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Abstract 

This paper studies motion of a test body around the  triangular equilibrium points in 

the frame of the restricted three-body problem, when the three involved bodies have the 

shape of an oblate spheroid and are enclosed by a circular cluster of materials under 

effects of radiation pressure of the main bodies and small perturbations in the Coriolis 

and centrifugal forces. The equations of motion have been presented and the 

triangular equilibrium points computed. There exists a pair of triangular equilibrium 

points, defined by the oblateness of the three bodies, radiation pressures of the 

primaries, accumulation of materials and small perturbation in the centrifugal force. 

These equilibrium points are stable under certain conditions and the presence of 

accumulation of materials around the bodies draws the test body closer to the 

primaries. Hence, the circular cluster of materials increases the stability region and 

proves to be a stabilizing force.  
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1.  Introduction 

     The restricted problem of three bodies studies the motion of an infinitesimal mass moving under the gravitational 

effects of two finite masses, called primaries, which move in circular orbits around their center of mass on account of their 

mutual attraction and the infinitesimal mass not influencing the motion of the primaries. The study of the restricted three-

body problem (R3BP) is of great theoretical, practical and educational relevance, and in its many variant, has been applied in 

several scientific fields, such as celestial mechanics, galactic dynamics, chaos theory and molecular physics. The R3BP is 

still a stimulating and active research field that has been receiving considerable attention of scientists and astronomers 

because of its applications in dynamics of the solar and stellar systems, lunar theory, and artificial satellites. There are so 

many examples of the restricted problem in space dynamics. One of them is the classical three-body problem viz; the Sun-

Earth-Moon combination and describing the motion of the moon. 

  The solutions of the R3BP have been developed over the centuries; there exist five specific solutions called the 

equilibrium or Lagrangian points. If the third body is placed at any of these points with zero velocity in the coordinate system 

rotating with the primaries, it will remain at that point in the rotating system. Three of these points called the collinear 

equilibrium points 
321 ,, LLL are located on the line joining the primaries and were found by Euler while the other two 

equilibrium points 
54 , LL  called triangular equilibrium points were found by Lagrange [1]. The collinear equilibrium points 

are unstable points while the triangular points can be stable ([2], [3], [4] and [5]) in that a slight displacement of the test body 

away from the equilibrium points will not produce unbounded motion but rather an oscillation about the points. There are 

asteroids known as the Trojans librating about both triangular points in the Sun-Jupiter system.  
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    During the last century, several modifications of the classical problem have been introduced in order to make it more 

relevant and applicable to certain systems of Dynamical Astronomy.  It is a well known fact that when one or both the 

primaries are a source of radiation, the classical R3BP fails to discuss the motion of the third body. This problem is called the 

photogravitational problem ([2], [6], [7]) and has been applied to the Sun-Planet-Particle and Galaxy Kernel-Sun-Particle. 

Radiation pressure act as an orbital perturbations and affects the orbits and trajectories of small bodies, all spacecrafts and all 

natural bodies (comets, asteroids, dust grains, gas molecules) and can cause dust grains to either leave the Solar system or 

spiral into the Sun.  Also, if the effects of the Sun’s radiation pressure on the spacecraft of the Viking program had been 

ignored, the spacecraft would have missed Mars orbit by 15,000 kilometers (Eugene Hecht). 

    In the formulation of the classical R3BP, the third body of infinitesimal mass is considered to move, only under the 

mutual gravitational force of the primaries, but in practice, Coriolis and centrifugal forces are effective and small 

perturbations affect these forces. An example is small deviation of disc stars on circular orbits. Therefore, it is important to 

include these forces in the study of the R3BP. Several interesting studies when Coriolis and centrifugal forces are perturbed 

have been carried out by [3], [8] and [5], among others. Also, the model of the classical R3BP considered all the bodies to be 

strictly spherical, but in actual sense, most celestial bodies are not perfect spheres, some have the shape of an oblate spheroid 

while some are triaxial in nature. For example, the Earth, Jupiter, Saturn and stars (Archerner, Antares and Altair) have the 

shape of an oblate spheroid while Haumea (a scalene dwarf planet is triaxial in shape. Also, neutron stars and black dwarfs 

which are a result of the cooling of white dwarfs are also oblate due to their rapid spinning after formation. Figure 1 shows 

the assignment of the semi-axes on a spheroid. It is an oblate spheroid when c a and prolate if c a   

 

Fig 1: A spheroid showing the role of the semi-axes on the shape 

The consideration of the lack of sphericity with respect to oblate shapes causes large perturbations in the study of the 

R3BP. It has been shown that additional equilibrium points referred to as the out-of-plane points [9] exist when oblateness of 

the primaries are included. Several other results have been recorded in the works [2], [3], [5], [7], [10], and [11].  

