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Abstract 

The solar wind is mostly populated by collisionless, anisotropic and inhomogeneous 

plasma. Wave propagation in plasma can be studied using fluid or kinetic model. In 

this work the fluid model is applied in solving Plasma dispersion relation for 

magnetized multi-fluid plasma by employing  PDRF code ( Plasma Dispersion Relation 

Fluid-version). The dispersion relation of the solar wind plasmawas solved by varying 

plasma 𝜷- value for ions for 𝒌𝒛 ≪ 𝒌⊥. The threshold values of the growth rate were 

found for 𝜷⊥ < 𝜷∥and 𝜷⊥ > 𝜷∥. As 𝜷⊥ decrease below 𝜷∥ following a criteria that: 

𝑷∥ − 𝑷⊥ > 𝑩𝟎
𝟐 𝝁𝟎⁄ , the growth rate increases indicating fire hose instability. At 𝜷∥ =

𝜷⊥, the growth rate was found to be very small indicating transit-time damping. When 

𝜷⊥ increase above 𝜷∥, the growth rate increased indicating mirror instability. 
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1.0 Introduction 

It is difficult to be able to characterize a plasma system without considering its wave behaviour. In doing so, solving the 

dispersion relation is one of the basic problems encountered  in that aspect of plasma physics and which is of practical 

interest [1]. 

Dispersion relation is the function that relates the frequency of the wave in the plasma and its  wave vector [2]. Usually, the 

dispersion relation is obtained from the determinant of the dielectric tensors of the wave equations. 

Ronnmark [3] used the kinetic code WHAMP (Waves in Homogeneous Anisotropic Multicomponent Magnetized Plasma) to 

solve linear analytic dispersion equations of waves in magnetized plasma. It includes a number of species with different 

density, mass, temperature and  drift parameters for anisotropic maxwellian distribution [3, 4, 5]. Bret presented a 

mathematica fluid code for magnetized parallel beamplasmas which allowed for the symbolic calculation of the (3x3) 

dielectric tensor of an electron-beam plasma system in the fluid approximation. The calculation was detailed for a cold 

relativistic electron beam entering a cold magnetized plasma, and arbitarily oriented wave vector [1]. However, it is difficult 

to generalize such treatment to include arbitary number of fluid species with good convergence or to obtain all the solutions 

of a given system. But with the introduction of the Plasma Dispersion Relation Fluid-version (PDRF) by Xie [6], it is 

possible to solve dispersion relation for magnetized multi-fluid plasmas for arbitrary number of species with good 

convergence including anisotropy, relativistic beam and weak inhomogeneity effects. This made it easy to investigate wave 

properties in astrophysical, space, laser, and laboratory plasmas. 

Pressure or temperature anisotropy is an important characteristic of collisionless plasma in a strong magnetic field [7] and 

may develop in the sun, solar wind and planetary magnetospheres, e.tc. for example gyrotropic pressure of 𝑃⊥ > 𝑃∥ and 𝑃∥ >
𝑃⊥ tends to develop in the Earth’s magnetosheath and magnetotail, respectively [8, 9]. In the magnetohydrodynamic theory, 

sufficiently large pressure anisotropy of 𝑃⊥ > 𝑃∥ or 𝑃∥ > 𝑃⊥ may lead to the mirror and fire-hose type instability in a 

homogeneous magnetized plasma respectively. Instabilities in this regime is considered as velocity space instability at low 

frequencies (𝜔 ≪ 𝜔𝑐𝑖) as well as at long wavelengths (𝜆 ≫ 𝑄𝑖 =
𝑣𝑇

𝜔𝑐𝑖
⁄ ) where 𝜔𝑐𝑖is ion cyclotron frequency, 𝑄𝑖  is the ratio 

of thermal velocity to ion cyclotron frequency of the plasma. It occurs in a high 𝛽 plasma and are caused by anisotropic 

pressure, where 𝛽is the ratio of plasma kinetic pressure to magnetic pressure [10]. Such instabilities could be treated using  
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MHD equations with anisotropic pressure or kinetic equations. Hasegawa [10] used the kinetic equations to show some 

significant differences from the results of the MHD equations by introducing a dielectric tensor obtained from the kinetic 

equations for the hydromagnetic limit: 
𝑘⫠𝑣𝑇

𝜔𝑐𝑖
⁄ ~𝜔

𝜔𝑐𝑖⁄ ≪ 1, where 𝑘⫠ is the wave vector perpendicular to the external 

magnetic field. In the expressions the effects of wave-particle resonance anisotropic distribution, and existence of relative 

drift between different species are retained to be used for a study of instabilities. 

