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Abstract 

This paper study the problem of how a financial institution can optimally allocate its wealth 

in three assets namely; treasury, security and loan. Derived the Hamilton – Jacobi – Bellman 

equation associated with the optimization problem through the application of dynamic 

programming principle and solve the resulted partial differential equation equivalent of the 

Hamilton – Jacobi – Bellman equation explicitly in the case of constant relative risk aversion 

(CRRA) utility function. We also presented numerical examples to illustrate the dynamics of 

the optimal investment policy (strategy). 
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1. Introduction 

The problem of finding an optimal portfolio in a continuous time market setting has been a subject of research in 

recent time. Portfolio can disperse risk and increase revenues. In recent years, some scholars are concerned with the optimal 

investment problems in financial institutions under stochastic framework. Current literature has been largely focusing on 

financial institutions optimal asset allocation in stochastic interest framework. However, in a more realistic world, one should 

account for both stochastic interest rates and stochastic volatility [1]. Also, in attempt to manage their assets, financial 

institutions try to lower risk by diversifying their investment portfolio through investment in different types of assets [2].  

For instance, [3] studied an optimal assets allocation problem with stochastic interest rates which takes into account 

specific features of bank. Their goal is to present a numerical aspect of the derived Hamilton – Jacobi – Bellman (HJB) 

equation and to focus on the optimal assets allocation model results from a practical viewpoint. Similarly, [4] also considered 

assets allocation problem. In their work, they illustrated that it is possible to use an analytic approach to optimize assets 

allocation strategies for banks. They formulated an optimal bank valuation problem through optimal choices of loan rate and 

demand which leads to maximal deposits, provisions for deposits withdrawals and bank profitability subject to cash flow, 

loan demand, financing and balance sheet constraints. 

Several studies have also investigated the assets allocation problems using stochastic control theory developed by [5] and 

[6]in discrete and continuous time setting [7-9]. The approach solved nonlinear partial differential HJB equation to find the 

closed form solution for the value function. 

Also in a work by [2] determined an optimal rate at which additional debt and equity should be raised and strategy 

for the allocation of bank equity. They employed dynamic programming algorithm for stochastic optimization to verify their 

results. In another work by [10], they obtained an analytical solution for the associated HJB in a case where the utility 

functions are either of power, exponential or logarithmic type. Here, the control variates are the depository consumption, 

value of the depository financial institutions invested in loans, and provisions for loan losses. 

Furthermore, Martingale approach in analyzing the bank behavior has been used in recent papers. The research work 

by [11] considered a theoritical quantitative approach for bank liquidity provisioning, solved a nonlinear stochastic optimal  
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liquidity risk management problem for subprime originators with deposit inflow rates and marketable securities allocation as 

controls using the Martingale approach. Here, they provided an explicit expression for the aggregate liquidity risk when a 

locally risk minimizing strategy is utilized. The Martingale method also frequently appears in areas such as optimal design 

and assets allocation of a pension fund or life insurance policy [12-13].The partial differential equation derived via 

martingale method is much simpler to solve than the highly non linear HJB equation associated with the dynamic 

programming method. 

Also, the work of [15] investigated an optimal investment strategy for banks funds in treasuries and securities in a 

risk and regret theoretical framework. Evidence of portfolio shifting are found in [16] and [17], where they suggested that 

banks may change their balance sheets in ways that can cause procyclicality. The research paper by [4] also modeled non – 

risk – based and risk – based capital adequacy. Specifically, they constructed a continuous time stochastic models for the 

dynamics of the leverage, equity and Tier 1 ratios and derived the CAR. They also show the relevant of their result to the 

banking sector by studying an optimal control problem in which an optimal assets allocation strategy is derived for the 

leverage ratio on a given time interval. Precisely, they determined the optimal expected terminal utility of the leverage ratio 

and derived the optimal assets allocation strategy that make it possible to maximize the expected terminal utility of the 

leverage ratio on a given time interval. 

