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Abstract 

This paper states and proves what this author calls the Open Ball Open Cell 

Topology Theorem in Euclidean Spaces (the OBCT). A contribution of this 

paper, amidst several, is employing this theorem to justify the puritanical 

definition of the partial derivative at an interior point. Its Interval 

Characterization of continuity is also worthy of note. 
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1. INTRODUCTION 

At the risk of sounding immodest this author makes bold to say that the literature is subconscious but not fully conscious of 

the Open Ball Open Cell Topology Theorem in Euclidean Spaces, as the literature fails to explicitly state it and explicitly 

evoke it in several places where it (the literature) needs it; at best the literature “stumbles” over the theorem in these places; 

the arguments in these places do not justify the claims in these places. A contribution of this paper is its offer of clarity of 

idea – by (i) explicitly pointing out this theorem and (ii) pointing out of some of the places [1, last paragraph of page 244 

spilling into p.245][2, page 6-Definition of an interior point, and page10-Problem 1-15][3, page 79, claim of openness of A1 

and B1 there][4, the claim in the last paragraph of p.288 spilling into p.289 that with P belonging to the open set U  ℝn, 

then, for some open set of values of t,  P + tH lie in U ][5, 6.8.9, p.349] etc.etc., where this theorem far simply and clearly 

proves the assertion being claimed, compared to the “complicated and inconclusive” arguments of the respective author. A 

second contribution of this paper, and significantly too, are  

(iii)  applying the theorem to justify the puritanical definition of the partial derivative at an interior point, and 

(iv)  applying the theorem to give the Interval Characterization of Continuity  

 There are other applications of the OBCT given in and outside this paper. For an instance, outside this paper we 

prove the equality of the metric topology, d|| ||n, of ℝn (n  2), and the pro- duct topology,
n

τ ℝ, of  ℝn. 

The proof of our Open Ball Open Cell Topology Theorem in Euclidean Spaces is an adaptation of several simple 

arguments found in the literature. It is hoped that authors of new books on Calculus in ℝn shall record this theorem and 

furnish in addition several other applications, e.g., in the proofs of the Implicit / Inverse Function Theorem, etc.  

 By ℝ we shall mean the real numbers and by ℕ the natural numbers 1, 2, 3, …. If n  ℕ and n  2, by ℝn  we 

shall mean the Cartesian space ℝxℝx……xℝ (n factors). Of course, ℝn with the Euclidean norm || || [6, p.206] is called the 

Euclidean n-space[7, 2.19, p.51]. If I1, I2, …., In are intervals in ℝ, the Cartesian product 

I1xI2x….xIn ( ℝn)                       …()                                      

is called an interval in ℝn ; an interval () in which all the sides I1, I2, …., In  are finite intervals in ℝ is called a cell[7, first 

paragraph, p.52]. Ik (k = 1, 2, … , n) in () is called the kth side of the interval. An open interval /open cell is one with all its 

sides open intervals of ℝ. 

Let a = (a1, a2, … , an)  ℝn. By the Euclidean norm of a, ||a||, is meant 22

2

2

1 ... naaa  [6, p.206], and if r  ℝ,   
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r  0, by a ball of radius r centered on a denoted B(a, r) is meant the set {x  ℝn : ||x – a||  r}[4, 3.3, p.49] referred to in 

[6, Definition 59.1, p.211] as an r-neighbourhood of a, and denoted Nr(a).We adhere to B(a, r). If   A  ℝn and a  A, a 

is called an interior point of A[6, Definition 59.2,p.211][4, Definition 3.5, p.49] if there exists r  0 such that B(a, r)  A.  

We state the  

 

OPEN BALL OPEN CELL TOPOLOGY 

THEOREM IN EUCLIDEAN SPACES (OBCT) 1 Let n  ℕ , n  2. 