In this work, we used the general dispersion relation solver PDRF to execute the task of obtaining solutions of dispersion 

relation 

𝐷(𝜔, 𝑘) = 0 

for solar wind. The solution is obtained for when and where the 𝒌or𝜔 are complex. The imaginary part of 𝒌or 𝜔determines if 

the oscillations become damped or growing (depending on the sign of the imaginary part). From a mathematical point of 

view, with perturbation analysis we can study whether an initial perturbation causes undamped oscillations, or whether 

oscillations are damped or are growing [11]. Here, the firehose and mirror instabilities threshold growth rates were 

investigatedfor 𝛽∥ > 𝛽⊥ and 𝛽∥ < 𝛽⊥ with 𝒌∥ < 𝒌⊥ respectively. Where,𝒌∥ is the wave vector parallel to the magnetic field, 

𝒌⊥is the wave vector perpendicular to the magnetic field, 𝛽∥ and 𝛽⊥ are the plasma beta-values parallel and perpendicular to 

the magnetic field respectively. 
 

2.0 Theoretical Frame Work 

We ignored all temperature gradient effects in the cold multi-fluid plasma, flow velocity of the fluid component j is taken as 

𝑣𝑗0  =  (𝑣𝑗0𝑥 , 𝑣𝑗0𝑦 , 𝑣𝑗0𝑧) in an external static magnetic field 𝐵0  =  (0, 0, 𝐵0).The species densities are considered to be locally 

inhomogeneous, with 
∇𝑛𝑗0

𝑛0
⁄ = (𝜀𝑛𝑗𝑥,𝜀𝑛𝑗𝑦 , 0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.The wave vector is assumed to be 𝑘 = (𝑘𝑥, 0, 𝑘𝑧) =

(𝑘𝑠𝑖𝑛𝜃, 0, 𝑘𝑐𝑜𝑠𝜃).We use the fluid equations to develop  a full dispersion relation matrix  and instead of directly solving for 

its determinant such as that of Swanson[2] or analytical or numerical treatment such as in Stix[12],Ronnmark[3, 4] and Bret 

[1], we treated  it as a  matrix eigenvalue problem [6]. 

The  governing equations are the  fluid equations: 
𝜕𝑛𝑗

𝜕𝑡
= −∇ ∙ (𝑛𝑗𝒗𝑗)      (1a) 

𝜕𝒖𝒋

𝜕𝑡
= −𝑣𝑗 ∙ ∇𝒖𝑗 +

𝑞𝑗

𝑚𝑗
(𝑬 + 𝒗𝒋 × 𝑩) −

∇𝑷𝑗

𝜌𝑗
− ∑ (𝒖𝒊 − 𝒖𝒋)𝑣𝑖𝑗𝑖   (1b) 

𝜕𝑬

𝜕𝑡
= 𝑐2∇ × 𝑩 − 𝑱 𝜖0⁄       (1c) 

𝜕𝑩

𝜕𝑡
= −∇ × 𝑬       (1d) 

where 𝒖𝑗 = 𝛾𝑗𝒗𝒋, and  

𝑱 = ∑ 𝑞𝑗𝑛𝑗𝒗𝑗𝑗        (2a) 
𝑑

𝑑𝑡
(𝑷⫽𝒋𝜌𝑗

−𝛾⫽𝑗
) = 0      (2b) 

