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Abstract

Let Xbe a nonempty set. The full transformation, T(X) on a set X is the mapping from
Xinto itself with a composition operation. This study is sequel to the work of Mendes-
Goncalves and Sullivan (2011), who studied the semigroup of transformations
restricted by an equivalence E(X,6). We considered the structures of the semigroup of
transformations restricted by an equivalence, E(X,6) on two classes of semigroups, the
Complete regular semigroup and Inverse Semigroup, thus we showthat E(X,c) is
completely regular but not an inverse semigroup on its largest regular subsemigroup
for any non-trivial |X| > 4and characterize the Starred Ideals of E(X,0).
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1 Introduction

Let Xbe an arbitrary nonempty set. The semigroup of full transformation T'(X) on a set X is the mapping from X into itself
under composition. The Semigroup of Transformations restricted by an equivalence is an offshoot of the semigroup of
transformations with restricted range T'(X,Y) which has been widely studied by various authors in [1 — 14] and a host of
others. In [4], the author considered a subsemigroup of T'(X) determined by an equivalence relation Yon X defined thus:
TX,Y)={a eTX):Vx,y €X,(x,y) € Y = (xa,ya) € Y}

stating T(X,Y) is regular if o = {idy,X x X} holds, where idxis the identity relation on X, then T(X,0) = T(X). Also [9], studied
another subsemigroup of T(X) called the Semigroups of Transformations Restricted by an equivalence, E(X,o) defined thus:
EX,0) ={ad eTX):Vx,y €X,(x,y) € 0 > xa =ya}

Unlike the full transformations semigroup T(X) which is known to be regular, E(X,o) was characterised on its regular part
which is known as Largest Regular Subsemigroup, [Edefined as:

E={a € EX,0):Im(ais apartial cross — section of X/}

in order to characterize its Green’s relations and ideals. In [12] it was shown that the semigroup,E (X, o) is right abundant
but not left regular whenever the equivalence o on a set Xis nontrivial. A result which is the dual of a similar result by [11]
on T(X,Y )stating that T(X,Y) is left abundant but not right abundant whenever Y = Xand |Y | = 2.The cardinality of
E(X,o0)as determined in [12] is stated thus that, if |X| = nand |X/o| = m, where n,mare positive integers, then
|E(X,0)| = n™. Recently, [13] stated that two semigroups of E(X, o), E(X,0,) and E(X, g,) are isomorphic if and only
if there exists a bijection 6 : X = Ysuch that (xo,)0 = (xa,)0for all x € X.In this paper, we extend the structure of
E (X, o) by determining its completely regular semigroup, inverse semigroup and starred ideals.

This paper is arranged thus: In Section 2, we gave some basic definitions and examples to explain the semigroupof
transformation restricted by an equivalence, (X, o) , Section 3, we showed that the semigroup of transformation restricted
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by an equivalence, E(X, o)is completely regular for all nontrivial |X| = 4. We build on the last result insection 4 by
showing that E(X,o)is not an inverse semigroup for all non-trivial, [X| = 4. In section 5, using the left-right
characterization in [3], we discussed the Green's Starred relations of E (X, o)and finally in section 6, we characterize the
starred-ideals of E (X, o).

2 Preliminaries

Let X be a nonempty set and T(X) is the semigroup (under composition) of the full transformation from X is to X(i.e. a:X —
X). Suppose ¢ is an equivalence a set X, we consider a subsemigroup of T (X) defined as:

EX,0)={ad eTX):Vx,y €X,(x,y) € 0 > xa =ya}

We adopt a convention introduced in [16] which states that if a €T(X) we write:

“= ()

where the subscript i belongs to some (unspecified) index set I, that the abbreviation {x} = {x;:i € I}, the image of ais
denoted by Xa = im(a) = {x;}and the partition of the set X is denoted as x;a~! = 4; also referred to as the =dom(a) =
U xa ™1, which is the disjoint union of a for any x € dom(a) and for any @ € dom(a), the image of xunder ais denoted
as xa. If we fix an equivalence on ¢ on X, we can write X/o = {S;} for the partition induced & on X. In a partition each cells
are disjoint (i.e. no overlapping/intersection) so A = A; UA2,...,Anwhere A1 N Az = 0.