In carrying out more investigations of the R3BP, some studies have examined the case when accumulation of debris 

disc or dust particles surrounds the bodies. {12] found a dust ring around a nearby star, e Eridani.  [13] studied dust 

enshrouded AGB stars in the solar neighborhood. One notable example is in the HD 98800 system, which comprises two 

pairs of binary stars separated by around 34 AU (Fig 2). The binary subsystem HD 98800 B, which consists of two stars of 

0.70 and 0.58 solar masses in a highly eccentric orbit with semimajor axis 0.983 AU, is surrounded by a complex dust disc 

that is being warped by the gravitational effects of the mutually-inclined and eccentric stellar orbits [14] and [15]. The 

importance of the problem in astronomy and the R3BP has been addressed by [16], [17], [18], [19] and [20] where it was 

shown that the presence of accumulation of material around the bodies resulted in additional collinear equilibrium points of 

the system. Other works that took into account the case when the primaries are surrounded by circular cluster of materials 

under different assumptions include [4], [11], [21], [22], and [23]. 
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Fig 2: An artist's impression of the binary star system HD 98800 B surrounded by a circular cluster of materials (Credit: 

NASA Spitzer Telescope) 
 

In order to state what the present paper examines, it is important to reiterate that [5] extended the work in [3] by 

including the assumption that the third body also has the shape of an oblate spheroid.  In our present study, we extend the 

work of [5] by looking at the case when the primaries are stars and are in addition enclosed by a circular cluster of material 

points. The equilibrium points are found and their stability investigated. The paper is organized such that section one gives 

the introduction. Section two captures the equations of the problem under effects of radiation, perturbations, oblateness of the 

three bodies and the gravitational potential from the cluster of material points. The investigation of the equilibrium points is 

done in section three while section four analyzes their linear stability. The discussion and conclusions are drawn in section 

five and six, respectively.  

 

2.  Equations of motion 

Let 1m and 2m  be the masses of the first and second primary which are massive radiating-oblate stars, respectively, 

and let 3m  be the mass of the third body having infinitesimal mass compared to the masses of the primaries. We consider the 

motion of a particle influenced by the gravitational force from the central binary and the accumulated cluster of materials. We 

use a model that best explains a flattened system given by [24] and expressed as

    

 
2

2 2 2

, dGM
V r z

r a z b

 

  

;                                                                                         (1) 

where dM is mass of the accumulated material point;  a and b  are parameters which determine the density profile of the 

material point. The ratio /b a is the measure of the flatness of the cluster and 2 2r x y  . The behavior of the two 

parameters having dimension of distance determines the two limiting cases. When 0a b  , equations (1) equal to the one 

when there is no flattening. If 0a   the axial symmetry is reduced to its special case (the spherical one) while for 0b   the 

system has a collapse. Therefore, by varying the ratio /b a  of the parameters, one varies the flattening of the system: from 

zero (no flattening) towards infinity (collapse into the plane of symmetry). Now, as /b a is tending to zero the mass 

distribution of the cluster of materials becomes flatter and flatter. 

Now, we assume that the three bodies have the shape of an oblate spheroid with both primaries radiating and surrounded by a 

cluster of materials. The modified potential in this case is 

 
* 3 31 1 1 2 2 2

3 1 2 13 3 3 3
2 2 2

1 1 1 2 2 22 2 2 2

dMq q q q
U Gm m m

r r r r r r r T

  
 

               
      

 

 

                              (2) 

where  
22 2

1 1r x x y   ,  
22 2

2 2r x x y   , 
2 2

25

i i
i

AE AP

R



 : 1i  :  1,2,3i  . 