(i)  Let I be an open interval, in particular an open cell of ℝn, and x  I.  Then, there exists r  0 such that the ball B(x, r)  

I. See Figure 1 below.  

 

               

 

 

 

 
 

             Fig.1 

(ii)    Let r  0,  x  ℝn.  and consider the ball B(x, r). Then, there exists an open cell I of ℝn such that x  I  B(x, r). 

See Figure 2 below. 

 

           

                                  

    

                  

 

 

 

 

 

 

   Fig. 2 

 

(iii) Let r  0, x  ℝn and a  B(x, r). Then, there exists an open cell I such that a  I  B(x, r). See figure 3 below. 

 

 

             

 

                                                      

                             

                     

  

 

 

 

 

Fig.3 
 

Clearly, (iii) generalizes (ii), while (i) and (iii) reverse the roles of the open cell I and the ball B(x, r) 

 

Example 1 In  ℝ2, the plane, a ball B(a, r) of radius r  0 centered on a  ℝ2 is simply a circular disc with centre a but 

without its circular edge. See Figure 4 below.  
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                      Fig.4 

 

While the point (0, 0) = the origin of the plane, is clearly an interior point to the cell I = {x = (x1, x2)  ℝ2 : |x1|  1 , |x2|  

1}, since it is geometrically evident, even can be shown analytically, that (See Figure 5 below)   

 

 

 

           

                               

 

    

                            

                                

 

 

                                Fig. 5 

  

B((0, 0), ½ )  I, the point (1, 0)  I is not  an interior point of I since any ball B((1, 0), r) of whatever radius r (however 

small) will contain the point (1+
2
r , 0)  I [| Proof : That (1+

2
r , 0)  I is clear. And, || (1+

2
r , 0) –  (1, 0)|| = ||(1+

2
r  –1, 0 – 

0)|| = ||(
2
r , 0)|| =  

0)( 2

2
r  = 

2
r   r. Hence , (1 + 

2
r , 0)  B((1, 0), r).///|]. And so for no r  0 do we have B((1, 0), r)  I. /// 

  Let   A  ℝn. A is called an open set of ℝn if every point a  A is an interior point of A.  

We signify by /// the end or absence of a proof.  

 

2  A PROOF OF THE OBCT We need the  

FUNDAMENTAL INEQUALITY (FIE)[6, Lemma 61.1,  p.219][3, Theorem 7.11, p.65]  For x = (x1, x2, …, 

xn)  ℝn, n  ℕ, n  2,  

| xk |  ||x||  n max{|x1|, |x2|, ..., |xn|}, k = 1, 2, …, n. /// 

 Let  I = I1xI2 x…xIn be an open cell in ℝn, n  ℕ, n  2, and  suppose x = (x1, x2, … , xn)  I. Hence, xk  (ak, bk) = 

Ik for some ak, bk  ℝ, ak  bk , k = 1, 2, …., n, and so there exists, for each k, k  0 such that (See Figure 6 below) 

ak  xk – k    xk + k    bk                   …() 
 

    (                    ) 

  ak                xk – k                          xk        xk + k         bk  

                        

Fig. 6. 

Let r = 
2
1 min{1, 2, … , n}. We show that B(x, r)  I. Therefore, let  y = (y1, y2, ..., yn)  B(x, r), and so ||y – x ||  

r. By the FIE, therefore,  

|yk – xk|  ||y – x||  r  
2
1 k  k,  k = 1, 2, …, n. 
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And so, by a property of ℝ [8, Exercise 8.24: For x, a, r  ℝ,  

 r  0, 

| x – a |   r  a – r  x  a + r] 

xk – k  yk  xk + k,   k = 1, 2, ..., n                 .…()  

() and () now give  

 ak  xk – k  yk  xk + k   bk ,  k = 1, 2, …., n. 

And so,  yk  (ak, bk) = Ik, k = 1, 2, ..., n. Hence,  y = (y1, y2, …, yn)  I1xI2 x…xIn = I.  We have thus proved (i) of the Open 

Ball Open  

Cell Topology Theorem in Euclidean Spaces. Of course, if  I is an open interval of ℝn and x  I, then there exists an open 

cell I  such that x  I  I.   