Definition 2.1: A subset Y of X is a Partial cross-section of X/o if every o-class in X/o contains atmost one element of Y i.e.
VA €X/o, |A N Y | <1 (i.e. the cardinality can either be 0 or 1). But if JA N'Y | = 1, we have a Cross-section. Equivalently,
partial cross-section is when no two elements of the image come from the same equivalence class of . Thus partial cross-
section has nothing to do with the domain or kernel but with the image.

Example 2.1:Considering a finite case. Let X ={1,2,3,4,5,6} and

Xo = {{1,2}{3,4},{5,6}}

We define a map
o= ({113} {436})
where A= {1,2}, B={3,4}, C={5,6} and Im(ax) = {2,4}=Z

Anz=2andlANZ/=1
BnNnz=4andBNnz=1
CNnz=0and|CN2Z=0
Thus|ANY|=|BNY|=1and|CNY|=0. So this aPartial Cross-Section.

Example 2.2:Consider a finite case. Let X = {1,2,3,4,5,6} and the partition of the set X given as
Xo={{1,2},{3,4}.{5.6}}

We define a map aithus
_ ({1234} {56}
a4y = ( 2 3 )

Suppose we fix an equivalence o on X thus
0={(1,1),(1,2),(2,2).(2.2),(3,3).(3,4).(4.3),(4,4).(5,5).(5.6).(6,5).(6.6)}
Recall that only the elements in the same kernel can be paired. Thus the kernel of a1:
ker(a1) ={(1,1),(1,.2),(1,3),(1,4).(2,1),(2,2),(2,3).(2,4),
(3.1),(3,2),(3,3),(3,4).(4,1),(4,2),(4,3).(4,4),(5,5),(5,6),(6,5),(6,6)}
Comparing the elements in the fixed equivalence o with ker(a1). We see that since o Sker(ay), then ay EE(X,0)m
Example 2.3:We define a set az thus

_ ({1} {23456}
a2 = ( 2 5 )
The equivalence o is

o={(1.1),(1.2),(2.1).(2.2),(3,3),(3,4),(4.3),(4.4).(5.5).(5.6).(6.5).(6.6) }

Let the kernel of az be given as:

ker(a2) ={(1,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,3).(3,4),
(3.5).(3,6),(4,2),(4,3),(4,4).(4.5),(4.6).(5.2).(5.3),

(5,4),(5,5),(5,6).(6,2),(6,3),(6.:4).(6,5),(6,6)}

Thus, comparing the elements in the fixed equivalence o with the elements in ker(oz), we see that o
Zker(ay) since (1,2) and (2,1) are in o but not in ker(az). Therefore since o Lker(az) and o, €E(X,0) m
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Example 2.4: We define a set azthus

_ ({123} {456}
% = ( 2 3 )
Thus the fixed equivalence o = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5.5),(5,6),(6,5),(6,6) }
Let the kernel of azbe given as:
ker(as) ={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),
(4,4),(4,5),(4,6).(54).(5,5).(5.6),(6.,4),(6,5).(6,6)}
Thus, comparing the elements in the fixed equivalence o with the elements in ker(as), we see that since
ocker(as) then az EE(X,0)m

Example 2.5: We define a set aathus
_ ({12345} {6})

4 5
Thus, o = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5),(5,6),(6,5),(6,6) }
We define the kernel of a4 as:
ker(as) ={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),
(2,5),(3.1),(3,2).(3.3).(3.4).(3,5).(4.1),(4,2),(4.3),
(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),(6,6)
Comparing the elements in the fixed equivalence o with the elements in ker(as), we see that o, Zker(as) since (5,6) and
(6,5) are in o but not in ker(as). Therefore since o £ker(as) and asLE(X,0) m
So far we have considered five (4) examples. Summarily, we have some o; for i = {1,...,4} of the set X which make up the
equivalence set of the semigroup of transformations restricted by an equivalence, E(X,0) m
The followings are the characterization of regularity of E(X,0):
Theorem 2.7[9]: Let o be an equivalence relation on a set X. Then the following statements hold:
(i) If o = 15 = 1dy, the identity equivalence on X, then E(X,0) = T(X). Where o = 1y, then o contains a constant map

Xawith range a given as a = (};‘1).