Therefore, many mathematical models have been formulated over the past years to explore the dynamics of asset 

allocation problem in financial institutions under stochastic interest rate setting. In our contribution, we explore dynamics of 

a financial institution asset allocation problem in a stochastic interest rate and stochastic volatility framework. Our goal is to 

maximize an expected utility of the assets at a future time. 
 

2. The mathematical models formulation 
We consider a financial institution that dynamically allocates its wealth among three assets namely: treasury, loan and security. 

The assets prices satisfy the geometric Brownian motion, assets can be bought and sold without incurring any transaction costs or 

restriction on short sales and the interest rate is described by Affine model. The risk preference of the investor satisfies CRRA utility 

function.  
 

2.1 The Financial Market 
We consider a complete and frictionless financial market which is continuously open over a fixed time interval [0, 𝑇] and 

Brownian motion defined on a complete probability space (Ω, ℱ, ℙ), where ℱ = {ℱ𝑡}𝑡≥0 is the filtration generated by the Brownian 

motions, ℙ is the real world probability.The first asset in the financial market is a riskless treasury and its price at time 𝑡 can be denoted as 

𝑆0(𝑡). It evolves according to the following stochastic differential equation 

𝑑𝑆0(𝑡)

𝑆0(𝑡)
= 𝑟(𝑡)𝑑𝑡,                   𝑆(0) = 𝑆0                                                                                    (1) 

The dynamics of the short rate process, 𝑟(𝑡), is given by the stochastic differential equation (Affine model) 

𝑑𝑟(𝑡) = (𝑎 − 𝑏𝑟(𝑡))𝑑𝑡 − 𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡),    𝑟(𝑡) = 𝑟0                                                     (2) 

Where 𝑎, 𝑏 and𝜎𝑟 = √𝑘1 are constants. 

The second asset is a loan to be amortized over a period [0, 𝑇] whose price at time 𝑡 ≥ 0 is denoted by 𝐿(𝑡). Its dynamics can 

be described by the stochastic differential equation: 
𝑑𝐿(𝑡)

𝐿(𝑡)
= (𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝑏1𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡)                                                         (3) 

where𝑏1,𝜆𝑟and𝑘1 are constants. The loan return has a risk premium 𝑏1𝜆𝑟𝑟(𝑡) that changes with 𝑡 both implicitly through the dependence 

on 𝑟(𝑡) and explicitly through the dependence on 𝑏1. 
The third asset in the financial market is a risky security whose price is denoted by 𝑆(𝑡), 𝑡 ≥ 0. Its dynamics can be described by the 

equation: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝜎𝑠𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) + √𝜂(𝑡)𝑑𝑤𝑠(𝑡)          (4) 

The volatility 𝜂(𝑡) is assumed to satisfy the Heston model: 

𝑑𝜂(𝑡) = 𝛼(𝛿 − 𝜂(𝑡))𝑑𝑡 + 𝜎𝜂√𝜂(𝑡)𝑑𝑤𝑟(𝑡)                                                                            (5) 

where𝛼, 𝛿 and 𝜎𝜂are positive constant and satisfied the condition 2𝛼𝛿 > 𝜎𝜂
2 and it ensures 𝜂(𝑡) > 0 

 ∀ 𝑡 ∈ [0, 𝑇]. 
Here we assume that there is no correlation between 𝑤𝑠(𝑡)and 𝑤𝑟(𝑡), and between 𝑤𝜂(𝑡) and 𝑤𝑟(𝑡). The correlation between 

𝑤𝑠(𝑡)and 𝑤𝜂(𝑡)is 𝜌. 

2.2 The Portfolio of the Financial Institution 

Let 𝑋(𝑡) denotes the value of the financial institution assets portfolio at time 𝑡 ∈ [0, 𝑇], 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) denote the 

amount invested in the security and loan respectively. Therefore, 𝜋𝐵(𝑡) = 𝑋(𝑡) − 𝜋𝑠(𝑡) − 𝜋𝑙(𝑡) denotes the amount invested 

in the riskless asset. The dynamics of the assets portfolio is given by 
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𝑑𝑋(𝑡) = (𝑋(𝑡) − 𝜋𝑠(𝑡) − 𝜋𝑙(𝑡))
𝑑𝑆0(𝑡)

𝑆0(𝑡)
+ 𝜋𝑠(𝑡)

𝑑𝑆(𝑡)

𝑆(𝑡)
+ 𝜋𝑙(𝑡)

𝑑𝐿(𝑡)

𝐿(𝑡)
 

= [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝑑𝑡 

+ [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡) + 𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡)                             (6)  

 

2.3 Admissible Strategy 

An investment strategy Π(𝑡) = (𝜋𝑠(𝑡), 𝜋𝑙(𝑡)) is said to be admissible if the following conditions are satisfied. 