What we have shown is geometrically evident in ℝ2, the plane, as shown below in Figure 7. 

                    

     

 

 

                     

 

 

             

 
 

Fig. 7. 
 

Now, let x = (x1, x2, …, xn)  ℝn, n  ℕ, n  2, and r  ℝ, r   0. Consider the open cell    

I = (x1 – n
r , x1 + n

r )x(x2 – n
r , x2 + n

r )x …x(xn – n
r , xn + n

r ).   

We shall show that I  B(x, r) to prove (ii) of the Open Ball Open Cell Topology Theorem in Euclidean Spaces. So, let y = 

(y1,  y2, …, yn)  I. Then, by the property of ℝ cited before now 

|yk – xk|  
n

r
  k = 1, 2, …, n                   

max{|y1 – x1|}, {|y2 – x2|}, …., {|yn – xn|}  
n

r                …() 

By the FIE, 

||y – x||  n  max{|y1 – x1|, |y2 – x2|, …, |yn – xn|} 

and so by (), 

|| y – x||  n 
n

r
 = r

n

n , 

which by [8, Properties 8.16(iv), p.151: 0  a  1  0  a  a , and 1 a  a  a], since 1 2  n, n   n, from 

which follows that 
n

n   1,  

  r. 

That is, 

|| y – x ||  r, 

from which follows that y  B(x, r). Since y was arbitrary, we have shown that I  B(x, r).  

Any book on Metric Space Theory records the  

 

OPENBALL THEOREM [9, Proposition and Figure of page 40] [4, Figure 3.2 of page 57][10, Theorem 6.5(a) and 

Figure 6.3,p.139] A ball B(x, r) in a metric space (X, d) is an open set of (X, d ). /// 

OPEN BALL THEOREM for ℝn [6, Lemma 59.1, p.212] For a  ℝn, n  ℕ, n  2, and  r  0, B(a, r) is an open set. /// 

And the proof  (See Fig. 8 below) is essentially showing that  
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if y  B(a, r), there exists r  0 such that  B(y, r)  B(a, r).  /// 

So suppose r  0, x  ℝn, n  ℕ, n  2, and a  B(x, r). Then, by the OPEN BALL THEOREM for the metric space (ℝn, d||   

||), the Euclidean n-space, there exists r  0 such that B(a, r)   

B(x, r). By (ii) of our Open Ball Open Cell Topology Theorem in Euclidean Spaces there exists an open cell I such that  

a  I  B(a, r). 

Hence, a  I  B(a, r)   B(x, r) from which follows that  

a  I  B(x, r). 

 

And we have proved (iii) of our Open Ball Open Cell Topology Theorem in Euclidean Spaces, thus completing the proof. 

///. 
 

3. ILLUSTRATIONS AND CONSEQUENCES 

We now move to discuss those places in the literature that need the Open Ball Open Cell Topology Theorem in Euclidean 

Spaces (OBCT) invoked to give a correct proof. First we recall the definitions of an interior point and of a non-empty open 

set in ℝn, and we come up with some immediate consequences of the OBCT. Suppose   A  ℝn, and a  A. a is called 

an interior point of A if there exists a ball B(a, r), say, such that B(a, r)  A.   A  ℝn is called an open set of ℝn if each 

a  A is interior to A. It follows from the OBCT that 
 

IMMEDIATE 1 Let n  ℕ and n  2.  

(i) a  A  ℝn  is interior to A  there exists an open interval I such that a  I  A. And so A is open  for every a  

A there exists an open interval Ia of ℝn such that a  Ia  A. And so a non-empty open set of ℝn is a union of open 

intervals.  

(ii) An open interval I in ℝn (i.e.,  I = I1x I2x….xIn, each Ik , k = 1, 2, …, n, is an open interval in ℝ) is an open set of ℝn. 