(ii) If o = X X X (The Universal Relation), then E(X,0) = K(X), where K(X)is the set of all constant mapping in
T(X).
Also [9], characterized E(X,o) on its largest regular subsemigroup, E thus

Theorem 2.8 [9]:Let o, fEE(X,0), then

(i) a L B ifand only if (0, €E,Xa = Xp),

(ii)  a R B ifand only if (B EE, ker(a)= ker(B)), where ker(a)= xa';x EXa;
(i) aD B ifand only if (a.p €E,|Xa| = |XB|);

(iv)  aJ B ifand only if (ker(a)= ker(B)or |Xa| = |XB));

(v) D=J.

3 Completely Regular Semigroup of E(X,0)
A semigroup is said to be Completely Regular if every element in S is in some subgroup of the semigroup, thus it is referred
to as “Union of Groups”. This is an important subclass of the class of regular semigroups and the class of inverse
semigroups. The work of [17] laid the ground work in his paper using the term “Semigroups Admitting Relative Inverses”
to refer the term “Completely Regular Semigroup”. Historically, the term “Completely Regular Semigroup” stems from the
Russian literature written by, [21] titled “Semigroup” in which the author often refer to completely regular semigroup as
“Clifford Semigroup”. It is observed that in a completely regular semigroup, eachH — class is a group and the semigroup
is the union of these groups. Thus, if e is the identity of G, a subgroup of S within G, we have ea= ae= a, aa'=aa=e¢,
hence a He €S. Thus the H — class, H,which coincides with H,is a group.

Next is the have the characterization of a completely regular semigroup.
Theorem 3.1[20]:

Let S be a semigroup. Then the following statements are equivalent:

(1) S is completely regular.

(ii)  Everyelement in S in a subgroup of S.

(iii) Every H —classin S is a group.
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Remark 3.2:1t is well known that E (X, o)is not regular except on its regular part called largest regular subsemigroup
which was defined by [9] as E= {a €(X,0) : Im(a)is a partial cross — section of X/o}.Thus, we consider a nontrivial
domain for a set of X, where |X|> 4.

Theorem 3.3:For any non-trivial X, where [X| > 4. The largest regular subsemigroupEof E(X,0) is a completely regular
semigroup.

Proof:It is clear that

E(X,0) = {a € T(X): 0 € ker(a) = a o a™1}

with count |E (X, a)| = n™in ([21]). Thus for a set X = {1,2,3,4}, with two partition classes as

Xo={{1,2}{3.4}}

we have that |X| = n = 4and |X/o| = m = 2, thus

[E(X4,0)|=n"=42=16

We write all the 16 elements of |[E(X4,0)| as:

(1234) (1234) (1234) (1234)

1 2 3 4

(112 324) (122 314) (112 334) (132 314) >
(112 344) (142 314) (122 334) (132 324)
k(122 344) (142 324) (132 344) (142 334)
Therefore, we select all the elements that satisfies the condition of the largest regular subsemigroup of E (X, a), Ewhich are

partial cross section of the kernel classes as defined above which are twelve (12) out of the 16. From these we have
elements of height 1 and 2 which forms the ' — classes thus:

(12134) (12234) (12334) (12434)
(112 334) (122 334) (112 344) (122 344)
(132 3 14) (132 324) (142 3 14) (142 324)

It is clear from this that, all the elements are idempotent and the largest regular subsemigroup
Eis completely regular m

E(X,0) =«

4 Inverse Semigroup of E(X,0)

The semigroup S is said to be an Inverse Semigroup if every element of S, has exactly one inverse. Equivalently, a
semigroup is an inverse semigroup if it is regular and its idempotent commute. Thus an inverse semigroup is an example of
a regular semigroup. Examples of Inverse Semigroup are Groups, Semilattices, Clifford Semigroup and Symmetric Inverse
Semigroup.

