempotent commute. 

(iii) Every ℒ− class and every ℛ− class contains exactly one idempotent. 

(iv) Every element of S has a unique inverse. 

The next results considers the non-trivial domain which defies the regularity conditions of 𝐸(𝑋, 𝜎), since it is well known 

that its largest regular subsemigroup is regular, we prove if its idempotents commute. 

Theorem 4.2:  For any nontrivial X, where |X| ≥ 3. The largest subsemigroup 𝔼of 𝐸(𝑋, 𝜎), is not an inverse semigroup. 

Proof:  This proof is straight forward from (Theorem 3.4). Here we show that the largest subsemigroup, 𝔼of 𝐸(𝑋, 𝜎) is an 

inverse semigroup. It is known that 𝔼is regular and have also shown that it is completely regular, here we only need to 

verify if any two idempotents in its largest regular subsemigroupE commute. For any two idempotent, e and f we define 

𝑒 =  (
12 34
1 3

)and 𝑓 = (
12 34
2 3

) 
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𝑒𝑓 =  (
12 34
1 3

) (
12 34
2 3

) = (
12 34
2 3

) 

and  

𝑓𝑒 =  (
12 34
2 3

) (
12 34
1 3

) = (
12 34
1 3

) 

 

Thus, it is obvious that   𝑒𝑓 ≠  𝑓𝑒thus any two idempotents in the largest regular subsemigroupE does not commute. So the 

largest regular subsemigroup𝔼of 𝐸(𝑋, 𝜎) is not an inverse semigroup ∎ 

 

5 Abundant Semigroup of 𝑬(𝑿, 𝝈) 
The relations ℒ∗and ℛ∗on a semigroup S are generalization of the classical Green’s relations L and R. Two elements a andb 

are said to be ℒ∗ − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 if and only if they are ℒ − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 in some oversemigroup of S. The relation ℛ∗is defined 

dually. The join of the equivalence relations of ℒ∗and ℛ∗is denoted as 𝒟∗and the meet is denoted as ℋ∗∗. 

Definition 5.1 Let S be a semigroup. Two elements α,β∈S are said to be: 

• ℒ∗ − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑if and only if they are ℒ − related in some oversemigroup of S. 

• ℛ∗ − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑if and only if they are ℛ − related in some oversemigroup of S. 

Definition 5.2 A semigroup S is called Abundant if any ℒ∗ − 𝑐𝑙𝑎𝑠𝑠and ℛ∗ − 𝑐𝑙𝑎𝑠𝑠 contains an idempotent of𝑆. 

It is well known that a regular semigroup is abundant but the converse is not true. For example, [23] showed that the 

semigroup of order-decreasing finite full transformations is abundant but not regular. 

Definition 5.3:The ℒ∗containing the element a of the semigroup S will be denoted byℒ∗𝑎. The corresponding notation is 

used for the other classes relations.  

Next, we present the characterization of the starred-Green’s relations by [19] 

Theorem 5.1 [19]: Let S be a semigroup. Then 

(a) ℒ∗= {(a,b) ∈S × S : (∀s,t ∈S1)as = at ⇔bs= bt} 

(b) ℛ∗= {(a,b) ∈S × S : (∀s,t ∈S1)sa= ta ⇔sb= tb}  

 

Let Y ⊆X and denote𝑌̅= {A∈X/σ : A ∩ Y ≠ ∅} as the collection of equivalence with non-zero intersection.  

Definition 5.4: A transformation α ∈E(X,σ) is Discrete on X if |A ∩ Xα| ≤ 1 for every A ∈X/σ.We see that partial cross-

section and discreteness coincides. 