(iii)   A  ℝn  is an open set of ℝn  A is a union of open intervals. ///. 
 

Well-known is :    A  ℝn is open  A is a union of balls. By the OBCT it follows ((ii) of IMMEDIATE 1 above) that 

  

IMMEDIATE 2 (i) An open interval of ℝn  is a union of balls, and by OBCT(iii), 

(ii)  A ball is a union of open intervals. ///  

Suppose   A  ℝn  and p  ℝn . p is called a boundary point of A if every ball B( p, r) contains a point of A and a point 

of A’s complement. Immediate from the OBCT is 
 

IMMEDIATE 3 Let   A  ℝn. p  ℝn is a boundary point of  A   every open interval containing  p contains a point of 

A and a point of the complement of A. Compare the definition of a boundary point in [11, p.6/7]. 
 

Example  4 [3, 8.2 (d), (e), p.70] (i) The set G = {(, )  ℝ2 : 0    1,  = 0} is not open in ℝ2  (ii) The set H = {(, ) 

 ℝ2 : 0    1} is open in ℝ2 Proof : (i) and (ii) are, clearly, immediate from IMMEDIATE 1(i). Compare a ‘proof’ of 

either using balls./// 
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(iii) The sets G = {(, ,  )  ℝ3 :   0} and H = {(, ,  )  ℝ3 :   0,   0,    0}are open in ℝ3 while the set F = 

{(, ,  )   

ℝ3 :  =  =  } is not open in ℝ3. Proof  Also immediate from IMMEDIATE 1(i): Compare a ‘proof’ using balls./// 

Example 5 The points (1, 0) and (0, 1) in Figure 5 are boundary points of the cell diagrammatized there. Proof : Surround 

each of them with an open cell! ///. 

Example 6 [1, last paragraph of page 244 spilling into p.245] Let A1, A2, …, An be non-empty open sets of ℝ. CLAIM : 

A1xA2x…xAn is an open set of ℝn. Proof of CLAIM : Let x = (x1,  

x2,…., xn)  A1xA2x …xAn and so  by the topology of ℝ there exist finite open intervals I1, I2,…, In in ℝ such that  xk   Ik  

 Ak , k = 1, 2, ..., n.  Hence, 

x = (x1, x2,…, xn)  I1xI2x…xIn   A1xA2x…xAn.   …() 

The cell I1xI2x…xIn is an open interval. By IMMEDIATE 1(i), therefore, x is interior to A1xA2x…xAn . Since x was 

arbitrary, A1xA2x…xAn is an open set. Compare the ‘proof’ using balls of [1, p.244/245]. 

Example 7   Let    U  ℝn and suppose U is an open set,  p = (p1, p2, …, pn)  U and h = (h1, h2, …, hn)  ℝn. CLAIM 

[12,  last paragraph of p.288 spilling into p.289]: For some open interval of values of t, the vectors p + th lie in U. /// Lang 

merely asserted, he didn’t prove this claim. A proof here using the ball definition of “interior” and “openness” will certainly 

be complex. But, clearly, IMMEDIATE 1(i) offers a simple proof : p  I (a cell)  U. (See Figure 9 below)  

 

 (     )             (        )     ……      (       )    

         p1                              p2                                                pn 

Fig. 9 

 

And the existence of an open interval of values of t centered on 0 for which p + th  U is evident. 
 

Example 8 Like in the preceding Example 7, the claim of openness of A1 and B1 in the proof of  THEOREM 8.17 page 79 

of [3] was only asserted but not proved. An approach through IMMEDIATE 1 as done in the preceding easily establishes 

this claim. 
 