This result is the characterization of inverse semigroup

Theorem 4.1 [20]:Let S be a semigroup. Then the following statements are equivalent:

(1) Sis an inverse semigroup.

(ii) S is regular and its idempotent commute.

(iii)  Every L— class and every R— class contains exactly one idempotent.

(iv)  Every element of S has a unique inverse.

The next results considers the non-trivial domain which defies the regularity conditions of E (X, g), since it is well known
that its largest regular subsemigroup is regular, we prove if its idempotents commute.

Theorem 4.2: For any nontrivial X, where |X| > 3. The largest subsemigroup Eof E (X, ¢), is not an inverse semigroup.
Proof: This proof is straight forward from (Theorem 3.4). Here we show that the largest subsemigroup, Eof E(X, o) is an
inverse semigroup. It is known that Eis regular and have also shown that it is completely regular, here we only need to
verify if any two idempotents in its largest regular subsemigroupE commute. For any two idempotent, e and f we define

o= (112 334)andf _ (122 334)
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_ (12 34\(12 34\ _ (12 34
ef_(l 3)(2 3)’(2 3)
and
_ (12 34\ 12 34\ _ (12 34
fe_(z 3)(1 3)‘(1 3)
Thus, it is obvious that ef # fethus any two idempotents in the largest regular subsemigroupE does not commute. So the
largest regular subsemigroupEof E (X, o) is not an inverse semigroup m

5 Abundant Semigroup of E(X, o)

The relations £*and R*on a semigroup S are generalization of the classical Green’s relations L and R. Two elements a andb
are said to be L* — related if and only if they are £ — related in some oversemigroup of S. The relation R*is defined
dually. The join of the equivalence relations of L*and R*is denoted as D*and the meet is denoted as H **.

Definition 5.1 Let S be a semigroup. Two elements a,S€S are said to be:

o L* —relatedif and only if they are £ — related in some oversemigroup of S.

. R* — relatedif and only if they are R — related in some oversemigroup of S.

Definition 5.2 A semigroup S is called Abundant if any L* — classand R* — class contains an idempotent ofS.

It is well known that a regular semigroup is abundant but the converse is not true. For example, [23] showed that the
semigroup of order-decreasing finite full transformations is abundant but not regular.

Definition 5.3:The L£*containing the element a of the semigroup S will be denoted byL*,. The corresponding notation is
used for the other classes relations.

Next, we present the characterization of the starred-Green’s relations by [19]

Theorem 5.1 [19]: Let S be a semigroup. Then

(a) c£={(ab) €S xS:(vsteS)as = at ©bs= bt}

(b) R*={(ab) €S xS: (vst€eShsa=ta ©sh=th}

Let Y ©X and denoteY= {A€X/s: AN Y # @} as the collection of equivalence with non-zero intersection.
Definition 5.4: 4 transformation a €E(X,0) is Discrete on X if |A N Xo| < 1 for every A €X/o. We see that partial cross-
section and discreteness coincides.
Hence the characterization of the starred-Green’s relation on E (X, o).
Theorem 5.3:Let o, €E(X, 0). If (@, B)EL”, then Im(a) = Im(f).
Proof:Let p = {A € X/o: A € Im(a) — Im(B)}.We show that p = @. For any nonempty p, we take some distinct
elements a,beX and prove that for all p,geE(X,0) with the property that for each A €X/o, we have that

q(a), if A €p
v = ey it e
And
q(A) = {b}if A € p
Clearly, p #q. By this, we prove two cases when pa = ga and pa #qa. Let A €X/o since Im(A) N p, if B EX/o such that
Im(A) SB, by this we have that pg = ¢f and so for pa(A) = ga(A). Thus, pa = ga. For any fixed A €p Im(B) N A #@ there
exist B €X/o such that Im(B) SA. Hence, pIm(B) = p(A) = {a} and qgIm(B) = q(A) = {b}. Then pf #qp, which is a
contradiction when (a, B)EL”. Therefore, p = @ and Im(B) € Im(a). Also, by symmetry we have the converse
whereIm(a) S Im(f) and equality hold as Im(a) = Im(f)m
Next we state the characterizations of Green’s Starred Relations on E (X, o)
Theorem 5.4 Let a,fEE(X,0). Then (a,f) €Lif and only if either
i Im(a) = Im(p) or
ii. a, B are not discrete on X and Im(a) = Im(p).
Proof. Suppose, that «,f satisfy (i). Then o, are L*—related in the full transformation T'(X), as such a and g are L*—related
in E(X,0).