1. 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) are all 𝑓𝑡 −  measurable. 

2. 𝐸 (∫ (𝜋𝑠
2(𝑡)𝜂(𝑡) + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟+𝜋𝑙(𝑡)𝑏1𝜎𝑟]

2𝑟(𝑡))𝑑𝑡
𝑇

0
) < ∞ 

3. The stochastic differential equation (3.6) has a unique solution  

               ∀ 𝜋(𝑡) = (𝜋𝑠(𝑡), 𝜋𝑙(𝑡)). 
  

2.4 The Portfolio Optimization Problem  

Let the set of all admissible strategy be denoted by Π. Under the portfolio (6), the financial institution looks for an optimal 

strategy 𝜋𝑠
∗(𝑡) and 𝜋𝑙

∗(𝑡) which maximizes the expected utility of the terminal wealth. i.e.: 

max
𝜋(𝑡)∈Π

𝐸[𝑈(𝑋(𝑇))]                                                                                                                       (7) 

Based on the classical tools of stochastic optimal control, we state the problem as follows: 

Maximize     𝐸[𝑈(𝑋(𝑇))] 
Subject to: 

𝑑𝑟(𝑡) = (𝑎 − 𝑏𝑟(𝑡))𝑑𝑡 − 𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) 

𝑑𝜂(𝑡) = 𝛼(𝛿 − 𝜂(𝑡))𝑑𝑡 + 𝜎𝜂√𝜂(𝑡)𝑑𝑤𝑟(𝑡) 

𝑑𝑋(𝑡) = [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡) + 𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝑑𝑡 

               + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]  𝑑𝑤𝑟(𝑡) + 𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) 

𝑋(0) = 𝑥0, 𝑟(0) = 𝑟0, 𝜂(0) = 𝜂0 

where0 ≤ 𝑡 ≤ 𝑇 and𝑋(0) = 𝑥0, 𝑟(0) = 𝑟0, 𝜂(0) = 𝜂0 are the initial conditions of the optimal control problem. 

The objective is to maximize the expected utility of the financial institution’s portfolio at future date 𝑇 > 0. That is, find the 

optimal value function  

𝐻(𝑡, 𝑟, 𝜂, 𝑥) = max
𝜋(𝑡)∈Π

𝐸[𝑈(𝑋(𝑇))|𝑟(𝑡) = 𝑟, 𝜂(𝑡) = 𝜂, 𝑋(𝑡) = 𝑥 ]                                     (8) 

and the optimal strategy is 𝜋∗(𝑡) = (𝜋𝑠
∗(𝑡), 𝜋𝑙

∗(𝑡)) such that  

H
𝜋∗(𝑡)

(𝑡, 𝑟, 𝜂, 𝑥) = 𝐻(𝑡, 𝑟, 𝜂, 𝑥)                                                                                                       (9) 

 

2.5 The Derivation of the Hamilton – Jacobi – Bellman Equation Associated with the Portfolio Optimization Problem 

The Hamilton – Jacobi – Bellman equation associated with the portfolio optimization problemis: 

max
𝜋(𝑡)∈Π

{𝐻𝑡 + [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡) + 𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝐻𝑥 

+
1

2
(𝜋𝑠

2(𝑡)𝜂(𝑡) + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]
2

)𝐻𝑥𝑥 − [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟
2𝑟(𝑡) 