Example 9 The Partial Derivative The derivative  f (a) of real-valued  f : I  ℝ,   I  ℝ, is defined only at points a of 

a domain I which is an interval[13, Definition 6.1.1, p.158][4, Definition 5.1, p.104] just as solutions of ordinary 

differential equations are sought over intervals of ℝ and not over arbitrary sets in ℝ. Precisely: Let I be an interval, a  I 

and  f : I  ℝ. Then, f is differentiable at a provided 
ax

lim f*a(x)  exists, where  

f*a : I – {a}  ℝ. 

 x    ↦
ax

afxf



 )()(   

And, we define  

f (a) = 
ax

lim f*a(x).                           ....(*) 

This informs why, for the definition of, say, the first partial derivative, D1 f(a), say, at a, of  f : A  ℝ,   A  ℝn , a = 

(a1, a2, ..., an)  A to make sense, there is the need for the existence of an interval I1, say, in ℝ such that a1  I1 and 

I1x{a2}x{a3}x ...x{an}  A. Then, following (*), we define 

f p1 : I1   ℝ, x ↦ f (x, a2, a3, …, an),  x  I1 

and then, of course, 

1*1 ap
f  : I1 – {a1}   ℝ, 

  x   ↦ 

1

1

11 )()(

ax

afxf pp



  = 

1

212 ),...,,(),...,,(

ax

aaafaaxf nn



 . 

And, then, define  

D1 f(a)  
1

lim
ax

1*1 ap
f (x) 

 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 10, (July and Nov., 2019), 1 –12 



7 

 

Open Ball Open Cell Topology…                         Sunday                      Trans. Of NAMP 

 

Similarly, to define D2 f(a) there is the need to have an interval I2 in ℝ such that a2  I2 and {a1}xI2x{a3}x …x{an}  A. 

And then define  

f p2 : I2   ℝ, x ↦ f (a1, x, a3, … , an),  x  I2 

and 
2*2 ap

f  :  I2 – {a2}   ℝ, 

x   ↦ 

2

2

22 )()(

ax

afxf pp



  = 

2

2131 ),...,,(),...,,,(

ax

aaafaaxaf nn



 .          

And, then, define the second partial derivative. D2 f(a), of  f at a, by  

  D2 f(a)  
2

lim
ax

2*2 ap
f (x). 

The requirements for, and the definitions of, D3 f(a), …, Dn f (a) are now clear. One can refer to these definitions as the 

puritanical definitions of the partial derivatives. The reason for this is not far fetched; the reader should open several texts 

of Calculus on ℝn and compare their definitions of Dk f (a), k = 1, 2, …., n. The reader is not likely to find any of the texts 

mentioning 

(i)   the need for an interval Ik such that ak  Ik,  

(ii)  justification for the existence of Ik (E.g. an OBCT) 

(iii) the functions f pk and kapk
f

*
, and  

(iv) the puritanical (i.e., the very correct) definition  

Dk f (a)  
kax

lim kapk
f

* (x) 

In another paper of the author, the author continues the discussion of the partial derivative, offering two clarifications on 

the definition of the partial derivative.  

  If a  A is interior, then IMMEDIATE 1(i) provides an open interval I = I1xI2xI3x …xIn, say, indeed an open cell, such 

that  

a = (a1, a2, a3, ..., an)  I = I1xI2xI3x …xIn   A. 

And then, D1 f(a), D2 f(a), D3 f(a), … ,Dn f(a) are all simultane- ously definable. And the OBCT has justified the existence of 

Ik,           

k = 1, 2, …, n, and consequently the puritanical definition of the partial derivative at an interior point a of A  ℝn for  f : A 

 ℝ. 

 

Example 10 The Complex Derivative [14, Definition 4.58, p.219][15, Definition 2.1,p.33]. Here we need to first note that 

the topology of ℂ [|  ball, interior point, open set, closed set etc, etc |] is the same as the topology of the complex plane [the 

complex  

plane  ℝ2 with the element a = (a1, a2) of  ℝ2 identified with the complex number a1 + ia2|]. And so, IMMEDIATE 1 for 

the complex plane can easily be transferred to ℂ. Hence, if    D  ℂ, 0  h  ℂ, z  D interior to D and Re h and Im h 

small enough, of whatever sign, then z + h shall belong to D, and so, for the complex valued function  f : D  ℭ  f(z + h) 

shall make sense and consequently 

h

zfhzf

Dhz
h

)()(
lim

0






    meaningful.        