For the “if” part, suppose (o) €L*, it follows from (Theorem 5.1(a)) that/m(a) = Im(B). Clearly, there two
possibilities, either o and 8 are discrete on X or a and £ are not discrete on X ([12], Lemma 2.6). Thus we define the sets of
aand pasim(a) = {ai: i € Itand Im(B) = {bi: i € I}, where | is some index set, ai+a;, bi #bjfor any distinct, i,j
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€l and (aj,bi) €o for any i €1. Now we show that a;= bj for any i €l. Take ¢ €X, for any d €E(X,0), d #idxand da = idxa.
Thus, for characterization of £*in (Theorem 5.1 (a)) that df = idy8. Thus d(bi) = bi for any i €I. Since it is clear that d(a;) =
bifor any i €l, then ai= b; for any i €l and Im(a) = Im(B).

For the “only if ” part.Let o, satisfy (ii). We show that (a,8) €L£L*by (Theorem 5.1 (a)). Now suppose pa = ga for any
p,q€E(X,0) U {idy}. We assume that p = idxand q €E(X,0). Then o = ga, since o is not discrete on X, we have that [Im(a) N
A| > 2 for some A €X/o ([12], Lemma 2.6). So |q(Im(a) N A)| > 2. But for q €E(X, o), we have that |g(Im(a) N 4)| =
1 which is a contradiction. Thus by symmetry, we have two cases: either p and q equals an identity relation on X, idxorp,q
€E (X, 0). By the first case, we have that pg = gf, so we assume that p,q € E(X,o0). Let A EX/o, we take an element B
€X/o suchthat Im(a) = {B}.Then B n Im(a) # @,since Im(a) = Im(fB).Let x €X such that Im(x) €B. Then

pB(A) = p(B) = {p(Im(x))} = {qUm(x))} = q(B) = qB(A).

Hence, pf=qp and (o,f) EL*m

Theorem 5.5 Leta, B € E(X,a). Then (a,8) € R*if and only if ker(a) = ker(p).
Proof. For the “if” part, suppose ker(a) = ker(f), then a, are R* — related in the full transformation, T(X) in (Theorem 5.1
(b)), hence R*-related in E(X,0).

For the “only if” part. Let (@, ) € R*. For any x €X, we define a constant map¢p = (2) € E(X,0).

Take (a,b) eE(X 0). Then a<@(a)>= <agp(a)>=<¢(b))>= a<@(b)>and by characterization of R*in (Theorem 5.1 (b)) we
have that # < ¢(a) >= p < ¢(b) >. Thus B(a) = B(b) and (a,b) € ker(B).

Thus ker(a) S ker(B) and by symmetry ker(5) Sker(a). Hence, equality holds and ker(a) = ker(5)m

Definition 5.6:Let o be an equivalence relation on the set X. Let a,f8 be any two subsets of X and w be a map from o into 8
i.e. (y:a —p). yis a c—Preserving if forany x,y € «, (x,y) € o implies (xy,yy) € o. y is said to be o*— Preserving if
forany x,y € a,(x,y) € o ifandonlyif(xyp, yi).