G  is the gravitational constant; 1q , 2q  are radiation factors of the first and second primary, respectively, while 1 , 2  and 

3 are the parameters representing the oblateness of the first primary and second primary and the test body, respectively. 1r  
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and 2r are the distances of the body from the first and second primary, respectively, and last term in the potential, is the 

gravitational potential due to the mass dM  of the disc: 0z  ; T a b  is the parameter which defines the density profile of 

the cluster of materials.  

  Now, the equations of motion of a passively gravitating third body in a barycentric rotating coordinate system, in the 

gravitational field of the primaries, based on the potential (2), have the form: 

         

    

 

1 2 1 1 2 22

3 3 5 5

1 2 1 2

3 3

35 5
2 2 2

1 2

1 1 3 1 3 1
2

2 2

3 1 3 1
                                                              

2 2

d

q x q x q x q x
x ny n x

r r r r

x x M x

r r r T

         

     

       
     

   
  


 

(3)

   

     

 

1 1 1 32 32 2 2

3 3 5 5 5 5

1 2 1 2 1 2

3
2 2 2

1 3 1 3 1 33
2

2 2 2 2

d

q y q y y yq y q y
y nx n y

r r r r r r

M y

r T

          
       



  

where 

 

2

1 2 3
2 2 2

23 3
1

2 2

d c

c

M r
n

r T

    



  

                                                                                            

(4)

                                                                                    

                                                                    

 is the mass ratio of the stars and n  is their mean motion defined by the oblateness of the primaries, the mass of the cluster 

points, the parameter which represents the density profile of the cluster of materials and cr is the radial distance of the test 

body in the classical R3BP.                            

Now, due to small deviation of disc primaries on circular orbits, we assume that the Coriolis and centrifugal forces of the 

stars are slightly perturbed and so the system of equations of motion is recast to the form: 

2 xx ny U   

2 yy nx U 
                                                                                                                        (5)

 

 where  

       

 

2 2 2

1 1 1 3 32 2 2

13 3 3 3
2 2 2

1 2 1 2 1 2

1 1 1

2 2 2 2 2

d
n x y q q Mq q

U
r r r r r r r T

            
       


 

The parameters  and  represent the small change in Coriolis and the centrifugal forces, respectively, and are such that

 1 1   and  1 1   .  Equations of motion (5) admits the Jacobi integral  

    
 2 2 2C x y U  

                                                                                                              
(6) 

where C is the Jacobi constant  
 

3.  Triangular equilibrium points 

     Because no general solution in the R3BP is available, particular solutions are sought to obtain insight into the 

problem. These particular solutions which are referred to as the equilibrium points are found by setting the velocity and 

acceleration in equation (5) to zero: 

         

    

 
 

1 2 1 1 2 22

3 3 5 5

1 2 1 2

3 3

35 5
2 2 2

1 2

1 1 3 1 3 1

2 2

3 1 3 1
0                                                         7

2 2

d

q x q x q x q x
n x

r r r r

x x M x

r r r T

         


     

       
   

   
   



 

and      

 

1 1 1 32 32 2 2

33 3 5 5 5 5
2 2 2

1 2 1 2 1 2

1 3 1 3 1 33
0

2 2 2 2

d
q y q y y y M yq y q y

n y
r r r r r r r T

        


  
       



 

Solving the pair of equations in (7) for x and y gives the coordinate of the triangular equilibrium points.  
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From first equation of (7), we get

  
     

 
1 1 1 32 32 2 2

3/23 3 5 5 5 5
2 2

1 2 1 2 1 2

2 32 2 2

3 5 5

2 2 2

1 3 1 3 1 33

2 2 2 2

33
0

2 2

d
q x q M xq q

x n
r r r r r r r T

q q
n

r r r

        
 


 

   
        

 

 
     

 

   

Now, substituting the second of (7) in the above equation (since 0y  ), yields

 

 
 

 
2 32 2 2

3/2 3/23 5 5
2 2 2 2

2 2 2

33

2 2

d dM Mq q
x n

r r rr T r T


  

 
       

  

         

Simplifying this equation, yields   

 

 
2 31 1 1

3/23 5 5
2 2

1 1 1

33
0

2 2

dMq q
n

r r r r T


     



                                             

 
2 32 2 2

3/23 5 5
2 2

2 2 2

33
0

2 2

dMq q
n

r r r r T


     



                                                                 (8) 

When the primaries are not radiating and are spherical, equations (8) reduce respectively:  

 
2 3

3/23 5
2 2

2 2

31
0

2

dM
n

r r r T


    



  

and 

 
2 3

3/23 5
2 2

1 1

31
0

2

dM
n

r r r T


    



 

Further, when the cluster of materials is absent and the test body is spherical in shape, these equations reduce to 

3

1

1
0

r
    ,    

3

2

1
0

r
    . 