Example 11 Interval Characterization of Sequential Conver- gence in ℝn, n  2 [3, Section 11, p.98-110][6, Section 

5.61, p.218-221] Let a  ℝn and I an interval in ℝn, n  ℕ. I is an interval about a simply means a  I .  Recall the  

Definition 1: Let n  ℕ,   A  ℝn, and 


1)( kkx  a sequence in ℝn. The sequence 


1)( kkx  is said to be eventually in A if 

there exists a positive integer, N, such that  xk  A for all k  N.  

Definition 2: The sequence 


1)( kkx in ℝ is said to converge to a  ℝ if for every   0, the sequence 


1)( kkx  is eventually 

in the open interval (a – , a + ).  

  

THEOREM 3 The sequence 


1)( kkx  in ℝ converges to a  ℝ  for every open interval I about a, the sequen


1)( kkx  is 

eventually in I. 
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Proof  Elementary Real Analysis (ERA) arguments. /// 

Recall  

Definition 3: Let n  ℕ, n  2, a  ℝn and 


1)( kkx  a sequence in ℝn. The sequence 


1)( kkx  is said to converge to a if 



1)( kkx  is eventually in every ball B(a, r), r  0.  

 

THEOREM 5 Let n  ℕ, n  2, a  ℝn . The sequence 


1)( kkx  in ℝn converges to a  


1)( kkx  is eventually in every 

open interval I about a. 

  

Proof OBCT (i) for the forward implication ,  and OBCT(ii) for the reverse implication . /// 

Let n  ℕ, n  2. In what follows, we want to use the functional notation in writing the ith coordinate of x = (x1, x2, …, xn) 

 ℝn [8, Remark 11, p.21], and so we write the ith coordinate of x = (x1, x2, …, xn), xi, as x(i). Therefore, if 


1)( kkx  is a 

sequence in ℝn,  we may have a display of 


1)( kkx  as follows. 

x1 = (x1(1), x1(2), …, x1(n)) 

x2 = (x2(1), x2(2), …, x2(n)) 

x3 = (x3(1), x3(2), …, x3(n)) 

. 

. 

 . 

xk = (xk (1), xk (2), …, xk (n)) 

 . 

 . 

 . 

And so clearly 


1)( kkx  has given rise to n real sequences  



1))1(( kkx  = (x1(1), x2(1), …….…) 



1))2(( kkx  = (x1(2), x2(2), …….…) 

 . 

 . 

 , 


1))(( kk nx  = (x1(n), x2(n), ………) 

the ith coordinates,  i = 1, 2, …, n, of the terms of  


1)( kkx  giving rise to a sequence 


1))(( kk ix  . 

 

THEOREM [3, Theorem 11.7, p.102][6, Theorem 61.3, p.220] 6 Let n  ℕ, n  2 and a = (a1, a2, …, an)  ℝn. The 

sequence 


1)( kkx  in ℝn converges to a  the real sequence 


1))(( kk ix  converges to ai = a(i), i = 1, 2, …, n.    

Proof  : Suppose 


1)( kkx converges to a = (a1, a2, …, an). Suppose Ii,  i = 1, 2, …, n, is an open interval in ℝ about ai. 

Then, I = I1xI2x … xIn is an open interval in ℝn about a = (a1, a2, …, an) = (a(1), a(2), …, a(n)). By THEOREM 5 and the 

hypothesis, therefore, 


1)( kkx  is eventually in I. And so, 


1))(( kk ix is eventually in Ii, i = 1, 2, …, n. By THEOREM 3, 

therefore, 


1))(( kk ix  converges to ai. The proof of the implication  is similar. ///   

Example 12  Interval Characterization of Continuity Recall that if    A  ℝ, a  A and  f  : A  ℝ, then,  f is said be 

continuous at a provided:  

 Whenever given   0 there exists a ()  0 such that  

  









)ε(δ||

and

ax

Ax   | f(x) – f(a)|  .  