Hence the characterization of the starred-Green’s relation on 𝐸(𝑋, 𝜎). 
Theorem 5.3:Let α,β ∈𝐸(𝑋, 𝜎). If (𝛼, 𝛽)∈ℒ∗, then 𝐼𝑚(𝛼) = 𝐼𝑚(𝛽). 
Proof:Let ρ = {𝐴 ∈  𝑋/𝜎: 𝐴 ∈  𝐼𝑚(𝛼) ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐼𝑚(𝛽)̅̅ ̅̅ ̅̅ ̅̅ }.We show that ρ = ∅. For any nonempty ρ, we take some distinct 

elements a,b∈X and prove that for all p,q∈E(X,σ) with the property that for each A ∈X/σ, we have that 

𝑝(𝐴) = {
𝑞(𝑎),   𝑖𝑓 𝐴 ∈ 𝜌 

{𝑎},   𝑖𝑓 𝑥 ∉ 𝜌
 

And 

𝑞(𝐴)  =  {𝑏} 𝑖𝑓 𝐴 ∈  𝜌 

Clearly, p ≠q. By this, we prove two cases when pα = qα and pα ≠qα. Let A ∈X/σ since Im(A) ∩ ρ, if B ∈X/σ such that 

Im(A) ⊆B, by this we have that pβ = qβ and so for pα(A) = qα(A). Thus, pα = qα. For any fixed A ∈ρ Im(B) ∩ A ≠∅ there 

exist B ∈X/σ such that Im(B) ⊆A. Hence, pIm(B) = p(A) = {a} and 𝑞𝐼𝑚(𝐵)  =  𝑞(𝐴)  =  {𝑏}. Then pβ ≠qβ, which is a 

contradiction when (𝛼, 𝛽)∈ℒ∗. Therefore, ρ = ∅ and 𝐼𝑚(𝛽) ⊆  𝐼𝑚(𝛼). Also, by symmetry we have the converse 

where𝐼𝑚(𝛼) ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆  𝐼𝑚(𝛽)̅̅ ̅̅ ̅̅ ̅̅  and equality hold as 𝐼𝑚(𝛼) ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐼𝑚(𝛽)̅̅ ̅̅ ̅̅ ̅̅ ∎  

Next we state the characterizations of Green’s Starred Relations on 𝐸(𝑋, 𝜎) 
Theorem 5.4 Let α,β∈E(X,σ). Then (α,β) ∈ℒ∗if and only if either  

i. Im(α) = Im(β) or 

ii. 𝛼, 𝛽 are not discrete on 𝑋 and 𝐼𝑚(𝛼) ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  𝐼𝑚(𝛽).̅̅ ̅̅ ̅̅ ̅̅ ̅ 
Proof. Suppose, that α,β satisfy (i). Then α,β are ℒ∗−related in the full transformation 𝑇(𝑋), as such α and β are ℒ∗−related 

in 𝐸(𝑋, 𝜎).   
 

For the “if” part, suppose (α,β) ∈ℒ∗, it follows from (Theorem 5.1(a)) that𝐼𝑚(𝛼)̅̅ ̅̅ ̅̅ ̅̅  =  𝐼𝑚(𝛽)̅̅ ̅̅ ̅̅ ̅̅ . Clearly, there two 

possibilities, either α and β are discrete on X or α and β are not discrete on X ([12], Lemma 2.6). Thus we define the sets of 

α and β as 𝐼𝑚(𝛼)  =  {𝑎𝑖 ∶  𝑖 ∈  𝐼}and 𝐼𝑚(𝛽)  =  {𝑏𝑖 ∶  𝑖 ∈  𝐼}, where I is some index set, ai≠aj, bi ≠bjfor any distinct, i,j 
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 ∈I and (ai,bi) ∈σ for any i ∈I. Now we show that ai= bi for any i ∈I. Take c ∈X, for any d ∈E(X,σ), d ≠idxand dα = idxα. 

Thus, for characterization of ℒ∗in (Theorem 5.1 (a)) that dβ = idxβ. Thus d(bi) = bi , for any i ∈I. Since it is clear that d(ai) = 

bi for any i ∈I, then ai= bi for any i ∈I and Im(α) = Im(β).  
 