+𝜋𝑙(𝑡)𝑏1𝜎𝑟
2𝑟(𝑡)]𝐻𝑥𝑟 + [𝜌𝜋𝑠(𝑡)𝜎𝜂𝜂(𝑡)]𝐻𝑥𝜂 + [𝑎 − 𝑏𝑟(𝑡)]𝐻𝑟 +

1

2
𝜎𝑟
2𝑟(𝑡)𝐻𝑟𝑟  

+𝛼[𝛿 − 𝜂(𝑡)]𝐻𝜂 +
1

2
𝜎𝜂
2𝜂(𝑡)𝐻𝜂𝜂} = 0                                                                                      (11) 

𝐻(𝑇, 𝑟, 𝜂, 𝑥) = 𝑈(𝑥)                                                                                                                      (12) 
where𝐻𝑡 , 𝐻𝜂 , 𝐻𝑥 , 𝐻𝑟 , 𝐻𝑥𝑥 , 𝐻𝑟𝑟 , 𝐻𝜂𝜂 , 𝐻𝑥𝜂and𝐻𝑥𝑟  denote partial derivatives of first and second orders with respect to 

𝑡, 𝑟, 𝜂 and 𝑥 respectively. 
Differentiating (11) with respect to 𝜋𝑠(𝑡) 𝑎𝑛𝑑 𝜋𝑙(𝑡), we obtain  

(𝜐𝜂 + 𝜎𝑠𝜆𝑟𝑘1𝑟)𝐻𝑥 + (𝜋𝑠(𝑡)𝜂 + (𝜋𝑠(𝑡)𝜎𝑠
2𝜎𝑟

2𝑟+𝜋𝑙(𝑡)𝑏1𝜎𝑠𝜎𝑟
2𝑟)𝐻𝑥𝑥 

−𝜎𝑠𝜎𝑟
2𝑟𝐻𝑥𝑟 + 𝜌𝜎𝜂𝜂𝐻𝑥𝜂 = 0                                                                                                        (13) 

and 

𝑏1𝜆𝑟𝑘1𝑟𝐻𝑥 + (𝜋𝑠(𝑡)𝑏1𝜎𝑠𝜎𝑟
2𝑟+𝜋𝑙(𝑡)𝑏1

2𝜎𝑟
2𝑟)𝐻𝑥𝑥 − 𝑏1𝜎𝑟

2𝑟𝐻𝑥𝑟 = 0                                    (14) 
Solving (13) and (14) for 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) give the first order maximizing conditions for the optimal strategy (𝜋𝑠

∗(𝑡), 𝜋𝑠
∗(𝑡)).From equation 

(14), 

𝜋𝑙(𝑡) =
𝐻𝑥𝑟
𝑏1𝐻𝑥𝑥

−
𝜆𝑟𝑘1𝐻𝑥

𝑏1𝜎𝑟
2𝐻𝑥𝑥

−
𝜋𝑠(𝑡)𝜎𝑠
𝑏1

                                                                                                        (15) 
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Substituting for 𝜋𝑙(𝑡) in equation (13) and simplifying, we obtain 

𝜋𝑠
∗(𝑡) = −𝜐

𝐻𝑥
𝐻𝑥𝑥

− 𝜌𝜎𝜂
𝐻𝑥𝜂

𝐻𝑥𝑥
                                                                                                          (16) 

Substituting (16) in (15) and simplifying gives  

𝜋𝑙
∗(𝑡) =

𝐻𝑥𝑟
𝑏1𝐻𝑥𝑥

+
(𝜐𝜎𝑠𝜎𝑟

2 − 𝜆𝑟𝑘1)𝐻𝑥
𝑏1𝜎𝑟

2𝐻𝑥𝑥
+
𝜌𝜎𝜂𝜎𝑠𝐻𝑥𝜂

𝑏1𝐻𝑥𝑥
                                                                 (17) 

Substituting (16) and (17) in (11) gives the partial differential equation (PDE) for the value function. 