Therefore, the solution when these parameters are null but a slight deflection on circular orbit remains, is  

1 2 1/3

1
r r


                                                                                                                         (9)  

Hence, we use perturbation method to solve the system of equations (8), when all the parameters are present. To achieve this, 

we assume that the solutions are 

1 11/3

1
r 


  ,    

2 21/3

1
r 


                                                                                                (10)           

where  1,2i i  are very small quantities. 

Now, from equations (10), we get 

 3 1/3

1 11 3r      ,  5 5/3 1/3

1 11 5r                                                                                (11)                                     

 3 1/3

2 21 3r      ,  5 5/3 1/3

2 21 5r      , 

Substituting equations (4) and (11) in the equations of system (8) and solving, we get 

     
 

2/3

1 1 2 1 1 3 3/21/3
2 2

1 3 3 1
1 2

3 2 2

d
c

c

M
q r

r T
     

 

 
             

 

 

     
 

2/3

2 1 2 2 1 3 3/21/3
2 2

1 3 3 1
1 2

3 2 2

d
c

c

M
q r

r T
     

 

 
             

 

                 (12) 

Now, substitute equations (12) in equations (10) and simplifying, to get 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 137 – 148 



142 

 

Motion Around Triangular Equilibrium…                    Oni and Joel                     Trans. Of NAMP  

     
 

 
2/3

1 1 2 1 1 3 3/21/3
2 2

2 11 1 1 1
1 1

2 3 2 3

d c

c

M r
r q

r T


    

 

 


        
 
 

 

     
 

 
2/3

2 1 2 2 2 3 3/21/3
2 2

2 11 1 1 1
1 1

2 3 2 3

d c

c

M r
r q

r T


    

 

 


        
 
    

(13)               

The exact coordinate of the triangular equilibrium point is  

2 2

2 11

2 2

r r
x 


   ,       

2
2 22 2

2 11 2 1

2 4 2

r rr r
y


                                                             (14)        

Now, from equations (13), we find 
2 2

2 1r r and
2 2

2 1r r , and substitute the results in equations (14), to get         

 

 
   

  2/3

1 2

1 23/22/3
5/3 2 2

2 11 1 1 1
1 1

2 3 3 23

d c

c

M r
x q q

r T

   


 

    
         

      

       

 

 

2/3
2/3

1 2 1 2 1 2 31/3 2/3

3/2
2 2

4 2 1 1 1
1 1 1 2

2 4 3 3 2

2 2 1
        

3

d c

c

y q q

M r

r T


     

 





 
  

            


  

 

   (15)   

These are the coordinates of the triangular equilibrium points of the restricted problem of three oblate bodies under radiation 

pressure forces of the primaries, small change in the Coriolis and centrifugal forces when there is an enclosure of cluster of 

materials around the configuration. Using the software Mathematica {25] we plot the 3D-surface plots of the triangular 

points as shown in Figures 3, 4, 5, 6 and 7.  

 

Fig 3: Surface plot of 4L for ,
1 0.9988q  , 

2 0.9985q  , 1.002  ,
1 0.02  , 

2 0.018  , 
3 0.01  , . 

