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Abstract 
The wave function at the origin is an important quantity in studying many physical 

problems concerning heavy quarkonia. This is because it is used for calculating spin 

state hyperfine splitting and it is also crucial for evaluating the production and decay 

amplitude of the heavy quarkonium. In this paper, we present the variational method 

by using the single-parameter wave function to estimate the WFO for the ground state 

of heavy mesons. For Cornell potential model trial wave function  of the type ψ(r) =N 

𝒆−𝒂𝒓
𝟒
𝟐
gives the relative deviation of squared WFO of about 0.11 while  for Martin and 

Logarithmic potential models having𝒃 =
𝟑

𝟐
 , the trial wave function ψ(r) =N 𝒆−𝒂𝒓

𝟑
𝟐
 gives 

relative deviation values as 0.027 and 0.013 respectively.  In all, Martin and 

Logarithmic potentials, the trial wave function ψ(r) =N 𝒆−𝒂𝒓
𝟑
𝟐
 gives the most accurate 

value of the single state trial wave function at the origin (WFO). 
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I. INTRODUCTION 

Recently, the wave function at the origin for the S-wave bound state of a heavy quark-antiquark system once again attracts 

physicists' attentions [1,2]. In the context of the non relativistic potential model, [1,2] demonstrated the numerical results of 

WFO of the Single-wave ,cc bcand bb systems. As well known, except the Coulomb and the harmonic oscillator potentials, 

there are few potentials which bound state problems can be analytically solved. For solving these non-analytically soluble 

bound state problems, one has to use approximations. Numerically solving Schrodinger equation is the most powerful 

method which can reach most required accuracy. But the numerical method has some defects, for instance, it cannot give 

analytical expressions for further discussion [3].In other word, there exist systems whose Hamiltonians are known, but they 

cannot be solved exactly or by a perturbative treatment. That is no closely related Hamiltonian that can be solved exactly or 

approximately by perturbation theory because the first order is not sufficiently accurate. One of the approximation method 

suitable for solving such problems is the variational method, which is also called the Rayleigh-Ritz method [8]. This method 

does not require knowledge of simple Hamiltonians that can be solved exactly. The variational method has more advantages. 

It can give an analytical expression of the wave function. In particular, if there is only a single-parameter in the trial wave 

function, the resultant wave function has a simple form. Then it is very convenient in the practical application and physical 

discussion. 
 

II. THE POTENTIAL MODELS  

There are many potential models which can fit the experimental spectra of the heavy quarkonia with certain 

accuracy. We consider three functional forms for the potential that give reasonable accounts of the cc bcand bbspectra [2].  

(1). Cornell potential [4]  

V(r) =- 
4

3

∝𝑠

𝑟
+ 𝐾𝑟         (1) 
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With 𝛼𝑠  =  0
39 ⁄  ,        K =

1

(2
3⁄ )2 (𝐺𝑒𝑉)2 , 𝑚𝑐 =

1

84
(

𝐺𝑒𝑉

𝐶2 ) ,  𝑚𝑏 = 5
18⁄ (𝐺𝑒𝑉

𝐶2⁄ ) 

(2). Martin potential [5]:  

V(r)= kr0.1        (2)  

With k = 6/898 ; mc =1/8(GeV C2 ) ; mb =5/174 (GeV  C2) 

(3). Logarithmic potential [6]:  

V(r)= klog(r)          (3)  

With k =0/733 ; mc =1/5 (GeV/C2) ; mb = 4/906 (GeV/C2) 

 

III. THEVARIATIONALMETHODBYUSINGTHESINGLE- 

PARAMETERTRIALWAVEFUNCTION  

Within the framework of the non-relativistic potential model, the S-state wave function ψ(r) of the heavy quarkonium 

satisfies the Schrodinger equation  

Hψ(r) =−
1

2𝜇
∇2𝜓(𝑟) + 𝑉(𝑟)𝜓(𝑟)= 𝐸𝜓(𝑟)      (4)  

Where H is the Hamiltonian of the quarkonium, V(r)denotes the central potential between quark and antiquark, E represents 

the energy of eigenvalue, and μ is the reduced mass.  

To solve Eq. (4) by using the variational method, one needs to choose a suitable trial wave functionψ(r,c)with N 

independent parameters{c}= {c1,c2, ,cN}first and then to seek out a set of parameters{co}= {cio,i =1,2, ,N} which 

minimizes the expectation value of Hamiltonian, namely  

𝐸(𝑐) = ⟨𝐻⟩ =   
⟨𝜓(𝑐)∣𝐻∣𝜓(𝑐)⟩

⟨𝜓(𝑐)∣𝜓(𝑐)⟩
       (5) 

The minimum value E(co ) gives an upper limit of the ground state energy.   