𝐻𝑡 + 𝑥𝑟𝐻𝑥 − (
𝜐2𝜂

2
+
𝜆𝑟
2𝑘1

2𝑟

2𝜎𝑟
2
)
𝐻𝑥
2

𝐻𝑥𝑥
− 𝜌2𝜎𝜂

2𝜂
𝐻𝑥𝜂
2

2𝐻𝑥𝑥
− 𝜎𝑟

2𝑟
𝐻𝑥𝑟
2

2𝐻𝑥𝑥
− 𝜌𝜎𝜂𝜂𝜐

𝐻𝑥𝐻𝑥𝜂

𝐻𝑥𝑥
 

+𝜆𝑟𝑘1𝑟
𝐻𝑥𝐻𝑥𝑟
𝐻𝑥𝑥

+ (𝑎 − 𝑏𝑟)𝐻𝑟 +
1

2
𝜎𝑟
2𝑟𝐻𝑟𝑟 + 𝛼(𝛿 − 𝜂)𝐻𝜂 +

1

2
𝜎𝜂
2𝜂𝐻𝜂𝜂 = 0                       (18) 

The problem now is solving (18) for the value function and replace it in (16) and (17). 

3 The Solution of the Optimization Problem 

For CRRA utility function, we conjecture a solution to the equation (18) in the following form: 

𝐻(𝑡, 𝑟, 𝜂, 𝑥) =
𝑥𝛽

𝛽
𝑓(𝑡, 𝑟, 𝜂),     𝛽 < 1, 𝛽 ≠ 0                                                                                (19) 

With the boundary condition: 

𝑓(𝑇, 𝑟, 𝜂) = 1                                                                                                                                       (20) 
From (19), we have 

𝐻𝑡 =
𝑥𝛽

𝛽
𝑓𝑡 , 𝐻𝑥 = 𝑥

𝛽−1𝑓,    𝐻𝑟 =
𝑥𝛽

𝛽
𝑓𝑟 ,   𝐻𝜂 =

𝑥𝛽

𝛽
𝑓𝜂, 𝐻𝑥𝑥 = (𝛽 − 1)𝑥𝛽−2𝑓

𝐻𝑥𝑟 = 𝑥𝛽−1𝑓𝑟 , 𝐻𝑥𝜂 = 𝑥𝛽−1𝑓𝜂,    𝐻𝑟𝑟 =
𝑥𝛽

𝛽
𝑓𝑟𝑟 ,   𝐻𝜂 =

𝑥𝛽

𝛽
𝑓𝜂𝜂

}
 
 

 
 

                     (21)  

Where 𝐻𝑡 , 𝐻𝑥 , 𝐻𝑟 , 𝐻𝜂 , 𝐻𝑥𝑥 , 𝐻𝑥𝑟 , 𝐻𝑥𝜂 , 𝐻𝑟𝑟and𝐻𝜂𝜂 represent the first order and second order partial derivatives of 𝐻 with 

respect 𝑡, 𝑥, 𝑟 and 𝜂. 

Introducing these derivatives in (21) into (18) and dividing through by 
𝑥𝛽

𝛽
 yields 

𝑓𝑡 + [𝑟𝛽 − (
𝛽𝜐2𝜂

2(𝛽 − 1)
+

𝛽𝜆𝑟
2𝑘1

2𝑟

2𝜎𝑟
2(𝛽 − 1)

)] 𝑓 −
𝛽𝜌2𝜎𝜂

2𝜂𝑓𝜂
2

2(𝛽 − 1)𝑓
−

𝛽𝜎𝑟
2𝑟𝑓𝑟

2

2(𝛽 − 1)𝑓
 

+ [𝛼(𝛿 − 𝜂) −
𝛽𝜌𝜎𝜂𝜂𝜐

𝛽 − 1
] 𝑓𝜂 + [

𝛽𝜆𝑟𝑘1𝑟

𝛽 − 1
+ (𝑎 − 𝑏𝑟)] 𝑓𝑟 +

1

2
𝜎𝑟
2𝑟𝑓𝑟𝑟 +

1

2
𝜎𝜂
2𝜂𝑓𝜂𝜂 = 0           (22) 

We conjecture 𝑓(𝑡, 𝑟, 𝜂) as the following:  