 

Fig 4:
 
Surface plot of 5L for ,

1 0.9988q  , 
2 0.9985q  , 1.002  ,

1 0.02  , 
2 0.018  , 

3 0.01  , . 
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Fig 5: Surface plot of 4L for ,
1 0.9988q  , 

2 0.9985q  , 

1.002   ,
1 0.02  , 

2 0.018  , 
3 0.01  ,

 

 

Fig 6:
 

Surface plot of 5L for ,
1 0.9988q  , 

2 0.9985q  , 1.002   ,
1 0.02  , 

2 0.018  , 

3 0.01  ,
 

 

 

Fig 7:
 
Surface plot of 4,5L for , 

2 0.9985q  , 1.002  , 1 0.02   

  
2 0.018  , 

 

Figure 3 and 4 shows the positions and
 
of the triangular equilibrium points when there are no

 
cluster of 

materials  around the bodies. In this case, the test body is farther away from the line joining the stars. However, 

when materials begins to accumulate around the bodies, the mass  gradually increases and when it reaches up to 0.09, the 

test body is drawn nearer to the line on which the primaries lie and even goes closest, when the mass of accumulated 

materials reaches close to 0.1 (Fig. 5 and Fig 6). Hence, an increase in the mass of cluster of materials produces a shift in the 

positions of the triangular equilibrium points and consequently makes the body to be positioned closer to the primaries; 

although, this is also influenced by the oblateness, radiation pressure and small deflections on circular orbit owning to the 

centrifugal force. 

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 137 – 148 

0.2

0.3

0.4

-0.3

-0.2

-0.1

x

0.821

0.822
y

0.2

0.3

0.4

0.821

0.822
y

450617.0118166.0  

09.0dM

0.2

0.3

0.4

-0.3

-0.2

-0.1

x

-0.822

-0.821y

0.2

0.3

0.4

-0.822

-0.821y

450617.0118166.0  

09.0dM

0.2

0.3

0.4 -0.3

-0.2

-0.1

0

x

-0.5

0

0.5

y

0.2

0.3

0.4

-0.5

0

0.5

y

450617.0118166.0  

09.0dM

4L 5L

 0dM

dM



144 

 

Motion Around Triangular Equilibrium…                    Oni and Joel                     Trans. Of NAMP  

 

 

4. Stability of Triangular equilibrium points 

    In order to study the stability of any of the equilibrium points  1,2..5iL i  , we displace the test body a little from an 

equilibrium point, by applying a small velocity. Because of the additional imposed forces, the stability of the equilibrium 

points is expected to be affected by these forces.  We introduce  0xx  and  0yy , where   , is a small 

displacement and substitute it in the equations of motion (5). We expand the equations of motion into first-order terms with 

respect to   and  to get the variational equations:             

0 02 xx xyn U U       

0 02 xy yyn U U        

The superscript O indicates that the derivatives are to be calculated at the equilibrium points. 

The associated characteristic equation is  

    
2

4 0 0 2 2 2 0 0 04 0xx yy xx yy xyU U n U U U                                                                        (16)                                                     

To obtain the partial derivatives computed at the triangular point 
4L  given in equation (15), we first get the expressions for

3

ir
 , 5

ir
  and 7

ir
  1,2i  , from equations (13) and substitute them together with equations (4) and (15), in the derivatives xxU

, yyU and xyU to get 
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Now, substituting these derivatives in the characteristic equation (16), we express  1 1    ,  1 1     and simplify 

the result by retaining only linear terms in  1,2,3i i  ,  11 q ,  21 q ,  1  ,  1   and
dM , to get  
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The roots are
 

1,2 1s   , 
3,4 2s  

                                                                                                          (19)
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D is the discriminant  and the four roots in equation (19) determine whether the equilibrium point is stable. Now, since the 

value of D  when 0  and
2

1
  have opposite signs. Then, we must have a critical value of  in the interval 

2

1
0    at 

which 0D  . This value is called the critical mass parameter and obtained in this case as  
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where 1   and 1    and the first term represents Routh’s critical mass ratio (Szebehely 1967). The second, third 

and fourth expressions represent the effects arising from oblateness of the stars and the test body, respectively, while the fifth, 

sixth and seventh term are the value owning to small change in Coriolis and centrifugal forces, radiation pressure force of the 

first and second primary, respectively. The last expression stands for the effect of gravitational potential from the cluster of 

material around the bodies.  

Now, we can state the stability criteria of the triangular equilibrium points taking into account the mass parameter 
 
and the 

critical mass function C . It is seen that when
C 0 , 0D  ; the roots (19) are distinct pure imaginary numbers and 

the triangular point is stable.  In this case, motion is bounded and composed of two harmonic motions. The general solution 

depends on roots (19) and given [1]: 
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where the coefficients
iA   and  1,2..4iB i  are the long and short periodic terms respectively.  