𝑑

𝑑𝑡
(𝑷⫠𝑗𝜌𝑗

−𝛾⫠𝑗
) = 0      (2c) 

where 𝜌𝑗 ≡ 𝑚𝑗𝑛𝑗 , 𝑐
2 = 1 𝜇0𝜖0⁄ , 𝛾𝑗 = (1 − 𝑣𝑗

2 𝑐2⁄ )
−1 2⁄

, and 𝛾⫽𝑗 and 𝛾⫠𝑗are the parallel and perpendicular adiabatic 

coefficients, respectively.𝑷⫽⫠ = 𝑛𝑇⫽⫠,𝑷 = 𝑃⫽�̂��̂� + 𝑃⫠(𝑰 − �̂��̂�) is anisotropic pressureand �̂� = 𝑩 𝐵⁄ . The anisotropy model 

can be reduced tothat of Bret and Deutsch [13] by setting 𝛾⫽𝑗 = 𝛾⫠𝑗 = 𝛾𝑇𝑗. By further setting 𝑇⫠𝑗 = 𝑇⫽𝑗, we can recover the 

isotropic pressure case. 

After linearizing, (1) becomes 

𝑱 = ∑ 𝑞𝑗(𝑛𝑗0𝑣𝑗1 + 𝑛𝑗1𝑣𝑗0),𝑗      (3a) 

𝑃⫽,⫠𝑗1 = 𝑐⫽,⫠𝑗
2 𝑛𝑗1,       (3b) 

where𝑐∥,⊥
2 = 𝛾∥,⊥𝑃∥,⊥𝑗0/𝜌𝑗0 and 𝑃𝑗0 = 𝑛𝑗0𝑇𝑗0 

we note that 

∇ ∙ 𝑃𝑗1 = (𝑖𝑘𝑥 , 0, 𝑖𝑘𝑧) |

𝑃⊥𝑗1 0 △𝑗 𝐵𝑥1

0 𝑃⊥𝑗1 △𝑗 𝐵𝑦𝑗1

△𝑗 𝐵𝑥1 △𝑗 𝐵𝑦1 𝑃∥𝑗1

| 

where△𝑗=
(𝑃∥𝑗0 − 𝑃⊥𝑗0)

𝐵0
⁄  and 𝛽∥,⊥,𝑗 =

2𝜇0𝑃∥,⊥𝑗

𝐵0
2⁄ . The off-diagonal terms coming from the tensor rotation from 𝑏0̂ to �̂� 

are related to energy exchange and are important for the anisotropic instabilities. An incorrect treatment or ignoring these off-

diagonal terms can cause loss of the firehose and other unstable anisotropic modes. 
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2.1  Matrix Representation 

The linearized version of (1) with 𝑔 = 𝑔0 + 𝑔1𝑒
𝑖𝑘∙𝑟−𝑖𝜔𝑡 , 𝑔1 ≪ 𝑔0 is equivalent to a matrix  eigenvalue problem [6]. 

𝜆𝑨𝑿 = 𝑴𝑿       (4) 

where𝑿 is the eigenvector with𝜆 = −𝑖𝜔asthe eigenvalue and  the corresponding eigenvector 𝑿  also gives the polarization of 

each normal/eigen mode solution. Same treatments can be found in Hakim [14] for the ten-moment equations and Goedbloed 

and Poedts [15] for the MHD equations. 

Accordingly, we have  

𝑿 = (𝑛𝑗1, 𝑣𝑗1𝑥 , 𝑣𝑗1𝑦 , 𝑣𝑗1𝑧 , 𝐸1𝑥 , 𝐸1𝑦 , 𝐸1𝑧 , 𝐵1𝑥 , 𝐵1𝑦 , 𝐵1𝑧)
𝑇
,                                                               

𝑢𝑗1 = 𝛾𝑗0[𝑣𝑗1 + 𝛾𝑗0
2 (𝑣𝑗0 ∙ 𝑣𝑗1) 𝑣𝑗0 𝑐2⁄ ] = {𝑎𝑗𝑝𝑞} ∙ 𝑣𝑗1(𝑝, 𝑞 = 𝑥, 𝑦, 𝑧), 𝛾𝑗0 = (1 − 𝑣𝑗0