Theorem 5.7:Let o, €E(X,0). Then (a,b) €D*if and only if there exists a o*-preserving bijection on the map p : Xo. —Xp.
Proof: Suppose, we define a relation 7 on E(X,0) such that if and only if there exists an o*— preserving bijection, p: Xa —
Xp. Assume (a,B) € L*on E(X,0)then Xa = XB. Clearly, (a,8) € 7and so L* S 7.Now suppose that (a,8) € R*,
then ker(a) = ker(pB). Clearly, |Xa| = |XB|. We define a map p :Xa —XpB by xp= xa'B. Thus, it is evident from the
foregoing that the map p :Xa —Xp is a o*- preserving bijection. Dually, for any («, ) €7 and so R*<z. Therefore, D*Cr.
Conversely, suppose that (a, 8) € T, then there exist an o*-preserving bijectionp : Xa —Xp. We define a map y :X —X by
xy= ap, where X €aat and a €Xa. It is easy to see that y € E(X,0),ker(y) = ker(a) and Xy = XB. So that (a,7)
eR*,and (y,B) € L*.Thus (a,8) € D*andso t S D*and consequently equality holdsand D* = t m

Remark 5.8:We recall from [23] that two elements are 7*- related if there exist astarredideal between them. So we require
the starred-ideal to generate the J*analogue of the classical Green’s relations on E (X, c), which is still dependent on the
previous result on the D*relations.

Theorem5.9:Leta, 8 € E(X,0),(a,$) € J7, then | Xa| = |XB|.

Proof: Suppose that («,8) €7%, then 7*(a) = 7*(B). Let

1(X.8) = {y EX.0)(X) : |Xy| < |XB[}.

Hence, it is easy to see that /(X, 8) is a starred-ideal of E (X, ) to which Sbelongs. Since a € 77,
J*(a) = 7(B) SI(X,P), then | Xa| < |X[]. Dually, we also obtain the similar result for 4.

Hence, |Xa| = |Xf|m

Theorem 5.10:Let X be a finite set, then on the semigroup E(X,0), D*=7".

Proof: Suppose that (a,5) €7, then 7*(a) = 7*(5). Let

1(X.8) = {y €E(X.0) : 1Xy| <|XB[}

It is easy to show that I(X, ), is a starred-ideal of E(X, o) to which S belongs. Since a €7*(a) = 7*(f) SI(X,5), then
[Xa| < |XB], or there exists an o*- preserving bijectionp: Xa —Xp. Dually, we obtain the similar results for 5. Hence there
exists an g*-preserving bijectionp: Xa —Xp consequent to (Theorem 5.7), so that (a,8) €D*and 7*.€D*. We recall that in
the characterization of the full transformation semigroup T(X), that D*<J7*. Thus equality holds as D*= 7*.as required m

Theorem 5.11 Suppose a, 8 € E(X, o)such that (a8)*= af. Then o and B are regular.

Proof: Suppose A €X/o. It is clear that for any g €E(X,0), A5 SB for some B €X/o. Thus we can we see that Bafia = Baf,
which implies that Bag is contained in B and consequently, Ba SA. Thus AN Xa # @ implies for each A € X/o. So we
conclude that « is regular.
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Let A EX/o, suppose a € E(X,0), AR SB for some B €X/s. Then we have that Aafa = Aap, implying that Aaf is
contained in A and B SA. Thus AN Xp =@ for any A €X/o. Thus, £ is regular m

Theorem 5.12Let a € E(X, a). Then a is regular if and only if ANXa +@for any A eX/o
Proof: We assume that «a is regular, so that afia = a for some f €E(X,0), 48 =B for some B €X/s. Thus by Bapa = Ba,
therefore Baf is contained in B and consequently Ba €A, which is a contradiction to our previous assumption that ANXa« is
empty. So we can prove that for any A eX/o,ANXa #0. Let
xﬁ—{ a, if x € Xa wherea € xa™!

b, if x € A\Xawhereb € (AN Xa)a™*
It is trivial to show that # €E(X, ). Suppose x €X, then xafaExaat = {xa}. Thus the cardinality of {xa} gives us a
constant map i.e. [{xa}| = 1 and afa = awhich proves regularity m

Theorem 5.13 E (X, o) is abundant if and only if [X/o] is finite.