For the “only if ” part.Let α,β satisfy (ii). We show that (α,β) ∈ℒ∗by (Theorem 5.1 (a)). Now suppose pα = qα for any 

p,q∈E(X,σ) ∪ {idx}. We assume that p = idxand q ∈E(X,σ). Then α = qα, since α is not discrete on X, we have that |Im(α) ∩ 

A| ≥ 2 for some A ∈X/σ ([12], Lemma 2.6). So |q(Im(α) ∩ A)| ≥ 2. But for q ∈𝐸(𝑋, 𝜎), we have that |𝑞(𝐼𝑚(𝛼) ∩ 𝐴)|  =
 1 which is a contradiction. Thus by symmetry, we have two cases: either p and q equals an identity relation on X, idxorp,q 

∈𝐸(𝑋, 𝜎). By the first case, we have that pβ = qβ, so we assume that 𝑝, 𝑞 ∈  𝐸(𝑋, 𝜎). Let A ∈X/σ, we take an element B 

∈X/σ suchthat 𝐼𝑚(𝛼)  =  {𝐵}.Then 𝐵 ∩  𝐼𝑚(𝛼)  ≠ ∅,since 𝐼𝑚(𝛼) ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  𝐼𝑚(𝛽)̅̅ ̅̅ ̅̅ ̅̅ .Let x ∈X such that Im(x) ∈B. Then 

𝑝𝛽(𝐴)  =  𝑝(𝐵)  =  {𝑝(𝐼𝑚(𝑥))}  =  {𝑞(𝐼𝑚(𝑥))}  =  𝑞(𝐵)  =  𝑞𝛽(𝐴). 
Hence, pβ = qβ and (α,β) ∈ℒ∗∎ 

  

Theorem 5.5 Let 𝛼, 𝛽 ∈  𝐸(𝑋, 𝜎). Then (𝛼, 𝛽)  ∈  ℛ∗if and only if ker(α) = ker(β). 

Proof. For the “if” part, suppose ker(α) = ker(β), then α,β are ℛ∗ − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 in the full transformation, T(X) in (Theorem 5.1 

(b)), hence R∗-related in E(X,σ). 

For the “only if” part. Let (𝛼, 𝛽)  ∈  ℛ∗. For any x ∈X, we define a constant map𝜑 =  (
𝐴
𝑎
)  ∈ 𝐸(𝑋, 𝜎). 

Take (a,b) ∈E(X,σ). Then α<𝜑(a)>= <α𝜑(a)>=<𝜑(b))>= α<𝜑(b)>and by characterization of ℛ∗in (Theorem 5.1 (b)) we 

have that β < ϕ(a) >= β < ϕ(b) >. Thus 𝛽(𝑎) = 𝛽(𝑏) and (𝑎, 𝑏)  ∈  𝑘𝑒𝑟(𝛽). 
Thus 𝑘𝑒𝑟(𝛼)  ⊆  𝑘𝑒𝑟(𝛽) and by symmetry ker(β) ⊆ker(𝛼). Hence, equality holds and ker(α) = ker(β)∎ 

Definition 5.6:Let σ be an equivalence relation on the set X. Let α,β be any two subsets of X and ψ be a map from α into β 

i.e. (ψ :α ⟶β). ψ is a σ−Preserving if for any 𝑥, 𝑦 ∈  𝛼, (𝑥, 𝑦)  ∈  𝜎 implies (𝑥𝜓, 𝑦𝜓)  ∈  𝜎. ψ is said to be σ∗− Preserving if 

for any 𝑥, 𝑦 ∈  𝛼, (𝑥, 𝑦)  ∈  𝜎 if and only if(𝑥𝜓, 𝑦𝜓). 
Theorem 5.7:Let α,β∈E(X,σ). Then (a,b) ∈𝒟∗if and only if there exists a σ∗-preserving bijection on the map ρ : Xα ⟶Xβ. 