2 𝑐2⁄ )
−1 2⁄

, 

and𝑨 is given by,                                                                          

1
0
0
0
0
0
0
0
0
0

  0
𝑎𝑗𝑥𝑥

𝑎𝑗𝑦𝑥

𝑎𝑗𝑧𝑥

0
0
0
0
0
0

0
𝑎𝑗𝑥𝑦

𝑎𝑗𝑦𝑦

𝑎𝑗𝑧𝑦

0
0
0
0
0
0

0
𝑎𝑗𝑥𝑧

𝑎𝑗𝑦𝑧

𝑎𝑗𝑧𝑧

0
0
0
0
0
0

0 
0
0
0
1
0
0
0
0
0

 0
0
0
0
0
1
0
0
0
0

  0
0
0
0
0
0
1
0
0
0

  0
0
0
0
0
0
0
1
0
0

  0  
0
0
0
0
0
0
0
1
0 

0
0
0
0
0
0
0
0
0
1

 

where the relativistic effects in the friction terms 𝑣𝑖𝑗  are ignored for simplicity. The matrix 𝑴is  given by: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝑘 ∙ 𝑣𝑗0

−𝑘𝑥𝑐⫠𝑗
2

𝜌𝑗0

0
−𝑖𝑘𝑧𝑐⫽𝑗

2

𝜌𝑗0

−
𝑞𝑗𝑣𝑗0𝑥

𝜖0

−
𝑞𝑗𝑣𝑗0𝑦

𝜖0

−
𝑞𝑗𝑣𝑗𝑜𝑧

𝜖0

0
0
0

−𝑘𝑥𝑛𝑗0 − 𝜖𝑛𝑗𝑥𝑛𝑗0

𝑏𝑗𝑥𝑥

𝑏𝑗𝑦𝑥 − 𝜔𝑐𝑗

𝑏𝑗𝑧𝑥

−𝑞𝑗𝑛𝑗0

𝜖0

0
0
0
0
0

−𝜖𝑛𝑗𝑦𝑛𝑗0

𝑏𝑗𝑥𝑦 + 𝜔𝑐𝑗

𝑏𝑗𝑦𝑦

𝑏𝑗𝑧𝑦

0
−𝑞𝑗𝑛𝑗0

𝜖0

0
0
0
0

−𝑖𝑘𝑧𝑛𝑗0

𝑏𝑗𝑥𝑦

𝑏𝑗𝑦𝑧

𝑏𝑗𝑧𝑧

0
0

−𝑞𝑗𝑛𝑗0

𝜖0

0
0
0

0
𝑞𝑗

𝑚𝑗

0
0
0
0
0
0

−𝑖𝑘𝑧

0

0
0
𝑞𝑗

𝑚𝑗

0
0
0
0

𝑖𝑘𝑧

0
−𝑖𝑘𝑥

0
0
0
𝑞𝑗

𝑚𝑗

0
0
0
0

𝑖𝑘𝑥

0

0
−𝑖𝑘𝑧∆𝑗

𝑚𝑗𝑛𝑗0

𝑞𝑗𝑣𝑗0𝑧

𝑚𝑗

−
𝑞𝑗𝑣𝑗0𝑦

𝑚𝑗
−

𝑖𝑘𝑥∆𝑗

𝑚𝑗𝑛𝑗0

0
𝑖𝑘𝑧𝑐

2

0
0
0
0

0

−
𝑞𝑗𝑣𝑗0𝑧

𝑚𝑗

−
𝑖𝑘𝑧∆𝑗

𝑚𝑗𝑛𝑗0

𝑞𝑗𝑣𝑗0𝑥

𝑚𝑗

−𝑖𝑘𝑧𝑐
2

0
𝑖𝑘𝑥𝑐

2

0
0
0

0
𝑞𝑗𝑣𝑗0𝑦

𝑚𝑗

−
𝑞𝑗𝑣𝑗0𝑥

𝑚𝑗

0
0

−𝑖𝑘𝑥𝑐
2

0
0
0
0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where𝜔𝑐𝑗 = 𝑞𝑗𝐵0 𝑚𝑗⁄ , 𝑞𝑒 = −𝑒,𝜔𝑝𝑗
2 = 𝑛𝑗0𝑞𝑗

2 𝜖0𝑚𝑗 ,⁄  and{𝑏𝑗𝑝𝑞} = 𝑣𝑗𝑗 − 𝑖(𝑘 ∙ 𝑣𝑗0) ∙ {𝑎𝑗𝑝𝑞}. 