In this section, we choose the simplest trial wave function in which there is only one variational parameter to study the single 

state of heavy mesons. The general form of such trial wave function is written as  

𝜓𝑡𝑟𝑖𝑎𝑙  (r)  = 𝑁𝑒−𝑎𝑟𝑏
        (6)  

Where N is the normalization constant, a denotes the variational parameter which will be fixed by minimizing the 

expectation value of Hamiltonian and bis the model parameter which determines the type of the trial wave function. In 

practice, we select following four trial wave functions:  

(1).b=1, namely 𝜓𝑡𝑟𝑖𝑎𝑙  (r)  = 𝑁𝑒−𝑎𝑟  ( hydrogen wave function or exponential wave function). It is the solution of 

theSchrodinger equation of Coulomb potential model.  

(2)  b =2, namely 𝜓𝑡𝑟𝑖𝑎𝑙  (r)  = 𝑁𝑒−𝑎𝑟2
 (harmonic oscillator wave function or a Gaussian wave function). 

(3)    b= 3/2 ,namely 𝜓𝑡𝑟𝑖𝑎𝑙  (r)  = 𝑁𝑒−𝑎𝑟
3
2 .   This function was used by Gupta [7].  

(4)  b =  4/3 , namely 𝜓𝑡𝑟𝑖𝑎𝑙  (r)  = 𝑁𝑒−𝑎𝑟
4
3 .This is a newlyproposed trial wave function used in this work 

The normalization constant is obtained from the normalization condition : 

∫ ∣ 𝜓(𝑟) ∣2 𝑑𝑟3 =1           (7) 

4𝜋𝑁2 ∫ 𝑒−2𝑎𝑟𝑏
𝑟2∞

0
dr =1   → 𝑁 = [

𝑏(2𝑎)
1

𝑏⁄

4𝜋⎾(
3

𝑏
)

]
1

2⁄      (8) 

 

 

 

 

 

 

⟨V(r)⟩  = ∫ 𝜓∗(𝑟)𝑉(𝑟)𝜓(𝑟)𝑑3𝑟   = 4𝜋𝑁2 ∫ 𝑟𝑑𝑟𝑒−2𝑎𝑟𝑏∞

𝑜
+ 4𝜋𝑁2𝑘 ∫ 𝑒−2𝑎𝑟𝑏∞

𝑜
𝑟3𝑑𝑟 

  =4𝜋
𝑏(2𝑎)

3
𝑏

4𝜋⎾(
3

𝑏
)

(−
4

3
) 𝛼𝑠

⎾(
3

𝑏
)

𝑏(2𝑎)2/𝑏
+ 4𝜋

𝑏(2𝑎)
3
𝑏

4𝜋⎾(
3

𝑏
)

𝑘
⎾(

4

𝑏
)

𝑏(2𝑎)
4/𝑏

                                              (11) 

And the kinetic energy (T) is  

T = 
𝑝2

2𝜇
= -

1

2𝜇
(

2

𝑟

𝑑

𝑑𝑟
+

𝑑2

𝑑𝑟2)                                                                                           (12) 

⟨T⟩ = 4𝜋 ∫ 𝑟2𝑑𝑟𝜓∗(𝑟) 𝑇 𝜓(𝑟)
∞

0
 

=−
1

𝜇
4𝜋(−𝑁2𝑎𝑏) ∫ 𝑟𝑏𝑒−2𝑎𝑟𝑏

𝑑𝑟
∞

0
−

1

2𝑎
4𝜋(−𝑁2𝑎𝑏)(𝑏 − 1) ∫ 𝑟𝑏𝑒−2𝑎𝑟𝑏

𝑑𝑟 
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And ,  ψ(0) = N                                                                                                        (9)                                                                                                  

∣ 𝜓(0) ∣2=  𝑁2 ⇒    ∣ 𝜓(0) ∣2=  
𝑏(2𝑎)

3
𝑏⁄

4𝜋⎾(
3

𝑏
)

                                                                 (10) 

In the case of Cornell potential (1), potential energy ⟨V(r)⟩ is  
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−
1

2𝜇
4𝜋(𝑁2𝑎2𝑏2) ∫ 𝑟2𝑏𝑒−2𝑎𝑟𝑏

𝑑𝑟
∞

0

 

= 
2𝑏(𝑏+1)(2𝑎)

2
𝑏⎾(

1

𝑏
+1)−𝑏2(2𝑎)

2
𝑏⎾(2+

1

𝑏
)

8𝜇⎾(
3

𝑏
)

                                                                         (13) 