 

Proof: Suppose, we define a relation τ on E(X,σ) such that if and only if there exists an σ∗− preserving bijection, ρ: Xα ⟶
 Xβ. Assume (𝛼, 𝛽)  ∈  ℒ∗on 𝐸(𝑋, 𝜎),then 𝑋𝛼 =  𝑋𝛽. Clearly, (𝛼, 𝛽)  ∈  𝜏and so ℒ∗ ⊆  𝜏.Now suppose that (𝛼, 𝛽)  ∈  ℛ∗, 
then 𝑘𝑒𝑟(𝛼) = 𝑘𝑒𝑟(𝛽). Clearly, |𝑋𝛼|  =  |𝑋𝛽|. We define a map ρ :Xα ⟶Xβ by xρ= xα−1β. Thus, it is evident from the 

foregoing that the map ρ :Xα ⟶Xβ is a σ∗- preserving bijection. Dually, for any (α,β) ∈τ and so ℛ∗⊆τ. Therefore,  𝒟∗⊆τ. 

Conversely, suppose that (𝛼, 𝛽)  ∈  𝜏, then there exist an σ∗-preserving bijectionρ : Xα ⟶Xβ. We define a map γ :X ⟶X by 

xγ= aρ, where x ∈aα−1 and a ∈Xα. It is easy to see that 𝛾 ∈  𝐸(𝑋, 𝜎), 𝑘𝑒𝑟(𝛾)  =  𝑘𝑒𝑟(𝛼) 𝑎𝑛𝑑 𝑋𝛾 =  𝑋𝛽. So that (α,γ) 

∈ℛ∗,and (𝛾, 𝛽)  ∈  ℒ∗. Thus (𝛼, 𝛽)  ∈  𝒟∗and so 𝜏 ⊆  𝒟∗and consequently equality holds and 𝒟∗ =  𝜏 ∎ 

Remark 5.8:We recall from [23] that two elements are ℐ∗- related if there exist astarredideal between them. So we require 

the starred-ideal to generate the ℐ∗analogue of the classical Green’s relations on 𝐸(𝑋, 𝜎), which is still dependent on the 

previous result on the 𝒟∗relations. 
 

Theorem 5.9:Let 𝛼, 𝛽 ∈  𝐸(𝑋, 𝜎), (𝛼, 𝛽)  ∈  ℐ∗, then |𝑋𝛼|  =  |𝑋𝛽|. 
Proof: Suppose that (α,β) ∈ℐ∗, then ℐ∗(𝛼) = ℐ∗(𝛽). Let  

I(X,β) = {γ ∈(X,σ)(X) : |Xγ| ≤ |Xβ|}. 

Hence, it is easy to see that 𝐼(𝑋, 𝛽) is a starred-ideal of 𝐸(𝑋, 𝜎) to which 𝛽belongs. Since α ∈ ℐ∗,  
ℐ∗(α) = ℐ∗(β) ⊆I(X,β), then |𝑋𝛼|  ≤  |𝑋𝛽|. Dually, we also obtain the similar result for β. 

Hence, |Xα| = |Xβ|∎ 
 

Theorem 5.10:Let X be a finite set, then on the semigroup E(X,σ), 𝒟∗= ℐ∗. 
Proof: Suppose that (α,β) ∈ℐ∗, then ℐ∗(α) = ℐ∗(β). Let 

I(X,β) = {γ ∈E(X,σ) : |Xγ| <|Xβ|}. 

It is easy to show that 𝐼(𝑋, 𝛽), is a starred-ideal of 𝐸(𝑋, 𝜎) to which β belongs. Since α ∈ℐ∗(α) = ℐ∗(β) ⊆I(X,β), then 

|𝑋𝛼|  <  |𝑋𝛽|, or there exists an σ∗- preserving bijectionρ: Xα ⟶Xβ. Dually, we obtain the similar results for β. Hence there 

exists an σ∗-preserving bijectionρ: Xα ⟶Xβ consequent to (Theorem 5.7), so that (α,β) ∈𝒟∗and ℐ∗.⊆𝒟∗. We recall that in 

the characterization of the full transformation semigroup T(X), that 𝒟∗⊆ℐ∗. Thus equality holds as 𝒟∗=  ℐ∗.as required ∎ 
 

Theorem 5.11 Suppose 𝛼, 𝛽 ∈  𝐸(𝑋, 𝜎)such that (αβ)2= αβ. Then α and β are regular. 