{𝑎𝑗𝑝𝑞} ≡ [

𝑎𝑗𝑥𝑥 𝑎𝑗𝑥𝑦 𝑎𝑗𝑥𝑧

𝑎𝑗𝑦𝑥 𝑎𝑗𝑦𝑦 𝑎𝑗𝑦𝑧

𝑎𝑗𝑧𝑥 𝑎𝑗𝑧𝑦 𝑎𝑗𝑧𝑧

] =

[
 
 
 
 
 𝛾𝑗0 +

𝛾𝑗0
3 𝑣𝑗0𝑥

2

𝑐2
⁄ 𝛾𝑗0

3 𝑣𝑗0𝑥𝑣𝑗0𝑦

𝑐2
⁄ 𝛾𝑗0

3 𝑣𝑗0𝑥𝑣𝑗0𝑧

𝑐2
⁄

𝛾𝑗0
3 𝑣𝑗0𝑥𝑣𝑗0𝑦

𝑐2
⁄ 𝛾𝑗0 +

𝛾𝑗0
3 𝑣𝑗0𝑦

2

𝑐2
⁄ 𝛾𝑗0

3 𝑣𝑗0𝑦𝑣𝑗0𝑧

𝑐2
⁄

𝛾𝑗0
3 𝑣𝑗0𝑥𝑣𝑗0𝑧

𝑐2
⁄ 𝛾𝑗𝑜

3 𝑣𝑗0𝑦𝑣𝑗0𝑧

𝑐2
⁄ 𝛾𝑗0 +

𝛾𝑗0
3 𝑣𝑗0𝑧

2

𝑐2
⁄

]
 
 
 
 
 

 (5) 

The dimensions of 𝑨 and 𝑴 depends on the number of species s of the particles in the plasma. The dimensions is therefore, given as 
(4𝑠 + 6)𝑋(4𝑠 + 6). Without any convergence difficulty we can get all the linear harmonic wave solutions of the system using a standard 

matrix eigenvalue solver, e.g., the function eig() in MATLAB or LAPACK. Here, a MATLAB code PDRF for solving the above 

eigenvalue problem wasapplied. By setting 𝛾𝑗  to 1, i.e., 𝑨 = 𝑰and{𝑎𝑗𝑝𝑞} = 𝑰, PDRF reduces to the non-relativistic case [6]. 

 

3.0 Program Structure 

The program uses two files: an input data file pdrf.in, and function file pdrf.m, for its operation. The program is designed to operate on any 

computer running MATLAB. Here, a 64-bit MATLAB (R2013b) is used. It is contained in mat.m folder and can be accessed from the 

command window. The  number of lines in the distributed program, pdrf.m including test data  is 340 lines, it has a running time of about 1 

second on Intel Pentium 2.60GHz PC. It uses a standard matrix eigenvalue solver, i.e the function eig() in MATLAB.  
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The program is designed to use 𝑚𝑒𝑡ℎ𝑜𝑑 = 1, 𝑚𝑒𝑡ℎ𝑜𝑑 = 2, 𝑚𝑒𝑡ℎ𝑜𝑑 = 3 and 𝑚𝑒𝑡ℎ𝑜𝑑 = 4. When the program is set to 

𝑚𝑒𝑡ℎ𝑜𝑑 = 1, it will generate all the linear harmonic wave solutions of the system without any convergence difficulty. By 

setting the program to 𝑚𝑒𝑡ℎ𝑜𝑑 = 2, it will plot dispersion curves 𝜔𝑟,𝑖  𝑣𝑒𝑟𝑠𝑢𝑠 𝑘 for various values of 𝜃.  If the program is set 

to 𝑚𝑒𝑡ℎ𝑜𝑑 = 3, it will plot dispersion curves 𝜔𝑟,𝑖  𝑣𝑒𝑟𝑠𝑢𝑠 𝜃 for various values of 𝑘. When the program is set to 𝑚𝑒𝑡ℎ𝑜𝑑 =

4, it will plot curves 𝜔𝑟,𝑖  𝑣𝑒𝑟𝑠𝑢𝑠 𝑘𝑥 and 𝑘𝑧 for range of values of 𝑘𝑥 and 𝑘𝑧. The input file pdrf.in has the following 

structure. 