Clearly, this is equivalent to : 
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Whenever given   0 there exists a ()  0 such that  

x  A(a – (), a + ())   f (x)  ( f(a) – ,  f(a) + ).  

But this is also clearly equivalent to:  

Whenever given an open interval I of ℝ about f(a), there exists an open interval J of ℝ about a such that  f(AJ)  I. 

So, we have  
 

THEOREM 1 Let a  A  ℝ and  f : A  ℝ. Then, f is continuous at a  for every open interval I of  ℝ  about  f(a), there 

exists an open interval J of  ℝ about a such that  f(AJ)   I. /// 

Now let  p  ℕ and p  2. Denote by || ||p the Euclidean norm of  ℝp. Let m, n  ℕ, m  2, n  2,   D  ℝn, a  D and  f  

: D  ℝm. Recall that  f is said to be continuous at a provided:  

Whenever given   0 there exists a ()  0 such that  









)ε(δ||||

and

nax

Dx   || f(x) – f(a)||m  .  

Clearly, this is same as saying: 

Whenever given a ball B( f (a), ), centered on f(a) and of some radius   0, in ℝm, there exists a ball B(a, ()) in ℝn, 

centered on a and of some radius ()  0, such that  

f (DB(a, ())  B( f(a), ).     

It is immediate from this and the OBCT that:  
  

THEOREM 2  f is continuous at a  for every open interval  I of ℝm about f(a), there exists an open interval J of ℝn about 

a such that  

f(DJ)  I. /// 
 

Let n  ℕ, n  2,   D  ℝn, a  D and  f : D  ℝ. Recall here that  f is said to be continuous at a provided:  

Whenever given   0 there exists a  ()  0 such that  









)ε(δ||||

and

nax

Dx   | f(x) – f(a)|  .  

Clearly, this is same as saying that:  

Whenever given   0 there exists ()  0 such that  

f (D(B(a, ()))  ( f(a) – ,  f(a) + ). 

From this and the OBCT, we clearly have  
 

THEOREM 3 Let n  ℕ, n  2,   D  ℝn, a  D and f : D  ℝ. Then,  f  is continuous at a  for every open interval I  

of  ℝ about f(a) there exists an open interval J of ℝn about a such that  f (DJ)  I. ///  

Let   D  ℝn, n  ℕ, n  2. The function 

coordk : D  ℝ, x = (x1, x2, …, xn)↦xk, x  D, 

is called the kth coordinate function on D, k = 1, 2, …, n. Immedi- ate from THEOREM 3 is  
 

THEOREM 4  Let   D  ℝn, n  ℕ, n  2, a  D. The  kth coordinate function, k = 1, 2, …, n,  

coordk : D  ℝ, x = (x1, x2, …, xn)↦xk, x  D 

is continuous, at a. ///  
  

One formulates and proves easily the following.  
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THEOREM 5  Let m  ℕ, m  2,   A  ℝ, a  A and  f : A  ℝm. Then,  f  is continuous at a  for every open   

interval I of ℝm about  f (a) there exists an open interval J of  ℝ  about a such that  f (AJ)  I. ///  

Now, clearly, THEOREMS 1, 2, 3 and 5 together give the 

Interval Characterization of Continuity 6  Let m, n  ℕ,   D  ℝn, a  D and  f : D  ℝm. Then,  f is continuous at a 

 for every open interval I about  f(a) there exists an open interval J about a such that  f (DJ)  I. ///  

We note, of course that by ℝ1 is meant ℝ.  

Let m, n  ℕ, m  2,   A  ℝn   and  f : A  ℝm. If a  A, then  

f(a) = ( f(a)(1),  f(a)(2), … ,  f(a)(m))  ℝm. 

