A COROLLARY OF THE OBCT

Sunday OLUYEMI

Former ARMTI Quarters, Off Basin Road, Ilorin, Kwara State.

Abstract

For $n \in \mathbb{N}$, $n \ge 2$, if $MetricTop(\mathbb{R}^n)$ is the metric topo- logy of \mathbb{R}^n induced by the Euclidean metric $d_{\parallel \parallel}$ on \mathbb{R}^n , and $ProductTop(\mathbb{R}^n) = \prod \tau_R$ is the product topology on

 $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}$ of *n* copies of $\tau_{\mathbb{R}}$ (= the usual topology of \mathbb{R}), then, MetricTop(\mathbb{R}^n) = ProductTop(\mathbb{R}^n). We invoke the OBCT to obtain this equality.

Keywords: Usual topology of \mathbb{R} , metric topology of \mathbb{R}^n , product topology of \mathbb{R}^n .

1. LANGUAGE AND NOTATION

Our language and notation shall be pretty standard as found in standard texts of Undergraduate General Topology; for an instance, as found in [1, 2, 3, 4] Of course, we refer to terminologies already defined in [5]. For an instance, the *real numbers* \mathbb{R} , the *Euclidean norm*, || ||, on \mathbb{R}^n , an *interval* in \mathbb{R}^n , a *cell* in \mathbb{R}^n , the *kth side of* a cell, an *open* interval /*open* cell, the ball of radius *r* centred on $a \in \mathbb{R}^n$, B(a, r), an *interior* point of A, $\emptyset \neq A \subseteq \mathbb{R}^n$. We signify the end or absence of a proof by. /// As pointed out in the Abstract, our task is to prove, using the OBCT[5], that MetricTop(\mathbb{R}^n) = ProductTop(\mathbb{R}^n). We first briefly review

(1) The theory of the concept of a subbase for a topology, and

(2) The theory of the concept of a product topology.

2 **SUBBASE** Let $X \neq \emptyset$ and consider a non-empty subfamily $\emptyset \neq \mathcal{L} \subseteq 2^X$ of subsets of *X*. Form the family $B_{\mathcal{L}} = \{A \subseteq X : A \text{ is a finite intersection of members of } \mathcal{L}\} \cup \{X, \emptyset\}$ and then the family

 $\tau_{\mathcal{L}} = \{ G \subseteq X : G \text{ is a union of members of } B_{\mathcal{L}} \}$

= { \emptyset , *X*} \cup {unions of finite intersections of members of \mathcal{L} }.

 $\tau_{\mathcal{L}}$ is a topology, and it is the unique smallest topology on X in which the members of \mathcal{L} are open sets. $\tau_{\mathcal{L}}$ is called the *topology generated by* \mathcal{L} . The family \mathcal{L} is called a *subbase* for $\tau_{\mathcal{L}}$.

3 PRODUCT TOPOLOGY If $I \neq \emptyset$ and the cardinality of I, $|I| \ge 2$ and $X_k \ne \emptyset$ for each $k \in I$, we denote the *Cartesian* product of the X_k 's by $\prod_{k \in I} X_k$. Now suppose that for $k \in I$ τ_k is a topology on X_k , and so we have an indexed family of topological spaces $(X_k, \tau_k)_{k \in I}$. Fix $i \in I$ and suppose $\emptyset \ne G_i \in \tau_i$. Call the set $G_i^{opstr} = \{(x_k)_{k \in I} \in \prod_{k \in I} X_k : x_i \in G_i \text{ and } x_k \in X_k \text{ for all } k \ne i\}$ $= \prod_{i \in I} Y_k$

Correspondence Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13-16

A Corollary of...

Sunday

where $Y_i = G_i$ and $Y_k = X_k$ for all $k \neq i$, an *open strip* of the product set $\prod_{k \in I} X_k$. The topology on $\prod_{k \in I} X_k$ generated by the open strips is called the *product topology* on $\prod_{k \in I} X_k$, denoted $\prod_{k \in I} \tau_k$. The pair $\left(\prod_{k \in I} X_k, \prod_{k \in I} \tau_k\right)$ is called a *product topological*

space or simply a product

space. The topological spaces $(X_k, \tau_k), k \in I$, are called the *factor spaces* of the product space $(\prod X_k, \prod \tau_k)$ (ProdSpa)