𝑞𝑠 𝑚𝑠 𝑛𝑠 𝑣𝑠𝑥 𝑣𝑠𝑦 𝑣𝑠𝑧  𝑐𝑠𝑧 𝑐𝑠𝑝 𝑒𝑝𝑠𝑛𝑗𝑥 epsnjz 

−1.0 1.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 1836.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

where𝑞𝑠 is charge of species, 𝑚𝑠 is the mass of species, 𝑛𝑠 is the density of species, 𝑣𝑠𝑥,𝑣𝑠𝑦 and 𝑣𝑠𝑧  are speed of species in 

x, y and z directions respectively, 𝑐𝑠𝑧 and 𝑐𝑠𝑝 are sound speeds in parallel and perpendicular direction to the magnetic field 

respectively. 𝑒𝑝𝑠𝑛𝑗𝑥and𝑒𝑝𝑠𝑛𝑗𝑦 are density gradient per unit density of species. 

 

3.1 Procedure 

Firstly, the parallel and perpendicular sound speeds, 𝑐𝑠𝑧and 𝑐𝑠𝑝, parallel and perpendicular pressures for solar wind plasma 

were calculated for 𝛽∥𝑖 = 0.5, 𝛽⊥𝑖 ≤ 𝛽∥𝑖and 𝛽⊥𝑖 ≥ 𝛽∥𝑖 respectively while 𝛽∥,⊥𝑒 were set to zero. The MATLAB program code 

was modified to suit the various basic parameters for solar wind plasma in Table 1. The ratio of parallel to perpendicular 

wave vector was set to  
𝑘𝑧

𝑘⊥
⁄ = 0.01 to indicate oblique propagation. 

Table 1.Basic plasma parameters for magnetospheric plasmas[16]. 
Plasma 

parameter 

Solar 

Wind at 

1A.U 

Low-latitude 

Boundary 

layer 

Plasma 

Mantle 

Tail Lobe Plasma 

Sheet 

Plasmasphere Polar Wind 

(low altitude) 
Topside 

Ionosphere 

Number 

Density 

𝑛𝑖(𝑐𝑚
−3) 

10 10  1 10−2 1 103 0.1 104 

Ion 

Temperature 

𝑇𝑖 (K) 

105 5 × 106 106 105 5 × 107 105 105 103 

Plasma flow 

speed 𝑣 

(𝑘𝑚𝑠−1) 

400 200 150 40 10 10 20 0.1 

Main 

Chemical 

Composition 

𝐻+, 𝐻𝑒++ 𝐻+, 𝐻𝑒++ 𝐻+, 𝐻𝑒++ 𝐻+, 𝐻𝑒+, 
𝑂+, 𝑁+ 

𝐻+, 𝐻𝑒+, 
𝑂+, 𝑁+ 

𝐻𝑒++ 

𝐻+, 𝐻𝑒+, 
𝑂+, 𝑁+ 

𝐻+, 𝐻𝑒+, 
𝑂+, 𝑁+ 

𝐻+, 𝐻𝑒+, 
𝑂+, 𝑁+ 

Magnetic 

Field𝐵(𝑛𝑇) 

10 40 25  25 10 103 104 105 

Scale Length 

𝐿 (𝑘𝑚) 

108 104 105 105 104 104 104 103 

Mean free 

path (𝑘𝑚) 

109 1012 1012 1010 1015 107 1011 102 

Thermal ion 
gyroradius 

(𝑘𝑚) 

102 102 102 102 103 1 0.1 10-3 

Plasma beta𝛽 0.5 1 0.5  10-4 10 10-3 10-9 10-8 

Secondly, the input data file of the PDRF code was then modified to suit 𝑐𝑠𝑝,𝑐𝑠𝑧 and 𝑛𝑠 for the solar wind. The PDRF code 

was also modified to𝑟𝑒𝑙 = 0 which reduce it to non relativistic case, with
𝑚𝑖

𝑚𝑒
⁄ = 1836and 𝛾 = 5

3⁄ for ideal gas [17].The 

inputfile for solar wind is given below for 𝛽∥𝑖 = 𝛽⊥𝑖 = 0.5 

𝑞𝑠 𝑚𝑠 𝑛𝑠 𝑣𝑠𝑥 𝑣𝑠𝑦 𝑣𝑠𝑧  𝑐𝑠𝑧 𝑐𝑠𝑝 𝑒𝑝𝑠𝑛𝑗𝑥 epsnjz 

−1.0 1.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 1836.0 10.0 0.0 0.0 0.0 4.24e-1 4.24e-1 0.0 0.0 

where, all parameters still maintain their usual meanings. 

