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Abstract 

 
The stationary perturbation method yields the ground –state energy of the one-

dimensional spin-1/2 anisotropic Heisenberg antiferromagnet. The ground state energy 

per spin









N

E  as a function of the anisotropic parameter    for even spins  N 6N is 

found to be  J2125.0  for 9.0 . This is comparerable to Hulthen’s solution for 

the ground state energy per spin  J4431479.0  in the thermodynamic limit, N  

 

1.1  INTRODUCTION 

The Physics of quantum spin models have attracted a considerable attention over a long period of time [1, 2, 

3,5].This interest is due to strong coulomb repulsions between electrons that make up magnetic materials. In the limit of 

strong coulomb interactions, the electrons are localized and may be well represented by a model Hamiltonian describing a set 

of interacting spins iS .The Hamiltonian for such a system is the Heisenberg model: 

j

ji

i SSJH .
,


      (1.1)     

where the iS  are the spin-S operators, the sum is over nearest neighbour pairs and the dot product  
ji SS .  is given by 
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The Heisenberg Hamiltonian (1.1) can be generalized to 

  
ji

z

j

z

iz

y

j

y

iy

x

j

x
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...
    (1.3) 

This Hamiltonian describes the antiferromagnet (ferromagnetic) Heisenberg model  00 J . It is known as XYZ  model 

when
zyx JJJ  , the XY model when 0zJ and 

zy JJ  , and the XXZ model when 
yx JJ  .Using the spin operators  

yx iSSS  , the Heisenberg Hamiltonian [Eqn(1.3)] is transformed to  

  Z

j

Z

ijiji

ji

SSSSSSJH  
, 2

1      (1.4) 

The one dimensional Heisenberg model hasbeen solved exactly using the Bethe Ansatz method [14]. Although the 

Bethe Ansatz method is limited to one dimension, several methods have been used to study quantum spin models in one and 

higher dimensions. Among’s these methods, numerical and approximation methods have gained recognition over the years 

[10,11,12]. Using these methods the ground state properties of large finite size lattices can easily be determined. 

The aim of this paper is to determine the ground state energy of the one dimensional Heisenberg model for even 

lattice sites using the stationary perturbation theory. The application of perturbation theory to the physics of correlated 

electron systems and quantum spin models have been discussed extensively in literature [7, 8,9].Perturbation method relies 

on us being able to write down convergent or asymptotic series expansion of the observables we are interested in, and 

therefore works only in restricted ranges of parameter values in the many-body Hamiltonian. The eigenvalues and 

eigenfunctions can be expanded in a power series in the perturbation parameter  , that is 

...2210  nnnn EEEE  , 
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...2210    ,                                       (1.5) 

where in both expressions the first one is the unperturbed one. The remaining section of this paper is organized as follows: 

in section 1.2,we give a short description of the perturbation method. In sections (1.3-1.6) we compute the ground state 

energies for even spins and generalize to N  limit, while in section 1.7 the numerical results are presented. In section 1.8 

we discuss the results and draw up conclusions. 

 

1.2 Methodology 

The Heisenberg Hamiltonian (1.4) in the presence of anisotropic parameter    
canbe expressed as 

  Z

j

Z

iili

ji

SSSSSSJH   j

, 2

       (1.6) 

Dividing Eqn (1.6) into two parts,
1HHH o  ,  

      where 
ji

Z

j

Z

io SSJH
,

       (1.7) 

    and,    



ji

jij SSSS
J

H
,

††

i1
2

       (1.8) 

 

oH  the unperturbed part is the simple Ising model, and its exact ground state  

is the antiferromagnet Neel State. 

1H  can be treated as a perturbation in .   1,0 . 

   The perturbation method involves diagonalizing the matrix[8] 















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o
TT

HH
HHH

11

1
 (1.9) 

The many particle basis   and   are eigenstate of  
oH  and provide the smallest (minimum) energies 

oT  for a 

determined number of spins. 