Then for k {1, 2, …, m}the function  

:kf  A     ℝ , a  ↦   f(a)(k),  a  A 

 is called the kth component function of  f [6, first line p.228]. And so we may write  f  = ( f1,  f2, …. ,  fm). We have  
 

THEOREM [6, Lemma 65.1, p.231] 7 Let m, n  ℕ, m  2,   D  ℝn, a  D and  f : D  ℝm. Then,  f is continuous at 

a  each of the component functions  fk , k = 1, 2, …, m,  is continuous at a. 

Proof :  For definiteness suppose k = 1, and that  f is continuous at a; we show that f1 is continuous at a. And so let I1 be 

an open interval in ℝ about  f1(a) = f(a)(1). Then, I1xℝxℝx…xℝ  ℝm is an open interval about f(a). By the Interval 

Characterization of Continuity 6 therefore there exists an open  

interval J  ℝn such that a  J and  f(DJ)  I1xℝxℝx…xℝ. And so,  

f1(DJ)  I1 

from which follows again by the Interval Characterization of Continuity 6, that  f1 is continuous at a. 

: Suppose each fk is continuous at a. Let I = I1xI2x…xIm   ℝm be an open interval about  f(a). And so each Ik  ℝ is an 

open interval about  fk(a) =  f(a)(k), k = 1, 2, …, m. By hypothesis and the Interval Characterization of Continuity 6, 

therefore, there exists an open interval Jk   ℝn such that a  Jk and  

fk(DJk)  Ik                   …()  

Clearly  J = 
m

k

kJ
1

 is an open interval in ℝn about a. From () follows that  

f(DJ)  I1 xI2x …xIm = I. 

And so by the Interval Characterization of Continuity 6, f is continuous at a. ///  

Recall  

[3, THEOREM 15.2(c), p.147](Sequential Characteriz- ation of Continuity) 8   Let m, n  ℕ,   D  ℝn , a  D and  

f : D  ℝm. Then, f is continuous at a  for every sequence 


1)( rrx  in D converging to a, 


1))(( rrxf  converges to f(a). 

/// 

Immediate from this THEOREM 8, and THEOREM 7 is  

THEOREM 9 Let m, n  ℕ, m  2,   D  ℝn , a  D and  f  = ( f1,  f2, … ,  fm) : D  ℝm. Then, 

f is continuous at a  for every sequence 
n

rrx 1)(   in D converging to a, 


1))(( rrk xf converges to fk(a). k = 1, 2, …, m. /// 
 

Now consider  
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CLAIM [3, Examples 15.5(i), p.151]: 10 Let D = ℝ2,  a  ℝ2 and  f : ℝ2  ℝ2, (x, y) ↦( 2x + y, x – 3y), (x, y)  ℝ2.  
 

Then, f is continuous at a.  Proof of CLAIM : Clearly,  

 f = ( f1,  f2), where 

f1 :  ℝ2  ℝ, (x, y) ↦ 2x + y, (x, y)  ℝ2 

and  

f2  :  ℝ2  ℝ, (x, y) ↦ x – 3y, (x, y)  ℝ2. 

Suppose 


1)( rrx  is a sequence in ℝ2 converging to a = (a1, a2). Then,  

f1(a) = 2a1 + a2    and    f2(a) = a1 – 3a2,  

and , 



1)( rrx = 


1))2(),1(( rrr xx  converging to a = (a1, a2) implies 


1))1(( rrx  converges to a1 and 


1))2(( rrx  converges to 

a2 . And so, 


11 ))(( rrxf  =  



 1))2()1(2( rrr xx  converges to 2a1 + a2 =  f1(a), and so, 


11 )(( rrxf  converges to  f1(a). 

Similarly, 


12 )(( rrxf  = 


 1))2(3)1(( rrr xx  converges to a1 – 3a2 =  f2(a) , and so 


22 ))(( rrxf  converges to f2(a) By 

THEOREM 9 therefore,  f is continuous at a. /// 
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