Thirdly, on the command window, a call to pdrf will generate all the linear harmonic wave solutions of the system without 

any convergence difficulty using 𝑚𝑒𝑡ℎ𝑜𝑑 = 1.  

Fourthly, the threshold values of the complex part, 𝜔𝑖 of the solution were obtained for both with and without correction. 

Threshold values for the growth rate were plotted for 𝛽∥ < 𝛽⊥and 𝛽∥ > 𝛽⊥. 
 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 119 – 124 



123 
 

Solution of the Dispersion Relation for…                    Nura and Ado                        Trans. Of NAMP  

 

4.0  Results and Discussion 

The solutions of the dispersion relations of the solar wind plasma are given in forms of graphs. Figures 1.1(a-b) shows the 

graphs of growth rate against 𝛽⊥ for curves of (I)  𝛽⊥𝑖 < 𝛽∥𝑖and (II)  𝛽⊥𝑖 > 𝛽∥𝑖 for constant value of 𝛽∥𝑖 (with correction and 

without correction) for firehose and mirror instability thresholds for the solar wind plasma. 

   
 1.1(a)       1.1(b) 

Fig. 1.1(a). The graph of growth rate against 𝛽⊥ for curves of (I)  𝛽⊥𝑖 < 𝛽∥𝑖and (II)  𝛽⊥𝑖 > 𝛽∥𝑖 for constant value of 𝛽∥𝑖 = 0.5 

(with correction) for firehose and mirror instability thresholds respectively for the solar wind plasma, with 𝐵0 = 10𝑛𝑇,𝑛𝑖 =
10𝑐𝑚−3 and 𝛽 = 0.5 

Fig. 1.1(b). The graph of growth rate against 𝛽⊥ for curves of (I)  𝛽⊥𝑖 < 𝛽∥𝑖 and (II)  𝛽⊥𝑖 > 𝛽∥𝑖 for constant value of 𝛽∥𝑖 = 0.5 

(without correction) for firehose and mirror instability thresholds respectively for the solar wind plasma, with 𝐵0 =
10𝑛𝑇,𝑛𝑖 = 10𝑐𝑚−3 and 𝛽 = 0.5 

Figures 1.2(a-b) are the solutions of the test problem which was obtained and plotted. 

  
  1.2 (a)     1.2 (b) 

Figure 1.2(a). (I) The firehose and (II) mirror instability thresholds for a test problem with correction for  𝛽∥𝑖 = 8 and 𝛽∥,⊥𝑒 =
0 by Xie [11]. The dots indicate theoretical prediction. 

Figure 1.2(b). (I) Firehose and (II) mirror instability thresholds for a test problem without correction for 𝛽∥𝑖 = 8 and 𝛽∥,⊥𝑒 =
0 by Xie [11]. The dots indicates theoretical predictions 

In Figures 1.1a and 1.1b the lowest value of the growth rate obtained was at a point where 𝛽∥ = 𝛽⊥ = 0.5 with a sound speed 

𝑐∥ = 𝑐⊥ = 4.24 × 10−1𝑐𝑚𝑠−1 and pressure of 𝑃∥ = 𝑃⊥ = 1.98 × 103𝑑𝑦𝑛 𝑝𝑒𝑟 𝑐𝑚2 for both with and without correction. At 

𝛽⊥ = 𝛽∥ the solution has the same value of growth rate both with correction and without correction, according to Stix [18] 

this represent the transit time damping which is  characterized by isotropic pressure of 𝑃⊥ = 𝑃∥ , which was generated by a 

sound speed of 𝐶⊥ = 𝐶∥. The transit-time damping is the magnetic analogue of Landau damping where 𝜇𝐵∥ acts like an 

electrostatic potential 𝜑, where 𝜇 is the magnetic moment.  