The ground state wave function is given by 

 










  DCgs

       

(1.10) 

In Eqn (1.10) 
C  are the zero-order coefficients and are obtained from the diagonalization of the second order Hamiltonian 

matrix (Eqn(1.9)). Whereas first order coefficients 
D are given by 











C

TT

H
D
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



1

       

(1.11) 

Correlation function  Z

j

Z

i SS  and the average magnetic moment can be obtained from the ground state wave function. 

gsgs
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        (1.12) 

gsgs
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Z
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i

S
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                                 (1.13) 

 

1.3    GROUND STATE ENERGY OF THE 2-SITE HEISENBERG MODEL. 

         The 2-Site Heisenberg model in the subspace 0ZS  can be described by the following many-particle states: 

 2,11  ,  2,12 , 

4
1

J
H o


 , and  2

4
2

J
H o


 . 

        That is states 1  and 2  are eigenstate of the unperturbed Hamiltonian
oH , with eigenvalue of  

4

J  . These states are 

labeled as  ,  2,1,   
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(1.14) 

Similarly, 
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The second order correction to the ground state is given by 














 

2

1

22

1

1

1

11

111

oooooo TT

HH

TT

HH

TT

HH

 

(1.16) 

This second order term vanishes because 
4

2

0

1 J
TTT oo


  
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
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
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       (1.17)     

Let 
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Solving for   in the equation   0 IADet , gives 

24
1

JJ 
 




 , 
24

2

JJ 
 


  

The ground state energy of the system is  

24

JJ
Eg







       

(1.18) 

For 1 (Isotropic case) 

4

3J
Eg


    or J75.0 . 

This result obtained for the isotropic case  1 is in good agreement with that obtained using variation wave function 

approach [11] and Exact calculation [13] 

 

1.4 GROUND STATE ENERGY OF THE 4-SITE HEISENBERG CHAIN 

In the subspace 0ZS , the 4-site Heisenberg chain has a total number of six basis. If   is an arbitrary vector in this space, 

then it of the form 

  4;3;2;1 , where   ,, and are chosen such that the net total spin 0ZS . 

Eigen states of the unperturbed Hamiltonian 
oH which provides the minimum energy

oT  for a given number of spins 

arelabeled as: 

 4,3,2,15 ,    4,3,2,16  

That is 55 JHo  ,and 66 JHo  ,   where JTTT ooo  65  

For the remaining four basis states i , 0iHo
, 4,3,2,1i . 

where 04321  oooo TTTT  

Similarly  65
2





J

iH
 , 2,1i  and  4321

2
65 11 




J
HH

  

The ground state energy matrix to a second order in the perturbation parameter   is found to be 




















JJJ

JJJ
H

22

22




 

     

(1.19) 

The ground state energy obtained from Eqn (1.19) is thus  
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JJEg

22
       

(1.20) 

 

1.5  GROUND STATE ENERGY OF THE 6-SITE HEISENBERG CHAIN 

The number of many –particle basis for the six-site Heisenberg chain in the subspace 0ZS  is given by the relation 

!
2

!
2

!

NN

N
S 

 

For a six-site chain  6N , 20S  

  Of these numbers, many-particle basis of the form   6,5,4,3,2,1i  

 with   ,  or   , provide the smallest eigenvalue of the unperturbed Hamiltonian 
O

H .The states are labeled as  

 6,5,4,3,2,12 , and  6,5,4,3,2,17  with eigenvalue 
2

3J  

 The remaining 18  basis provide eigenvalue of 
2

J .That is 

ii

o

J
H 

2


 , where 20,....,10,9,8,6,5,4,3,1i  

By making use of the procedure in sections (1.3) and (1.4), the ground state energy matrix becomes 
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
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The eigenvalues are the diagonal elements of the energy matrix Eqn (1.20). That is  

JJEg

2

2

3

2

3



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(1.22) 

 

1.6 GROUND STATE ENERGY OF THE N-SITE HEISENBERG CHAINS (N≥6) 

The procedure used in the previous sections can be generalized to include Heisenberg chains of size ,14,12,10,8N … 

For 8N  
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For  10N  
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Thus the ground state energy matrix for the 1D Heisenberg Hamiltonian for antiferromagnetic ordering, in the subspace 

0ZS  is found to be 

 

 






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




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2
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


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J
N

J
N

H

   

(1.25) 

Where  N  the number of site is even, 6N . 