We know that ⎾(1+z) = z⎾(z), so we can write  

⟨T⟩ = 
(2𝑎)

2
𝑏𝑏2⎾(2+

1

𝑏
)

8𝜇⎾(
3

𝑏
)

                  (14) 

Then, we can obtain the expectation value of Hamiltonian and consequently an algebraic equation, which is used to determine: 

⟨H⟩ = ⟨T⟩ + ⟨V⟩  

=
𝑥2𝑏2⎾(2+

1

𝑏
)

8µ⎾(
3

𝑏
)

  +  
−4∝𝑠⎾(

2

𝑏
)𝑥2+3𝑘⎾(

4

𝑏
)

3⎾(
3

𝑏
)𝑥

                   (15) 

Where     x  = (2𝑎)
1

𝑏                   (16) 
𝑑

𝑑𝑥
⟨𝐻⟩ = 0                  (17) 

3𝑥3𝑏2⎾(2+
1

𝑏
)−16µ∝𝑠⎾(

2

𝑏
)𝑥2−12µ𝑘⎾(

4

𝑏
)

12µ𝑘⎾(
3

𝑏
)𝑥2

 =    0                                                    (18) 

It is very easy to solve this equation if we rewrite it in the following form; 

𝐴3𝑥3 + 𝐴2𝑥2 +  𝐴0  = 0                                                                     (19)    

The real solution of  x  can be expressed as  

𝑋𝑟𝑒𝑎𝑙 =
−𝐴2

3𝐴3
+

2
1
3𝐴2

2

3𝐴3𝐵
+ 

𝐵

3𝐴32
1
3

                (20) 

Where B = (𝐵0 + √(−4𝐴2
6 − 𝐵0

2))
1

3and 𝐵0= −2𝐴2
3 - 27𝐴0𝐴3

2 

In the case of Martin potential (2) , the potential energy reads :  

⟨𝑉(𝑟)⟩  = 4𝜋 ∫ 𝑟2∞

0
dr𝜓∗(r)Vr(ψ)r = (4)π𝑁2𝐾 ∫ 𝑒−2𝑎𝑟𝑏

𝑟2.1𝑑𝑟
∞

0
 

=
4𝜋𝑏(2𝑎)

3
𝑏

4𝜋⎾(
3

𝑏
)

𝐾 
┌(

3.1

𝑏
)

𝑏(2𝑎)
3.1
𝑏

 =  
𝐾⎾(

3.1

𝑏
)

(2𝑎)
3.1
𝑏 ⎾(

3

𝑏
)
              (21) 

⟨H⟩   = ⟨T⟩ + ⟨V⟩ 

=
(2𝑎)

2
𝑏𝑏2⎾(2+

1

𝑏
)

8µ⎾(
3

𝑏
)

    + 
𝐾⎾(

3.1

𝑏
)

(2𝑎)
0.1
𝑏 ⎾(

3

𝑏
)
             (22) 

Therefore , the equation for determining “a” is quite simple . The solution is  

a = 
1

2
[

(0.4)µ𝐾⎾(
3.1

𝑏
)

𝑏2⎾(2+
1

𝑏
)

]
𝑏

2.1             (23) 

In the case of Logarithmic potential (3) , by the similar procedure , we obtain  

a   = 
1

2
[

4µ𝐾⎾(
3

𝑏
)

𝑏2⎾(2+
1

𝑏
)
]

𝑏

2             (24) 

where  a is the variational parameter which will be fixed by minimizing the expectation value of Hamiltonian and bis the model parameter 

which determines the type of the trial wave function. 

 

IV.  THE VARIATIONAL RESULTS OF WFO OF SINGLE STATE ,cc bc and bb MESON 

In the case of Cornell Potential, the values of reduced mass for cc bc and bb are  

µ   = 
𝑚𝑐

2
  =0.99(

𝐺𝑒𝑉

𝑐2 ) ;   for   cc              (25)  

µ = 
𝑚𝑏𝑚𝑐

𝑚𝑏+𝑚𝑐
  = 1.35(

𝐺𝑒𝑉

𝑐2 ) ; for   bc                                     (26) 

µ =
𝑚𝑏

2
   = 2.59(

𝐺𝑒𝑉

𝑐2 )  ;  for     bb                                                                             (27) 

In the case of Martin  Potential , they are  

µ   = 
𝑚𝑐

2
  =0.9(

𝐺𝑒𝑉

𝑐2 ) ;   for   cc             (28)  

µ = 
𝑚𝑏𝑚𝑐

𝑚𝑏+𝑚𝑐
  = 1.33(

𝐺𝑒𝑉

𝑐2 ) ; for   bc              (29) 