Proof: Suppose A ∈X/σ. It is clear that for any β ∈E(X,σ), Aβ ⊆B for some B ∈X/σ. Thus we can we see that Bαβα = Bαβ, 

which implies that Bαβ is contained in B and consequently, Bα ⊆A. Thus 𝐴 ∩ 𝑋𝛼 ≠  ∅ implies for each 𝐴 ∈  𝑋/𝜎. So we 

conclude that α is regular.  
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Let A ∈X/σ, suppose 𝛼 ∈  𝐸(𝑋, 𝜎), 𝐴𝛽 ⊆B for some B ∈X/σ. Then we have that Aαβα = Aαβ, implying that Aαβ is 

contained in A and Bβ ⊆A. Thus A∩ Xβ ≠∅ for any A ∈X/σ. Thus, β is regular ∎  
 

Theorem 5.12Let 𝛼 ∈ 𝐸(𝑋, 𝜎). Then α is regular if and only if A∩Xα  ≠∅for any A ∈X/σ 

Proof: We assume that α is regular, so that αβα = α for some β ∈E(X,σ), Aβ ⊆B for some B ∈X/σ. Thus by Bαβα = Bα, 

therefore Bαβ is contained in B and consequently Bα ⊆A, which is a contradiction to our previous assumption that A∩Xα is 

empty. So we can prove that for any A ∈X/σ,A∩Xα ≠∅. Let 

𝑥𝛽 = {
𝑎,         𝑖𝑓 𝑥 ∈ 𝑋𝛼  𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑥𝛼−1

𝑏,   𝑖𝑓 𝑥 ∈ 𝐴 \𝑋𝛼 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ (𝐴 ∩ 𝑋𝛼 )𝛼−1
 

It is trivial to show that β ∈𝐸(𝑋, 𝜎). Suppose x ∈X, then 𝑥𝛼𝛽𝛼∈xαα−1 = {𝑥𝛼}. Thus the cardinality of {𝑥𝛼} gives us a 

constant map i.e. |{𝑥𝛼}| =  1 and 𝛼𝛽𝛼 =  𝛼which proves regularity ∎ 
 

Theorem 5.13 𝐸(𝑋, 𝜎) is abundant if and only if |X/σ| is finite. 

Proof: Suppose |X/σ| is infinite, for any partitions set of X with Ai (where i= 1,2,3,4,...) as  

X/σ ={A1,A2,A3,A4...}. We define a map ξ :X ⟶X by x ∈Ai, xξ= ai+1, where ai+1 = Ai+1, i = 1,2,3,4,.... Thus by this we see that 

𝜉 ∈  𝐸(𝑋, 𝜎) and 𝐴 ∩  𝑋𝛼 =  ∅.So we see that all the elements in Ai generates distinct integral powers which is not periodic 

since no two power repeat. Thus 𝐸(𝑋, 𝜎) is not abundant, which contradicts our assumption. Thus, |𝑋/𝜎| is finite. 
 