In particular, for $\alpha \in I$, $(X_{\alpha}, \tau_{\alpha})$ is called the α *th factor space* of (ProdSpa). Let $i \in I$ and

$$p_i:\prod_{k\in I}X_k\to X_i, (x_k)_{k\in I}\mapsto x_i, (x_k)_{k\in I}\in\prod_{k\in I}X$$

the projection of the Cartesian product $\prod_{i=1}^{k} X_{k}$ onto its *i*th factor X_{i} . Then, clearly, the open strip.

$$G_i^{opstr} = \{(x_k)_{k \in I} \in \prod_{k \in I} X_k : x_i \in G_i \text{ and } x_k \in X_k \text{ for all } k \neq i\}$$
$$= p_i^{-1}(G_i).$$

Clearly, by the description of the topology $\tau_{\mathcal{X}}$ generated by $\mathcal{L} \subseteq 2^X$, the product topology $\prod_{k \in I} \tau_k$ is the family of subsets of $\prod_{k \in I} X_k$ with members \emptyset , $\prod_{k \in I} X_k$ and unions of finite intersections of open strips. That is, $\prod_{k \in I} \tau_k$ is the family with members \emptyset , $\prod_{k \in I} X_k$ and unions of sets of the form

 $p_{i_{1}}^{-1}(G_{i_{1}}) \cap p_{i_{2}}^{-1}(G_{i_{2}}) \cap \dots \cap p_{i_{n}}^{-1}(G_{i_{n}})$ where $n \in \mathbb{N}$, $\emptyset \neq G_{i_{r}} \in \tau_{i_{r}}$, $i_{r} \in I$, and of course, $p_{i_{r}}$ is the projection of $\prod_{k \in I} X_{k}$ onto the i_{t} th factor $X_{i_{r}}$. Hence, $\prod_{k \in I} \tau_{k}$ is the family with members \emptyset , $\prod_{k \in I} X_{k}$ and unions of sets of the form $\prod_{k \in I} G_{k}$, where $\emptyset \neq G_{k} \in \tau_{k}$ for k running over a nonempty finite set $\{\alpha, \beta, \dots, \gamma\}$, say, of indices, and $G_{k} = X_{k}$ for $k \notin \{\alpha, \beta, \dots, \gamma\}$.

4 METRIC TOPOLOGY Let $\emptyset \neq X$ and *d* a metric on *X*. If $a \in X$ and $r \in \mathbb{R}$, r > 0, the set $B(a, r) = \{x \in X : d(a, x) < r\}$ is called a *ball of radius r centred on a*. If $a \in A \subseteq X$ and there exists a ball of some radius r > 0 centered on *a*, B(a, r), contained in A, $\emptyset \neq A \subseteq X$, then we say that *a* is an *interior point* of *A*. If all the points of *A* are interior to *A* we say that *A* is an *open set* of the metric space (X, d), and the family $\tau_d = \{\emptyset, X\} \cup \{\emptyset \neq A \subseteq X : A \text{ is an open set of } (X, d)\} = \{\emptyset, X\} \cup \{\emptyset \neq A \subseteq X : A \text{ is a union balls}\}.$

called the *metric topology* of (X, d) on X induced by the metric d. Note: \emptyset is also called an open set of (X, d). And observe trivially that X is also an open set of (X, d).

5 MetricTop(\mathbb{R}^n) Let $n \in \mathbb{N}$, $n \ge 2$. The function

 $\| \| = \| \|_n : \mathbb{R}^n \longrightarrow \mathbb{R}$ $x = (x_1, x_2, \dots, x_n) \mapsto \sqrt{x_1^2 + x_2^2 + \dots + x_t^2}$

is called the *Euclidean norm* on \mathbb{R}^n , and the positive function

 $d_{\parallel\parallel} : \mathbb{R}^n \mathbf{x} \mathbb{R}^n \to \mathbb{R}$ $(x, y) \mapsto \parallel x - y \parallel$

called the *Euclidean metric* on \mathbb{R}^n . We refer to [1], [2], [3] and [4] for details on $d_{\parallel\parallel}$. The topology on \mathbb{R}^n induced by the Euclidean metric $d_{\parallel\parallel}$ is called the metric topology of \mathbb{R}^n which we denote by MetricTop(\mathbb{R}^n). So, by the description in the preceding paragraph,

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13-16

Sunday

MetricTop(\mathbb{R}^n) = { \emptyset , \mathbb{R}^n } \cup { $\emptyset \neq G \subseteq \mathbb{R}^n$: G is a union of $d_{\parallel\parallel}$ -balls}

