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Abstract 

 

For n  ℕ, n  2, if MetricTop(ℝn) is the metric topo- logy of ℝn induced by the 

Euclidean metric d|| || on ℝn, and ProductTop(ℝn) = Rτ
n

  is the product topology on 

ℝn = ℝℝ … ℝ of  n copies of ℝ ( the usual topology of ℝ), then, MetricT- 

op(ℝn) = ProductTop(ℝn). We invoke the OBCT to obtain this equality. 
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1. LANGUAGE AND NOTATION 

Our language and notation shall be pretty standard as found in standard texts of Undergraduate General Topology; for an 

instance, as found in [1, 2, 3, 4] Of course, we refer to terminologies already defined in [5]. For an instance, the real 

numbers ℝ, the Euclidean norm, || ||, on ℝn, an interval in ℝn, a cell in ℝn, the kth side of  a cell, an open  interval /open 

cell, the ball of radius r centred on  a  ℝn, B(a, r), an interior point of A,   A  ℝn. We signify the end or absence of a 

proof by. /// As pointed out in the Abstract, our task is to prove, using the OBCT[5], that MetricTop(ℝn) = Prod- 

uctTop(ℝn). We first briefly review  

(1)  The theory of the concept of a subbase for a topology, and  

(2)  The theory of the concept of a product topology. 

 

2 SUBBASE Let X   and consider a non-empty subfamily   ℒ  2X of subsets of X. Form the family  

Bℒ = {A  X : A is a finite intersection of members of ℒ}{X, } and  then the family 

ℒ  = {G  X : G is a union of members of Bℒ} 

      = {, X}{unions of finite intersections of members of ℒ}. 

ℒ is a topology, and it is the unique smallest topology on X in which the members of ℒ  are open sets. ℒ  is called the 

topology generated by ℒ. The family ℒ is called a subbase for ℒ. 

 

3 PRODUCT TOPOLOGY If  I   and the cardinality of I, | I |  2 and Xk   for each k  I, we denote the Cartesian 

product of the Xk’s by 
k

Ik

X


 . Now suppose that for k  I  k is a topology on Xk, and so we have an indexed family of 

topological spaces (Xk, k)kI. Fix  i  I and suppose   Gi  i . Call the set  
opstr

iG   = {(xk)kI   
k

Ik

X


  :  xi  Gi and  xk  Xk for all k  i} 

= 
k

Ik

Y


  
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where Yi = Gi and Yk = Xk for all k  i, an open strip of the product set 
k

Ik

X


 . The topology on 
k

Ik

X


  generated by the 

open strips is called the product topology on 
k

Ik

X


 , denoted 
k

Ik

τ


 . The pair 




k

Ik

X , 




k

Ik

τ  is called a product topological 

space  or simply a product  

space. The topological spaces (Xk, k), k  I, are called the factor spaces of the product space  






k

Ik

X , 




k

Ik

τ         ….(ProdSpa) 

In particular, for   I, (X, ) is called the th factor space of (ProdSpa). Let i  I and  

pi : 
k

Ik

X


    Xi, (xk)k1  ↦ xi , (xk)kI    
k

Ik

X


 . 

the projection of the Cartesian product 
k

Ik

X


  onto its ith factor Xi . Then, clearly, the open strip.  

opstr

iG  = {(xk)kI   
k

Ik

X


  :  xi  Gi and  xk  Xk  for all  k  i} 

  = )(1

ii Gp  . 

Clearly, by the description of the topology ℒ generated by ℒ  2X, the product topology 
k

Ik

τ


  is the family of subsets of 

k
Ik

X


  with members , 
k

Ik

X


 and unions of finite intersections of open strips.  That is, k
Ik

τ


  is the family with members 

, k
Ik

X


  and unions of sets of the form  

)(
11

1

ii Gp  )(
22

1

ii Gp
 ….  )(1

nn ii Gp
 

where n  ℕ,    
ri

G  
ri

τ , ir  I, and of course,
ti

p  is the projection of  
k

Ik

X


  onto the itth factor 
ti

X . Hence, 
k

Ik

τ


  

is the family with members , 
k

Ik

X


 and unions of sets of the form k
Ik

G


 ,  where   Gk  k for k running over a non-

empty finite set {, , …, }, say, of indices, and Gk = Xk for  k  {, , …, }. 