Conversely, Suppose |X/σ| is finite, it is clear that A ∩ Xα ≠∅ for any 𝜉 ∈  𝐸(𝑋, 𝜎), and 𝐴 ∈  𝑋/𝜎. We see, by (Theorem 

5.1.) that any ℒ ∗− class and ℛ∗− class contains an idempotent, and hence 𝐸(𝑋, 𝜎) is abundant ∎  

 

6 The Starred-Ideal of 𝑬(𝑿, 𝝈) 
Analogous to the work of [19], we introduce the starred-ideal to obtain the starred analogue of the classical Green’s 

relations J. The which ℒ∗− class containing the element a is denoted asℒ𝑎
∗ . We can also adopt this corresponding notation 

for the relations.Thus, a Left(Right) starred -ideal of a semigroup S to be the Left(Right) Ideal I of S for whichℒ𝑎
∗  ⊆

𝐼 (ℛ𝑎
∗  ⊆ 𝐼)  for all a ∈I. A subset I of S (I ⊆S) is a starred-ideal if it is both a Left-Starred Ideal and a Right-Starred Ideal. 

The Principal Starred Ideal, ℐ∗(a) generated by the element a ofS is the intersection of all Starred−Ideals of S to which a 

belongs. The relations J∗is defined by the rule if and only if ℐ∗(a) = ℐ∗(b).It is also important to note in this section that this 

is where we get to understand the role of σ − Preserving and σ∗− Preserving Ideal to 𝐸(𝑋, 𝜎) previously mentioned, we 

state this for emphasis: 
 

Definition 6.1: Let σ be an equivalence relation on the set X. Let α,β⊆X and φ be a mapping from 𝛼 into β i.e. (φ : α 7−→ 

β). φ is a sigma−preserving if for any 𝑥, 𝑦 ∈  𝛼, (𝑥, 𝑦)  ∈  𝜎 implies (𝑥𝜑, 𝑦𝜑)  ∈  𝜎. 𝜑is said to be a σ∗− Preserving if for 

any 𝑥, 𝑦 ∈  𝛼, (𝑥, 𝑦)  ∈sigma if and only if (𝑥𝜑, 𝑦𝜑)  ∈  𝜎. In otherwords, it is σ∗− preserving if φ is both σ − preserving 

and bijective. 
 

We define our starred ideal for starred ideal for 𝐸(𝑋, 𝜎) similar to [18] thus, 

Let X/σ be the partition of X into equivalence classes of σ. For any 𝛼 ∈  𝐸(𝑋, 𝜎), we define an infinite collection of non-

intersecting equivalence classes as 

Z(α) = {A ∈X/σ : A ∩ Xα = ∅} 

For any non-negative integer r, let 

Q∗(X,r) = {α ∈E(X,σ) : r ≤ |Z(α)| <+∞} 

be the starred ideal of 𝐸(𝑋, 𝜎). 
Theorem 6.1:The followings were stated that: 

(i) if r = 0, then 𝑄∗(𝑋, 𝑟) is a starred-ideal of 𝐸(𝑋, 𝜎). 
(ii) if r >0, then 𝑄∗(𝑋, 𝑟)is a Left starred-ideal of 𝐸(𝑋, 𝜎). 
(iii) if r >0, then 𝑄∗(𝑋, 𝑟)is not a right starred-ideal of 𝐸(𝑋, 𝜎)for any α ∈𝑄∗(𝑋, 𝑟)such thatℛ 𝛼

∗𝑄∗(𝑋, 𝑟)∎ 
 

Remark 6.2: According [18], if r >0, then all the Green’s relations are trivial in 𝑄∗(𝑋, 𝑟)(r >0). Thus we denote σαas the 

restriction of σ to the Xα. 

rα= {(a,b) ∈r : a,b∈Xα} 

In proving this theorem we consider the finite and infinite case. 
 

Theorem 6.3: Suppose r >0 and α,β ∈𝑄∗(𝑋, 𝑟)Then (α,β) ∈ℒ∗if and only if Im(α) = Im(β). 