6 ProductTop(\mathbb{R}^n) Let $n \in \mathbb{N}$, $n \ge 2$. $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (*n* factors). Let $\tau_{\mathbb{R}}$ be the *usual topology* of \mathbb{R} . The product topology $\prod_{k \in \{1, 2, ..., n\}} \tau_k$ where $\tau_k = \tau_{\mathbb{R}}$ for all $k \in \{1, 2, ..., n\}$, is of course, the product topology of \mathbb{R}^n . We denote this

topology by Product- Top(\mathbb{R}^n). So, by the description of the product topology in Section 3, ProductTop(\mathbb{R}^n) = { \emptyset , \mathbb{R}^n } \cup {unions of sets of the form

 $\prod_{k \in \{1,2,\dots,n\}} G_k \text{ where } \emptyset \neq G_k \in \tau_{\mathbb{R}} \} \qquad \dots(\Delta\Delta)$ Finally,

7 Proof of the COROLLARY

THE *COROLLARY* Let $n \in \mathbb{N}$, $n \ge 2$. Then, MetricTop(\mathbb{R}^n) = ProiductTop(\mathbb{R}^n).

Proof We employ the OBCT[5] to show that $MetricTop(\mathbb{R}^n) \subseteq ProductTop(\mathbb{R}^n)$, and, that $ProductTop(\mathbb{R}^n) \subseteq MetricTop(\mathbb{R}^n)$.

 $ProductTop(\mathbb{R}^n) \subseteq MetricTop(\mathbb{R}^n)$: Both topologies contain \emptyset and \mathbb{R}^n . So, here it suffices to show that a non-empty member of ProductTop(\mathbb{R}^n) belongs also to MetrictTop(\mathbb{R}^n). From ($\Delta\Delta$) in Section 6, it therefore further suffices to show that

 $\prod_{k \in \{1,2,\dots,n\}} G_k \in \operatorname{MetricTop}(\mathbb{R}^n)$

where $\emptyset \neq G_k \in \tau_{\mathbb{R}}$. By a popular result of *Elementary Real Anal- ysis*, if $\emptyset \neq G \in \tau_{\mathbb{R}}$, then *G* is a union of open intervals. Hence, if $\emptyset \neq G_k \in \tau_{\mathbb{R}}$, then G_k is a union of open intervals of \mathbb{R} , and so $\prod_{k \in \{1,2,...,n\}} G_k$ is a union of open intervals of \mathbb{R}^n .

But by Immediate 3.2(i) of [5], an open interval of \mathbb{R}^n is a union of $d_{\parallel\parallel}$ -balls of \mathbb{R}^n .

Hence, $\prod_{k \in \{1,2,...,n\}} G_k$, where $\emptyset \neq G_k \in \tau_{\mathbb{R}}$, is a union of $d_{\parallel \parallel}$ -balls. By the popular result that a non-empty set of a metric

space is open in the space if and only if it is a union of balls, we have therefore proved (ρ).

MetricTop (\mathbb{R}^n) \subseteq *ProductTop*(\mathbb{R}^n): Again, both topologies contain \emptyset and \mathbb{R}^n . By (Δ) of Section 5 it suffices to show that a $d_{\parallel\parallel}$ -ball

of \mathbb{R}^n belongs to ProductTop(\mathbb{R}^n). By Immediate 3.2(iii) of [4], a $d_{\parallel\parallel}$ -ball is a union of open intervals of \mathbb{R}^n . But by ($\Delta\Delta$) of Section 6, an open interval of \mathbb{R}^n belongs to ProducTop(\mathbb{R}^n), and so a $d_{\parallel\parallel}$ -ball belongs to the topology ProductTop(\mathbb{R}^n). ///

8 Remark It is hoped that new textbooks of General topology will present this proof.

REFERENCES

- [1] Michael C. Gemignani, *ELEMENTARY TOPOLOGY* 2nd Edition, Addison Wesley, Reading, Massachusetts, 1972.
- [2] Serge Lang, *REAL ANALYSIS*, 2nd Edition, Addison Wesley, 1983.

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13-16

....(Δ)

....(p)

A Corollary of...

Sunday

- [3] Theral O. Moore, *Elementary General topology* Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
- [4] George F. Simmons, *Introduction to Topology and Modern Analysis*, McGraw-Hill Kogakusha, Ltd, 1963.
- [5] Sunday Oluyemi Open Ball Open Cell Topology Theorem in Euclidean Spaces, Transactions of the Nigerian Association of Mathematical Physics Vol. 10, 1-12.