A COROLLARY OF THE OBCT

Sunday OLUYEMI

Former ARMTI Quarters, Off Basin Road, Ilorin, Kwara State.

Abstract

For $n \in \mathbb{N}, n \geq 2$, if MetricTop $\left(\mathbb{R}^{n}\right)$ is the metric topo- logy of \mathbb{R}^{n} induced by the Euclidean metric $d_{\| \|}$on \mathbb{R}^{n}, and ProductTop $\left(\mathbb{R}^{n}\right)=\prod_{n} \tau_{\mathbb{R}}$ is the product topology on $\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}$ of n copies of $\tau_{\mathbb{R}}(\equiv$ the usual topology of $\mathbb{R})$, then, MetricT$o p\left(\mathbb{R}^{n}\right)=\operatorname{ProductTop}\left(\mathbb{R}^{n}\right)$. We invoke the OBCT to obtain this equality.

Keywords: Usual topology of \mathbb{R}, metric topology of \mathbb{R}^{n}, product topology of \mathbb{R}^{n}.

1. LANGUAGE AND NOTATION

Our language and notation shall be pretty standard as found in standard texts of Undergraduate General Topology; for an instance, as found in [1, 2, 3, 4] Of course, we refer to terminologies already defined in [5]. For an instance, the real numbers \mathbb{R}, the Euclidean norm, $\left\|\|\right.$, on \mathbb{R}^{n}, an interval in \mathbb{R}^{n}, a cell in \mathbb{R}^{n}, the kth side of a cell, an open interval /open cell, the ball of radius r centred on $a \in \mathbb{R}^{n}, B(a, r)$, an interior point of $A, \varnothing \neq A \subseteq \mathbb{R}^{n}$. We signify the end or absence of a proof by. /// As pointed out in the Abstract, our task is to prove, using the OBCT[5], that MetricTop $\left(\mathbb{R}^{n}\right)=\operatorname{Prod-}$ $\operatorname{uctTop}\left(\mathbb{R}^{n}\right)$. We first briefly review
(1) The theory of the concept of a subbase for a topology, and
(2) The theory of the concept of a product topology.

2 SUBBASE Let $X \neq \varnothing$ and consider a non-empty subfamily $\varnothing \neq \mathscr{L} \subseteq 2^{X}$ of subsets of X. Form the family
$B_{\mathscr{L}}=\{A \subseteq X: A$ is a finite intersection of members of $\mathscr{L}\} \cup\{X, \varnothing\}$ and then the family
$\tau \mathscr{L}=\{G \subseteq X: G$ is a union of members of $B \mathscr{L}\}$
$=\{\varnothing, X\} \cup\{$ unions of finite intersections of members of $\mathscr{L}\}$.
$\tau_{\mathscr{L}}$ is a topology, and it is the unique smallest topology on X in which the members of \mathscr{L} are open sets. $\tau_{\mathscr{L}}$ is called the topology generated by \mathscr{L}. The family \mathscr{L} is called a subbase for $\tau \mathcal{L}$.

3 PRODUCT TOPOLOGY If $I \neq \varnothing$ and the cardinality of $I,|I| \geq 2$ and $X_{k} \neq \varnothing$ for each $k \in I$, we denote the Cartesian product of the X_{k} 's by $\prod_{k \in I} X_{k}$. Now suppose that for $k \in I \tau_{k}$ is a topology on X_{k}, and so we have an indexed family of
topological spaces $\left(X_{k}, \tau_{k}\right)_{k \in I}$. Fix $i \in I$ and suppose $\varnothing \neq G_{i} \in \tau_{i}$. Call the set
$G_{i}^{\text {opstr }}=\left\{\left(x_{k}\right)_{k \in I} \in \prod_{k \in I} X_{k}: x_{i} \in G_{i}\right.$ and $x_{k} \in X_{k}$ for all $\left.k \neq i\right\}$
$=\prod_{k \in I} Y_{k}$

Correspondence Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176
Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13-16
where $Y_{i}=G_{i}$ and $Y_{k}=X_{k}$ for all $k \neq i$, an open strip of the product set $\prod_{k \in I} X_{k}$. The topology on $\prod_{k \in I} X_{k}$ generated by the open strips is called the product topology on $\prod_{k \in I} X_{k}$, denoted $\prod_{k \in I} \tau_{k}$. The pair $\left(\prod_{k \in I} X_{k}, \prod_{k \in I} \tau_{k}\right)$ is called a product topological space or simply a product
space. The topological spaces $\left(X_{k}, \tau_{k}\right), k \in I$, are called the factor spaces of the product space
$\left(\prod_{k \in I} X_{k}, \prod_{k \in I} \tau_{k}\right) \quad \ldots .($ ProdSpa $)$
In particular, for $\alpha \in I,\left(X_{\alpha}, \tau_{\alpha}\right)$ is called the α th factor space of (ProdSpa). Let $i \in I$ and
$p_{i}: \prod_{k \in I} X_{k} \rightarrow X_{i},\left(x_{k}\right)_{k \in I} \mapsto x_{i},\left(x_{k}\right)_{k \in I} \in \prod_{k \in I} X_{k}$.
the projection of the Cartesian product $\prod_{k \in I} X_{k}$ onto its i th factor X_{i}. Then, clearly, the open strip.