µ =
𝑚𝑏

2
   = 2.58(

𝐺𝑒𝑉

𝑐2 )  ;  for     bb               (30) 

Also, in the case of  Logarithmic Potential , we have   

µ   = 
𝑚𝑐

2
  =0.75(

𝐺𝑒𝑉

𝑐2 ) ;   for   cc              (31)  

µ = 
𝑚𝑏𝑚𝑐

𝑚𝑏+𝑚𝑐
  = 1.14(

𝐺𝑒𝑉

𝑐2 ) ; for   bc               (32) 

µ =
𝑚𝑏

2
   = 2.45(

𝐺𝑒𝑉

𝑐2 )  ;  for     bb               (33) 
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where cc ,  bc  and  bb  are the parameters that represent the single-wave nature of the wave function systems for the reduced mass of each 

potential model. 

All the numerical results are listed in Tables I to III.  

 

TABLE I : THE VARIATIONAL RESULTS, |𝝍(𝟎)|𝟐(GeV)3 , WITH A SINGLEPARAMETER TRIAL WAVE FUNCTION 

FOR cc SINGLE-STATE MESON 

 

 

 

 

 

 

 

 

TABLE II: THE VARIATIONAL RESULTS, |𝝍(𝟎)|𝟐(GeV)3  WITH A SINGLEPARAMETER TRIAL WAVE FUNCTION 

FOR bc SINGLE-STATE  MESON  

 

   

 

 

 

 

 

 

TABLE III: THE VARIATIONAL RESULTS, ,|𝝍(𝟎)|𝟐(GeV)3  WITH A SINGLEPARAMETER TRIAL WAVE FUNCTION 

FOR bb SINGLE-STATE  MESON     

 

 

V. CONCLUSION  

In this paper, variational method for determining the wave function at the origin of quarkonium was analytically studied.  Retaining 

generality as much as possible, some potential models were employed to analyze data. Numerical results obtained through variational 

method of the models in this study were in good agreement with those obtained in literature using Schrodinger Equation [2]. The results 

shown in Tables I to III indicate that for the Cornell Potential, the trial wave function𝜓𝑡𝑟𝑖𝑎𝑙 (r)  = 𝑁𝑒−𝑎𝑟
4
3 with b= 4/3 can give the least 

relative deviation of squared WFO . The value of deviation is about 0.02 . For the Martin and Logarithmic potentials the situations are 

better;  when b=3/2 , one obtains the least values of 0.04 and 0.03 for the relative deviations of squared WFO respectively. The accuracy of 

variational results can be improved when the number of variational parameters are increased. The resultant accuracy of WFO seriously 

depends on the choice of the trial wave function that gives higher relative deviation. The trial wave function  with a single variational 

parameter is most convenient for use. If the accuracy of 2% for WFO in the Cornell potential case is tolerable,then the trial wave function 

𝜓𝑡𝑟𝑖𝑎𝑙 (r)  = 𝑁𝑒−𝑎𝑟
4
3 is the best choice for single-state system as it gives least relative deviation of 0.02 (2%)  (i.e the wave function value 

obtained is very close to that obtained using Schrodinger Equation). For Martin and Logarithmic potentials, 

𝜓𝑡𝑟𝑖𝑎𝑙 (r)  = 𝑁𝑒−𝑎𝑟
3
2 is the most appropriatetrial wave function for the single-state cc ,  bc  and  bb , and the corresponding WFOs have 

quite satisfactory accuracies , though not as accurate as that of Cornell . 
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b Cornell  Potential 

model 

Martin  Potential 

model 

Logarithmic  

Potential model 

Results obtained using Schrodinger 

Equation 

 1  0.167246 0.166931  0.179747 0.167965 

 2  0.324113  0.311503  0.339847 0.324598 

 3/2  0.554912  0.599773  0.552490 0.554791 

 4/3  0.756326  0.775113  0.776168 0.756556 

b Cornell  Potential  Martin  

Potential 

Logarithmic  

Potential 

Results obtained using Schrodinger 

Equation 

 1  0.264261 0.293480  0.246078 0.267965 

 2  0.326576  0.389927  0.355745 0.324598 

 3/2  0.541307  0.540607  0.518519 0.547922 

 4/3  0.651642  0.614323  0.614446 0.656981 

b Cornell  Potential  Martin  

Potential 

Logarithmic  

Potential 

Results obtained using Schrodinger 

Equation 

1  0.237961 0.238605  0.247454 0.237983 

 2  0.325192  0.331169  0.308874 0.324598 

 3/2  0.595784  0.581445  0.569630 0.547952 

 4/3  0.759597  0.519027  0.550535 0.756981 