Proof: Suppose |X/q]| is infinite, for any partitions set of X with A; (where i=1,2,3,4,...) as

X/o ={A1,A2,A3,As...}. We define a map & :X —X by x €A, x&= aj+1, where ai+1 = A1, | = 1,2,3,4,.... Thus by this we see that
§ € E(X,0)and An Xa = ©.So we see that all the elements in A; generates distinct integral powers which is not periodic
since no two power repeat. Thus E (X, o) is not abundant, which contradicts our assumption. Thus, |X/a| is finite.
Conversely, Suppose |X/a] is finite, it is clear that A N Xa #@ for any ¢ € E(X,0),and A € X/o. We see, by (Theorem
5.1.) that any £ *— class and R*— class contains an idempotent, and hence E(X, o) is abundant m

6 The Starred-1deal of E(X, o)

Analogous to the work of [19], we introduce the starred-ideal to obtain the starred analogue of the classical Green’s
relations J. The which £*— class containing the element a is denoted asL;,. We can also adopt this corresponding notation
for the relations.Thus, a Left(Right) starred -ideal of a semigroup S to be the Left(Right) Ideal | of S for whichL; <
I (R, <) forall a€l. Asubset | of S (I €S) is a starred-ideal if it is both a Left-Starred Ideal and a Right-Starred Ideal.
The Principal Starred Ideal, 7*(a) generated by the element a ofS is the intersection of all Starred—Ideals of S to which a
belongs. The relations J+is defined by the rule if and only if 7*(a) = 7*(b).It is also important to note in this section that this
is where we get to understand the role of & — Preserving and o*— Preserving ldeal to E (X, o) previously mentioned, we
state this for emphasis:

Definition 6.1: Let o be an equivalence relation on the set X. Let a,fSX and ¢ be a mapping from « into fie. (¢ : a T——
B). ¢ is a sigma—preserving if for any x,y € «,(x,y) € o implies (x@,yp) € a. @is said to be a o*— Preserving if for
any x,y € a,(x,y) esigma if and only if (x@,yp) € o. In otherwords, it is o*— preserving if ¢ is both o — preserving
and bijective.

We define our starred ideal for starred ideal for E (X, o) similar to [18] thus,

Let X/o be the partition of X into equivalence classes of . For any a € E(X, o), we define an infinite collection of non-
intersecting equivalence classes as

Z(a) ={A EX/o: AN Xo. = @}

For any non-negative integer r, let

Q*(X,r) ={a EE(X0) : r < |Z(a)| <too}

be the starred ideal of E (X, o).

Theorem 6.1:The followings were stated that:

(i) if r =0, then Q*(X, r) is a starred-ideal of E(X, o).

(ii) if r >0, then Q" (X, r)is a Left starred-ideal of E (X, o).

(iii)  ifr >0, then Q* (X, r)is not a right starred-ideal of E(X, o)for any a €Q* (X, r)such thatR ;,Q*(X,r)m

Remark 6.2: According [18], if r >0, then all the Green’s relations are trivial in Q*(X,r)(r >0). Thus we denote 5,as the
restriction of o to the Xo.

r={(a,b) €r : a,bexa}

In proving this theorem we consider the finite and infinite case.

Theorem 6.3: Suppose r >0 and o, €Q*(X,r)Then (a,f) €L*if and only if Im(a) = Im(B).

Proof: If Xa = Xp thus (a,8) € T(X).Hence, (o,8) €L*. Conversely, suppose that (o,8) €L*for all v,u €Q*(X,7),av = au
if and only if fv = pu. It is clear if Xa # Xp, we assume that Xp \ Xa #@ such that there exist a €Xp \ Xa and b = a for
some b €X. By this we have 2 cases to consider:
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Case 1:

Considering the finite case where a €A €X/o and AN Xa #@. Now suppose that there exists ¢ EAN Xa. We see by a €
E(X,0),|X/o|= |Xa/o.|, we have a o*— preserving mapping given as

@: X\ A—Xo \ A.We define a map x ¢: X —Xby

_{x, x EA
xn = xp, x €A

We also define another map thus: p :Z —Z by

c, zZ=a
Zu = {X(p, if ze A{a}

zZQ, else
But it is obvious that #,u€Q* (X, r)and an = au. However,
bfn=on=a+#c=ay =bfu
which is in contradiction to our assumption with Sr = Su.