 

4 METRIC TOPOLOGY  Let   X and d a metric on X. If a  X and  r  ℝ, r  0, the set B(a, r) = {x  X : d(a, 

x)  r} is called a ball of radius r centred on a. If  a  A  X and there exists a ball of some radius r  0 centered on a, B(a, 

r), contained in A,   A  X, then we say that a is an interior point of A. If all the points of A are interior to A we say that 

A is an open set of the metric space (X, d), and the family d = {, X}{  A  X : A is an open set of (X, d)} = {, 

X}{  A  X : A is a union balls}.  

 called the metric topology of (X, d) on X induced by the metric d. Note:  is also called an open set of (X, d). And observe 

trivially that X is also an open set of (X, d).  

 

5 MetricTop(ℝn) Let  n  ℕ, n  2. The function  

||  || =  ||  ||n  : ℝn                                        ℝ  

 x = (x1, x2, …, xn) ↦ 22

2

2

1 ..... txxx     

is called the Euclidean norm on ℝn, and the positive function 

d|| || : ℝnxℝn      ℝ 

(x, y)    ↦  || x – y|| 

called the Euclidean metric on ℝn. We refer to [1], [2], [3] and [4] for details on d|| ||. The topology on ℝn induced by the 

Euclidean metric d|| || is called the metric topology of ℝn  which we denote by MetricTop(ℝn). So, by the description in the 

preceding paragraph,  
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MetricTop(ℝn) = {, ℝn}{  G  ℝn : 

G is a union of d|| || -balls}               ….()     

 

6 ProductTop(ℝn)  Let n  ℕ, n  2. ℝn = ℝℝ…ℝ (n factors). Let ℝ be the usual topology of ℝ. The product 

topology k
nk

τ
},...,2,1{

   where k = ℝ  for all k  {1, 2, …, n}, is of course, the product topology of  ℝn. We denote this 

topology by Product- Top(ℝn).  So, by the description of the product topology in Section 3, ProductTop(ℝn) = {, 

ℝn}{unions of sets of the form   

},....,2,1{ nk

 Gk where   Gk  ℝ}             …() 

Finally,              

 

7 Proof of the COROLLARY  

THE COROLLARY Let n  ℕ, n  2. Then, MetricTop(ℝn)  = ProiductTop(ℝn). 

Proof We employ the OBCT[5] to show that MetricTop(ℝn)  ProductTop(ℝn), and, that ProductTop(ℝn)  

MetricTop(ℝn).  

ProductTop(ℝn)  MetricTop(ℝn): Both topologies contain  and ℝn . So, here it suffices to show that a non-empty 

member of ProductTop(ℝn) belongs also to MetrictTop(ℝn). From () in Section 6, it therefore further suffices to show 

that  

},....,2,1{ nk

 Gk  MetricTop(ℝn)                                ….() 

where   Gk  ℝ. By a popular result of Elementary Real Anal- ysis, if   G  ℝ, then G is a union of open intervals. 

Hence, if   Gk  ℝ, then Gk is a union of open intervals of ℝ, and so 
},....,2,1{ nk

 Gk is a union of open intervals of ℝn. 

But by Immediate 3.2(i) of [5], an open interval of ℝn is a union of d|| ||-balls of ℝn.  

 

Hence, 
},....,2,1{ nk

 Gk, where   Gk  ℝ, is a union of  d|| ||-balls. By the popular result that a non-empty set of a metric 

space is open in the space if and only if it is a union of balls, we have therefore proved ().  

 

MetricTop (ℝn)  ProductTop(ℝn): Again, both topologies contain  and  ℝn. By () of Section 5 it suffices to show that a 

d|| ||-ball  

of ℝn belongs to ProductTop(ℝn). By Immediate 3.2(iii) of [4], a  d|| ||-ball is a union of open intervals of ℝn. But by () of 

Section 6, an open interval of ℝn belongs to ProducTop(ℝn), and so a d|| ||-ball belongs to the topology ProductTop(ℝn). ///  

 

8 Remark  It is hoped that new textbooks of General topology will present this proof.  

 

REFERENCES  

[1]  Michael C. Gemignani, ELEMENTARY TOPOLOGY 2nd Edition, Addison Wesley, Reading, Massachusetts, 1972. 

[2]   Serge Lang, REAL ANALYSIS, 2nd Edition, Addison Wesley, 1983. 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13 –16 



16 

 

A Corollary of…                            Sunday                                 Trans. Of NAMP 
 

 

 

[3]  Theral O. Moore, Elementary General topology Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. 

[4]  George F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill  Kogakusha, Ltd,1963. 

[5]  Sunday Oluyemi Open Ball Open Cell Topology Theorem in Euclidean Spaces, Transactions of the Nigerian 

Association of Mathematical Physics Vol. 10, 1-12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 13 –16 