Proof: If Xα = Xβ thus (𝛼, 𝛽)  ∈  𝑇(𝑋). Hence, (α,β) ∈ℒ∗. Conversely, suppose that (α,β) ∈ℒ∗for all ν,µ ∈𝑄∗(𝑋, 𝑟),αν = αµ 

if and only if βν = βµ. It is clear if Xα ≠ Xβ, we assume that Xβ \ Xα ≠∅ such that there exist α ∈Xβ \ Xα and bβ = a for 

some b ∈X. By this we have 2 cases to consider: 
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Case 1: 

Considering the finite case where a ∈A ∈X/σ and A∩ Xα ≠∅. Now suppose that there exists c ∈A∩ Xα. We see by 𝛼 ∈
 𝐸(𝑋, 𝜎), |𝑋/𝜎|= |Xα/σα|, we have a σ∗− preserving mapping given as  

𝜑: X \ A⟶Xα \ A.We define a map x 𝜑: X ⟶Xby 

𝑥𝜂 = {
𝑥,   𝑥 ∈ 𝐴
𝑥𝜑,   𝑥 ∉ 𝐴

 

 

We also define another map thus: µ :Z ⟶Z by 

𝑧𝜇 = {

𝑐, 𝑧 = 𝑎
𝑥𝜑, 𝑖𝑓 𝑧 𝜖 𝐴{𝑎}

𝑧𝜑, 𝑒𝑙𝑠𝑒
 

But it is obvious that η,µ∈𝑄∗(𝑋, 𝑟)and αη = αµ. However, 

bβη= αη = a ≠c = aµ = bβµ 

which is in contradiction to our assumption with βη = βµ. 

 

Case 2: 

Considering the infinite case a ∈A∈X/σ and A ∩ Xα ≠∅. We define a map µ :X ⟶Xthus: for an element a ∈A, xµ = xα. It is 

then obvious that µ ∈  𝐸(𝑋, 𝜎) and α2 = αµ. However, bβα = aα≠a = aµ = bβµ which is in contradiction with our 

assumption βα = βµ. Thus our proof is complete since Xα = Xβ∎  

Theorem 6.4 Suppose r >0 and α,β∈𝑄∗(𝑋, 𝑟). Then (α,β) ∈ R∗if and only ifker(α) = ker(β). 
 

Proof: Suppose ker(α) = ker(β), thus by [Theorem 5.1 (b)], (𝛼, 𝛽)  ∈  ℛ ∈  𝑇(𝑋). Thus if and only if (α,β) ∈ℛ∗.We show 

the converse that if (𝛼, 𝛽)  ∈  ℛ∗by [Theorem 5.1 (b)] ∀x,y∈𝑄∗(𝑋, 𝑟), ηα = µα if and only if ηβ = µβ. Thus, suppose, ker(α) 

≠ker(β), then there exist arbitrary element y1,y2 ∈A ∈X/σ such that y1 ≠y2, y1αα−1 = y2αα−1 and y1 ≠y2, y1ββ−1 = y2ββ−1. With 

this, two (2) cases arise for consideration. 

 

Case 1: 

We consider the finite case where A∩ Xα ≠∅. Since α ∈E(X,σ), then 

|X/σ| = |Xα/σα|, we see that there exist an σ∗− Preserving mapping given by 

𝜑: X \ A⟶Xα \ A 

We define a map η : Y ⟶Y by  

𝑦𝜂 = {
𝑦1,   𝑖𝑓 𝑦 ∈ 𝐴
𝑦𝜑,   𝑖𝑓 𝑦 ∉ 𝐴 

 

  

Also we define another map µ : Y ⟶Y by 

𝑦𝜇 = {
𝑦2,   𝑖𝑓 𝑦 ∈ 𝐴
𝑦𝜑,   𝑖𝑓 𝑦 ∉ 𝐴 

 

 

 

It is thus clear that η,µ ∈𝑄∗(𝑋, 𝑟)and ηα = µα. However, 

Aηβ = y1β ≠y2β = Aµβ 

which is in contradiction to our assumption with ηβ = µβ. 

 

Case 2:Considering the infinite case where A∩ Xα = ∅. 