Case 2:

Considering the infinite case a EA€X/o and A N Xa #@. We define a map p :X —Xthus: for an element a €A, XL = xa. It is
then obvious that p € E(X,0) and @ = au. However, bfo = ao#a = ajl = bBu which is in contradiction with our
assumption fa = Su. Thus our proof is complete since Xa = Xfm

Theorem 6.4 Suppose r >0 and a,f€Q* (X, 7). Then (a,5) € R+if and only ifker(a) = ker(5).

Proof: Suppose ker(a) = ker(f), thus by [Theorem 5.1 (b)], (o, 8) € R € T(X). Thus if and only if («,5) €R*.We show
the converse that if (a, ) € R*by [Theorem 5.1 (b)] YXx,yeQ*(X,r), na = uo if and only if n8 = up. Thus, suppose, ker(a)
#ker(B), then there exist arbitrary element y1,y» EA €X/o such that y; #Y,, yiaa ™' = yoao " and y1 #Y2, Y188 = Yo" With
this, two (2) cases arise for consideration.

Case 1:
We consider the finite case where AN Xa #@. Since a €E(X,0), then
|X/o| = | Xo/a.|, We see that there exist an o*— Preserving mapping given by
@: X\A—Xo\ A
We defineamap n: Y —Y by

_ (Y1, ifyea

yn = {}“P, ify¢A

Also we define another map 1 : Y —Y by
_ (Y2, ifyea

Y= {y(p, ifyeA

It is thus clear that 7,u €Q* (X, r)and 5o = uo. However,

Anp =y1B #y2p = Aup
which is in contradiction to our assumption with 78 = up.

Case 2:Considering the infinite case where AN Xo = @.
We define amap  :Y —Y by

_ (N1, ifyea

yn= {)’fp, ifygA
Also we define another map .Y —Y by

_ (Y2, ifyea

YH = {)“P, ifyea

Thus it is easy to see that #,u€Q* (X, r)and na = pua. Thus,

Anp = yifp #yaf = Aup
Contradicts our assumption that 8 = uf, from which we conclude that ker(a) = ker(5)m

Theorem 6.5 Suppose r >0 and o, €Q*(X,7). Then (a,B) € D*if and only if there exists a o*— Preserving bijectionc
dIm(a) = Im(p).
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Proof: Let o be a relation on Q*(X, r). such that («,f) € if and only if there exists a o*—preserving bijection: ¢ : Xa —Xp.
Assume (o, ) €L™0on Q*(X, 1), then Xa = Xp. Thus (a, f) € oand so L*So. Next, suppose that (a,5) ER", then ker(a) =
ker(B). Clearly, |Xa| = |XpB|. We define a map o : Xa —XB by xo= xa*., From the foregoing, the map ¢ : Xa —Xp is a
o*—preserving bijection. Dually, for any (a,8) € oand so R*Co.

Conversely, suppose that (a, 8) € g, then there exist a o*— preserving bijections :Xa —Xp5. We define a map y: X —Xby
xy= ao, where X €aa! and a €Xo. It is very easy to see that y € E(X,0),ker(y) = ker(a) and Xy = XB.So that
(a,y) € R*and (y,B8) € R*and (y,B) € L*.Thus (a,B) € D*and & & D*. Thus equality holdsand D* = om

Theorem 6.6 Suppose r >0 and o, €Q*(X, ). Then (o,8) €J*if and only if [Im(a)| = |Im(B)|.
Proof: It is obvious that two elements are J*— related if there exists a starred-ideal between them.
Now suppose (a,8) €J", then J*(«) = J* (). Let

Q" (X, 1) = {a €E(X.0) < [Z(a)| <to0}

It is not difficult to see that Q*(X,r)is a starred-ideal of E(X, o) to which Bbelongs. Since a €J*, J*(a) = J*(B) <
Q*(X,r)then |Xao| < |XB|. Dually, we have that sincee J* J*(B) = J*(a) S Q*(X,r), then |Xa| < |XB|. Hence, |Xa| =
1Xp|m
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