$$
\begin{aligned}
& G_{i}^{o p s t r}=\left\{\left(x_{k}\right)_{k \in I} \in \prod_{k \in I} X_{k}: x_{i} \in G_{i} \text { and } x_{k} \in X_{k} \text { for all } k \neq i\right\} \\
& =p_{i}^{-1}\left(G_{i}\right)
\end{aligned}
$$

Clearly, by the description of the topology $\tau_{\mathscr{L}}$ generated by $\mathscr{L} \subseteq 2^{X}$, the product topology $\prod_{k \in I} \tau_{k}$ is the family of subsets of $\prod_{k \in I} X_{k}$ with members $\varnothing, \prod_{k \in I} X_{k}$ and unions of finite intersections of open strips. That is, $\prod_{k \in I} \tau_{k}$ is the family with members $\varnothing, \prod_{k \in I} X_{k}$ and unions of sets of the form

$$
p_{i_{1}}^{-1}\left(G_{i_{1}}\right) \cap p_{i_{2}}^{-1}\left(G_{i_{2}}\right) \cap \ldots \cap p_{i_{n}}^{-1}\left(G_{i_{n}}\right)
$$

where $n \in \mathbb{N}, \varnothing \neq G_{i_{r}} \in \tau_{i_{r}}, i_{r} \in I$, and of course, $p_{i_{t}}$ is the projection of $\prod_{k \in I} X_{k}$ onto the i_{t} th factor $X_{i_{t}}$. Hence, $\prod_{k \in I} \tau_{k}$ is the family with members $\varnothing, \prod_{k \in I} X_{k}$ and unions of sets of the form $\prod_{k \in I} G_{k}$, where $\varnothing \neq G_{k} \in \tau_{k}$ for k running over a nonempty finite set $\{\alpha, \beta, \ldots, \gamma\}$, say, of indices, and $G_{k}=X_{k}$ for $k \notin\{\alpha, \beta, \ldots, \gamma\}$.

4 METRIC TOPOLOGY Let $\varnothing \neq X$ and d a metric on X. If $a \in X$ and $r \in \mathbb{R}, r>0$, the set $B(a, r)=\{x \in X: d(a$, $x)<r\}$ is called a ball of radius r centred on a. If $a \in A \subseteq X$ and there exists a ball of some radius $r>0$ centered on $a, B(a$, r), contained in $A, \varnothing \neq A \subseteq X$, then we say that a is an interior point of A. If all the points of A are interior to A we say that A is an open set of the metric space (X, d), and the family $\tau_{d}=\{\varnothing, X\} \cup\{\varnothing \neq A \subseteq X: A$ is an open set of $(X, d)\}=\{\varnothing$, $X\} \cup\{\varnothing \neq A \subseteq X: A$ is a union balls $\}$.
called the metric topology of (X, d) on X induced by the metric d. Note: \varnothing is also called an open set of (X, d). And observe trivially that X is also an open set of (X, d).

5 MetricTop $\left(\mathbb{R}^{n}\right)$ Let $n \in \mathbb{N}, n \geq 2$. The function

$$
\begin{aligned}
& \|\|=\|\|_{n}: \mathbb{R}^{n} \quad \rightarrow \mathbb{R} \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto \sqrt{x_{1}^{2}+x_{2}^{2}+\ldots . .+x_{t}^{2}}
\end{aligned}
$$

is called the Euclidean norm on \mathbb{R}^{n}, and the positive function
$d_{\| \|}: \mathbb{R}^{n} \mathrm{X} \mathbb{R}^{n} \rightarrow \mathbb{R}$
$(x, y) \quad \mapsto\|x-y\|$
called the Euclidean metric on \mathbb{R}^{n}. We refer to [1], [2], [3] and [4] for details on $d_{\| \|}$. The topology on \mathbb{R}^{n} induced by the Euclidean metric $d_{\| \|}$is called the metric topology of \mathbb{R}^{n} which we denote by MetricTop $\left(\mathbb{R}^{n}\right)$. So, by the description in the preceding paragraph,

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13 -16

A Corollary of...