We define a map η :Y ⟶Y by 

𝑦𝜂 =  {
𝑦1,   𝑖𝑓 𝑦 ∈ 𝐴
𝑦𝜑,   𝑖𝑓 𝑦 ∉ 𝐴 

 

Also we define another map µ :Y ⟶Y by 

𝑦𝜇 =  {
𝑦2,   𝑖𝑓 𝑦 ∈ 𝐴
𝑦𝜑,   𝑖𝑓 𝑦 ∉ 𝐴 

 

 

Thus it is easy to see that η,µ∈𝑄∗(𝑋, 𝑟)and ηα = µα. Thus, 

Aηβ = y1β ≠y2β = Aµβ 

Contradicts our assumption that ηβ = µβ, from which we conclude that ker(α) = ker(β)∎  
 

Theorem 6.5 Suppose r >0 and α,β ∈𝑄∗(𝑋, 𝑟). Then (𝛼, 𝛽)  ∈  𝒟∗if and only if there exists a σ∗− Preserving bijectionσ 

:𝐼𝑚(𝛼)  =  𝐼𝑚(𝛽). 
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Proof: Let σ be a relation on 𝑄∗(𝑋, 𝑟). such that (α,β) ∈σ if and only if there exists a σ∗−preserving bijection: σ : Xα ⟶Xβ. 

Assume (α,β) ∈ℒ∗on 𝑄∗(𝑋, 𝑟), then Xα = Xβ. Thus (𝛼, 𝛽)  ∈  𝜎and so ℒ∗⊆σ. Next, suppose that (α,β) ∈ℛ∗, then 𝑘𝑒𝑟(𝛼)  =
 𝑘𝑒𝑟(𝛽). Clearly, |𝑋𝛼|  =  |𝑋𝛽|. We define a map σ : Xα ⟶Xβ by xσ= xα−1β., From the foregoing, the map σ : Xα ⟶Xβ is a 

σ∗−preserving bijection. Dually, for any (𝛼, 𝛽)  ∈  𝜎and so ℛ∗⊆σ. 
 

Conversely, suppose that (𝛼, 𝛽)  ∈  𝜎, then there exist a σ∗− preserving bijectionσ :Xα ⟶Xβ. We define a map γ: X ⟶Xby 

xγ= aσ, where x ∈aα−1 and a ∈Xα. It is very easy to see that γ ∈  𝐸(𝑋, 𝜎), 𝑘𝑒𝑟(𝛾)  =  𝑘𝑒𝑟(𝛼) and 𝑋𝛾 =  𝑋𝛽.So that 

(𝛼, 𝛾)  ∈  ℛ∗and (𝛾, 𝛽)  ∈  ℛ∗and (𝛾, 𝛽)  ∈  ℒ∗. Thus (𝛼, 𝛽)  ∈  𝒟∗and 𝜉 ⊆  𝒟∗. Thus equality holds and 𝒟∗ =  𝜎∎  
 

Theorem 6.6 Suppose r >0 and α,β ∈𝑄∗(𝑋, 𝑟). Then (α,β) ∈𝒥∗if and only if |Im(α)| = |Im(β)|. 

Proof: It is obvious that two elements are 𝒥∗− related if there exists a starred-ideal between them. 

Now suppose (α,β) ∈𝒥∗, then 𝒥∗(α) = 𝒥∗(β). Let 
 

𝑄∗(𝑋, 𝑟) = {α ∈E(X,σ) ≤ |Z(α)| <+∞} 
 

It is not difficult to see that 𝑄∗(𝑋, 𝑟)is a starred-ideal of 𝐸(𝑋, 𝜎) to which 𝛽belongs. Since α ∈𝒥∗, 𝒥∗(𝛼) = 𝒥∗(𝛽)   ⊆
𝑄∗(𝑋, 𝑟)then |Xα| ≤ |Xβ|. Dually, we have that since∈   𝒥∗, 𝒥∗(𝛽) =  𝒥∗(𝛼)   ⊆   𝑄∗(𝑋, 𝑟), then |Xα| ≤ |Xβ|. Hence, |Xα| = 

|Xβ|∎  
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