As 𝛽⊥ decreases below 𝛽∥, the growth rate began to increase indicating firehose instability. The growth rate reached a value 

of about 7.49 × 10−6𝑠−1 with correction and5.29 × 10−6𝑠−1 without correction for a sound speed of  𝑐⊥ = 3.84 ×
10−1𝑐𝑚𝑠−1 and a pressure of 𝑃⊥ = 1.62 × 103𝑑𝑦𝑛 𝑝𝑒𝑟 𝑐𝑚2. At 𝛽∥ > 𝛽⊥ the parallel thermal pressure in the plasma is 

sufficiently high. The magnetic flux become unstable for transverse oscillations of the magnetic field and at the same time 

excite parallel propagating Alfvén waves. Therefore as 𝛽⊥ becomes small for larger 𝛽∥ by a difference of 2, the 

incompressible fire hose instability sets in as the growth rate increases with decrease in   𝛽⊥. The firehose instability is a non- 
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oscillating, purely growing mode. This result from the parallel thermal pressure in the magnetohydrodynamic fluid being 

sufficiently highby 𝑃∥ − 𝑃⊥ > 𝐵2

𝜇0
⁄ , the magnetic flux tubes become unstable for transverse oscillations of the magnetic 

field and spontaneously excite parallel propagating Alfvén waves. In the magnetohydrodynamic approximation, where these 

waves are non-dispersive, the wave has no real frequency and is a very-low frequency wave in the lowest part of the Alfvén 

branch [19]. 

The firehose instability is a very strong instability, but it requires large parallel pressure or 𝛽∥ > 2, which implies that the 

instability is possible only in high-beta or low magnetic field plasmas as, for instance, in the solar wind. This region may 

therefore become spontaneously excited to release fast growing Alfvén waves with amplitudes which are large. Once excited, 

the oscillation will propagate as an Alfvén wave along the magnetic field lines into the near-Earth magnetosphere. The 

physical mechanism of this instability is similar to that which generates oscillations in a water hosewhen the water pressure 

exceeds a critical value[4]. 

As  𝛽⊥ increases greater than  𝛽∥, the growth rate began to increase indicating mirror instability. The highest growth rate 

value obtained for a sound speed of 𝑐⊥ = 4.44 × 10−1𝑐𝑚𝑠−1 and a pressure of 𝑃⊥ = 2.14 × 103𝑑𝑦𝑛 𝑝𝑒𝑟 𝑐𝑚2 are 4.02 ×
10−6𝑠−1  with correction and 2.84 × 10−6𝑠−1 without correction. Ideally when a compressional wave is set up, it is 

ordinarily damped out by the transit time damping at 𝛽⊥ = 𝛽∥ . However, when 𝛽⊥ > 𝛽∥ , the diamagnetic repulsion of the 

plasma, which is trapped in the local mirror field created by  the wave, excludes the magnetic field. This instability causing a 

local deformation of the magnetic field makes the plasma spatially inhomogeneous. It occurs because a part of the particles 

captured in “weak mirror traps” subdivides the distribution of particles into passing and trapped species. This accelerates the 

flow of plasma into the deepened well of the local mirror, and therefore the perturbation grows as 𝛽⊥ ≫ 𝛽∥ [4]. 

Figures 1.2a and 1.2b are the solutions of the test problem which was obtained and plotted. We see that in general the 

numerical and analytical results agree. The test problem was used as guide to arrive at the solutions in Figures 1.1(a-b). In the 

test problem, the damping of the growth rate was fast in the fire hose instability curve while in the mirror instability curve the 

damping was slow compared to that of the solar wind and magnetosphere. This might have resulted due to difference in 

parameters used for each case. 

 

5.0  Conclusion 
We have solved the dispersion relation for the fire hose and mirror growth rates with and without correction using the PDRF for the 

solar wind. We have found thatthe results obtained were in accordance with that obtained from previous literature. 

We recommend that the kinetic model should be used to solve the dispersion relation. The PDRF code could be used to verify test 

data from satellites. It could also be used to solve dispersion relation in warm plasma, unmagnetized plasma (by setting 𝐵0 = 0). 
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