Sunday
$\operatorname{MetricTop}\left(\mathbb{R}^{n}\right)=\left\{\varnothing, \mathbb{R}^{n}\right\} \cup\left\{\varnothing \neq G \subseteq \mathbb{R}^{n}:\right.$
G is a union of $d_{\| \|}$-balls $\}$

6 ProductTop $\left(\mathbb{R}^{n}\right)$ Let $n \in \mathbb{N}, n \geq 2 . \mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}$ (n factors). Let $\tau_{\mathbb{R}}$ be the usual topology of \mathbb{R}. The product topology $\prod_{k \in\{1,2, \ldots, n\}} \tau_{k}$ where $\tau_{k}=\tau_{\mathbb{R}}$ for all $k \in\{1,2, \ldots, n\}$, is of course, the product topology of \mathbb{R}^{n}. We denote this topology by Product- $\operatorname{Top}\left(\mathbb{R}^{n}\right)$. So, by the description of the product topology in Section 3, ProductTop $\left(\mathbb{R}^{n}\right)=\{\varnothing$, $\left.\mathbb{R}^{n}\right\} \cup\{$ unions of sets of the form

$$
\left.\prod_{k \in\{1,2, \ldots, n\}} G_{k} \text { where } \varnothing \neq G_{k} \in \tau \mathbb{R}\right\}
$$

Finally,

7 Proof of the COROLLARY

THE COROLLARY Let $n \in \mathbb{N}, n \geq 2$. Then, MetricTop $\left(\mathbb{R}^{n}\right)=\operatorname{ProiductTop}\left(\mathbb{R}^{n}\right)$.
Proof We employ the $\operatorname{OBCT}[5]$ to show that $\operatorname{MetricTop}\left(\mathbb{R}^{n}\right) \subseteq \operatorname{ProductTop}\left(\mathbb{R}^{n}\right)$, and, that $\operatorname{ProductTop}\left(\mathbb{R}^{n}\right) \subseteq$ MetricTop $\left(\mathbb{R}^{n}\right)$.
$\operatorname{ProductTop}\left(\mathbb{R}^{n}\right) \subseteq \operatorname{MetricTop}\left(\mathbb{R}^{n}\right)$: Both topologies contain \varnothing and \mathbb{R}^{n}. So, here it suffices to show that a non-empty member of $\operatorname{Product} \operatorname{Top}\left(\mathbb{R}^{n}\right)$ belongs also to $\operatorname{MetrictTop}\left(\mathbb{R}^{n}\right)$. From $(\Delta \Delta)$ in Section 6, it therefore further suffices to show that
$\prod_{k \in\{1,2, \ldots, n\}} G_{k} \in \operatorname{MetricTop}\left(\mathbb{R}^{n}\right)$
where $\varnothing \neq G_{k} \in \tau_{\mathbb{R}}$. By a popular result of Elementary Real Anal- ysis, if $\varnothing \neq G \in \tau_{\mathbb{R}}$, then G is a union of open intervals. Hence, if $\varnothing \neq G_{k} \in \tau_{\mathbb{R}}$, then G_{k} is a union of open intervals of \mathbb{R}, and so $\prod_{k \in\{1,2, \ldots, n\}} G_{k}$ is a union of open intervals of \mathbb{R}^{n}. But by Immediate $3.2(\mathrm{i})$ of [5], an open interval of \mathbb{R}^{n} is a union of $d_{\| \|}$-balls of \mathbb{R}^{n}.

Hence, $\prod_{k \in\{1,2, \ldots, n\}} G_{k}$, where $\varnothing \neq G_{k} \in \tau_{\mathbb{R}}$, is a union of $d_{\| \|}$-balls. By the popular result that a non-empty set of a metric space is open in the space if and only if it is a union of balls, we have therefore proved (ρ).

MetricTop $\left(\mathbb{R}^{n}\right) \subseteq \operatorname{ProductTop}\left(\mathbb{R}^{n}\right)$: Again, both topologies contain \varnothing and \mathbb{R}^{n}. By (Δ) of Section 5 it suffices to show that a $d_{\|| |}$|-ball
of \mathbb{R}^{n} belongs to ProductTop $\left(\mathbb{R}^{n}\right)$. By Immediate $3.2($ iii $)$ of $[4]$, a $d_{\| \|}$-ball is a union of open intervals of \mathbb{R}^{n}. But by ($\Delta \Delta$) of Section 6, an open interval of \mathbb{R}^{n} belongs to ProducTop $\left(\mathbb{R}^{n}\right)$, and so a $d_{\|} \|$-ball belongs to the topology Product $\operatorname{Top}\left(\mathbb{R}^{n}\right)$. ///

8 Remark It is hoped that new textbooks of General topology will present this proof.

REFERENCES

[1] Michael C. Gemignani, ELEMENTARY TOPOLOGY $2^{\text {nd }}$ Edition, Addison Wesley, Reading, Massachusetts, 1972.
[2] Serge Lang, REAL ANALYSIS, 2 ${ }^{\text {nd }}$ Edition, Addison Wesley, 1983.

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13 -16
[3] Theral O. Moore, Elementary General topology Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
[4] George F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill Kogakusha, Ltd,1963.
[5] Sunday Oluyemi Open Ball Open Cell Topology Theorem in Euclidean Spaces, Transactions of the Nigerian Association of Mathematical Physics Vol. 10, 1-12.