When
2

1
 C

 or
C  , we have 0D  and 0D  , respectively. The triangular point is unstable in both cases due to a 

positive root which results in an unbounded motion and the test body will rapidly depart from the triangular point. 

 

5.  Discussion  

  The equations of motion of an infinitesimal body has been derived under the assumption that the three bodies involved in 

the model of the R3BP are surrounded by an accumulation of materials and have the shape of an oblate spheroid with further 

assumptions that both primaries are radiating and small perturbation in the Coriolis and centrifugal forces are considered to 

be effective. These equations are affected by radiation pressure, oblateness, potential from the cluster and the perturbations in 

the Coriolis and centrifugal forces of the primaries. These equations are similar but contain more parameters than other 

previous studies of [3], [4], [5], [11], [16]. [17], [18], [22] and [23].  The position of triangular equilibrium points and

is given by equations (15). These points are defined by a small change in the centrifugal force, oblate shapes of the stars and 

the test body, radiation of the stars and the potential from the cluster of materials. When the cluster surrounding the radiating-

oblate bodies are absent 0dM   and the coordinate reduces to those in [5]. When there are no perturbations in the centrifugal 

forces, the points fully coincide with those in [10]. The triangular points in [1], [2], [3], [4], [5], [11] can all be recovered 

from equation (15). Clearly, it is seen that when there are no
 
cluster of materials  around the stars, the test body is 

farther away from the axis. However, when materials begins to cluster in circles around the bodies, the mass of the cluster 

increases and the test body draws nearer to the line on which the main bodies lie. So that more accumulation of cluster of 

materials produces a shift in the positions of the triangular equilibrium points and consequently makes the infinitesimal mass  

to be positioned closer to the primaries; although, this is also influenced by the oblateness, radiation pressure and small 

deflections on circular orbit owning to the centrifugal force. 

The study of the stability of the equilibrium points does not yield anything different from the already established fact that the  

triangular pints are stable under the condition that the roots of the characteristic equation (18) are distinct pure imaginary 

roots when the mass parameter of the  is less that the critical mass (20). Observe that the value of the critical mass is 

determined by Routh’s critical mass value which is the first term of equation (20). The second, third and fourth expressions 

represent the effects arising from oblateness of the primaries and the test body, respectively, while the fifth, sixth and seventh 

term are the value owning to small change in Coriolis and centrifugal forces, radiation pressure force  of the primary and 

second primary, respectively. The last expression stands for the effect of potential from the circular accumulation of materials 

around the stars. The critical mass calculated by [1], [2], [3], [4], [5], [10], [11], and [23] can all be verified from equation 

(20). We observe that  is a decreasing function of the oblateness of the bodies, the radiation pressure force and small 

perturbation in centrifugal force but it is an increasing function of the small perturbation in the Coriolis force and cluster of 

materials. Therefore, the circular cluster of materials increases the stability region and so accumulation of materials around 

the stars proves to be a stabilizing force. The small perturbation in the Coriolis force is also a stabilizing force because its 

increases the stability region. The oblate shapes of the three bodies have destabilizing effects. Same hold for the radiation 

pressure of the primaries because their presence reduces the stability region. 

 

6. Conclusion 

A study of the R3BP when the motion of an oblate test body takes place under the gravitational influence of two 

massive oblate radiating bodies and enclosed by a circular cluster of material points coupled with small perturbations in the 

Coriolis and centrifugal forces, in the vicinity of the triangular equilibrium points has been studied. The equations of motion 

have been presented and a pair of triangular equilibrium points computed. These points are defined by the oblateness of the 
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three bodies, radiation pressure of the primaries, small change in the centrifugal force and the presence of an enclosure of 

cluster of materials around the configuration. Motion around these points is points are stable.  

The equilibrium points are very important in exploration and development of space. The Solar and Heliospheric Observatory 

(SOHO) lunched in 1995 and Microwave Anisotropy Probe (MAP) lunched in 2001 by NASA are currently in operation 

Sun-Earth 
1L and

2L , respectively. Solar TErrestrial RElations Observatory-Ahead (STEREO-A) made its closest pass to 
5L  

recently, on its orbit around the Sun. Asteroid 2010 SO16, is currently proximal to 
5L  but at a high inclination. 
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