The ground state energy is thus  

   21
4

 



NJ

E                     (1.26)                                                                
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1.7 NUMERICAL RESULTS 

TABLE 1. Ground state energy per site   
PnE   obtained using perturbation method.   is the anisotropic parameter. Values 

obtained using the same method [12]is shown  in the third column for comparison.    
 

  
pnE   

QnE   

0.1                      -0.2525                  

0.2                      -0.2600                     

0.3                      -0.2725 

0.4                      -0.2900 

0.5                      -0.3125 

0.6                       -0.3400 

0.7                      -0.3725 

0.8                       -0.4100 

0.9                       -0.4525 
 

-0.2525 

-0.2600 

-02725 

-0.2900 

-0.3125 

-0.3400 

-0.3725 

-0.4100 

-0.4525 

 

TABLE II. Ground state energy per site   
PNE  obtained using perturbation method at 1J and 9.0 . N  is the number of 

sites. Values obtained by Gagliano et al.  
LNE [9] and by Bonner and Fisher  

DNE [2] using the modified Lanczos and Exact 

diagonalization method respectively are shown in the third and fourth column for comparison. 

 

N                          
pnE   

LnE
                  

DNE   

6                        -2.7150 

8                        -3.6200 

10                      -4.5250 

12                      -5.4300 

14                      -6.3550 

16                      -7.2400 

18                      -8.1450 

20                      -9.0500 

22                      -9.9550 

24                     -10.8600 
 

-2.8027             -2.8028 

-3.6511             -3.6511 

-4.5154             -4.5155 

-5.3874             -5.3874 

-6.2635              -6.2040 

-7.1423              -7.0903 

-8.0227              -7.9766 

-8.9044              -8.8629 

-9.7869              -9.7492 

-10.6355            -10.6355 

 

TABLE III.  Comparison between ground state energy per site  NE / obtained using perturbation method and other 

approximate and numerical methods in the limit N  

 

1.8   DISCUSSION 

The ground state energies of the one dimensional spin-1/2 Heisenberg model in the In the subspace 0ZS  have been 

computed using the stationary perturbation theory. The ground state energy of J75.0  obtained for a two spin system is the 

same with that obtained  by Oles[11]using the variational wave function approach. 

In section 1.4, the ground state energy  of J98.1  for 7.0 ,compare nicely with the values of J00.2  obtained by 

Gagliano et al.[9], Bonner and Fisher[2] and Ehika et al.[13].In Table 1numerical results for the ground state energy per site 

is presented for different values of the anisotropic parameter   .The values  shown  in the second column  using perturbation 

method, compare nicely with the values obtained by a Parkinson and Farnell [12]  as shown in the third column. The ground 

state energy matrix  Eqn.(1.25) is of second order and is a diagonal matrix. In table II, we display results for the ground state 
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Reference  Method E/N 

[13] 

[9] 

[1] 

[14] 

[12] 

Present work 

 RSRG    

 Modified Lanczos 

 Exact diagonalization 

 Bethe Ansatz    

 Variational monte carlo 

 Perturbation method                 

44378.0  

001.04431..0   

003.04431..0   

4431475..0  

423729..0  

45250..0  
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energies for 6N  up to 24N  sites. Our results is shown in the second column and is in good agreement with values 

obtained by Gaglianio et al.[9], Bonner and Fisher[2]as shown in the third and fourth column respectively. 

In table III, the ground state energies per site (E/N) for the limit N  obtained using various approximation and 

numerical methods are shown. Our result of J45250.0  compare favourably with these other methods. 

 

1.9  CONCLUSION 

We have computed the ground state energies for the one-dimensional Heisenberg model using the stationary perturbation 

theory. The ground state energy matrix obtained in our study is of second order in the anisotropic parameter   , and is a 

diagonal matrix. Our result of JJ 22  at 1 for the four-site Heisenberg antiferromagnetic reproduces the result of 

J3  for the four-site Heisenberg chain obtained by Kung et al.[10], using the projector Monte Carlo method. 
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