𝑓(𝑡, 𝑟, 𝜂) = 𝑒𝐷1(𝑡)+𝐷2(𝑡)𝑟+𝐷3(𝑡)𝜂

𝐷1(𝑡) = 𝐷2(𝑡) = 𝐷3(𝑡) = 0
}                                                                                                     (23) 

From (23), we have 

𝑓𝑡 = (𝐷1
′ (𝑡) + 𝐷2

′ (𝑡)𝑟 + 𝐷3
′ (𝑡)𝜂)𝑓

𝑓𝑟 = 𝐷2(𝑡)𝑓,   𝑓𝜂 = 𝐷3(𝑡)𝑓 

𝑓𝑟𝑟 = 𝐷2
2(𝑡)𝑓,   𝑓𝜂𝜂 = 𝐷3

2(𝑡)𝑓

}                                                                                              (24) 

Where 𝑓𝑡 , 𝑓𝑟 , 𝑓𝜂, 𝑓𝑟𝑟and𝑓𝜂𝜂 represent the first order and second order partial derivatives of 𝑓 with respect 𝑡, 𝑟 and 𝜂 

respectively. Hence substituting for 𝑓𝑡 , 𝑓𝑟 , 𝑓𝜂, 𝑓𝑟𝑟and𝑓𝜂𝜂 in (22) gives 

[𝐷1
′ (𝑡) + 𝑎𝐷2(𝑡) + 𝛼𝛿𝐷3(𝑡)]𝑓 + 𝑟𝑓 [𝐷2

′ (𝑡) + (𝛽 −
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

) 

+(
1

2
𝜎𝑟
2 −

𝛽𝜎𝑟
2

2(𝛽 − 1)
)𝐷2

2(𝑡) + (
𝛽𝜆𝑟𝑘1
𝛽 − 1

− 𝑏)𝐷2(𝑡)] + 

𝜂𝑓 [𝐷3
′ (𝑡) − (

𝛽𝜐2

2(𝛽 − 1)
) + (

1

2
𝜎𝜂
2 −

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
)𝐷3

2(𝑡) − (𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡)] = 0         (25) 

Eliminating the dependency on  𝑟 𝑎𝑛𝑑 𝜂, we decompose (25) into 

𝐷1
′ (𝑡) + 𝑎𝐷2(𝑡) + 𝛼𝛿𝐷3(𝑡) = 0                                                                                                      (26) 

𝐷2
′ (𝑡) + (

1

2
𝜎𝑟
2 −

𝛽𝜎𝑟
2

2(𝛽 − 1)
)𝐷2

2(𝑡) + (
𝛽𝜆𝑟𝑘1
𝛽 − 1

− 𝑏)𝐷2(𝑡) + (𝛽 −
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

) = 0       (27) 
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𝐷3
′ (𝑡) + (

1

2
𝜎𝜂
2 −

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
)𝐷3

2(𝑡) − (𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡) − (

𝛽𝜐2

2(𝛽 − 1)
) = 0                 (28) 

Observe that (27) and (28) are the general Riccati equations. 

Now, we turn to solving the above three equations. From (26),  

𝐷1
′ (𝑡) = −𝑎𝐷2(𝑡) − 𝛼𝛿𝐷3(𝑡) 

𝐷1(𝑡) = −(𝑎∫ 𝐷2(𝑡)
𝑇

𝑡

𝑑𝑡 + 𝛼𝛿 ∫ 𝐷3(𝑡)
𝑇

𝑡

𝑑𝑡)                                                                           (29) 

From (27), we have that 

𝑑𝐷2(𝑡)

𝑑𝑡
= (

𝛽𝜎𝑟
2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2)𝐷2

2(𝑡) + (𝑏 −
𝛽𝜆𝑟𝑘1
𝛽 − 1

)𝐷2(𝑡) + (
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

− 𝛽)           (30) 

The discriminant = 𝐵2 − 4𝐴𝐶 = 𝑏2 +
𝛽(2𝑏𝜆𝑟𝑘1 − 2𝜎𝑟

2 − 𝜆𝑟
2𝑘1

2)

1 − 𝛽
since 𝛽 < 1 

where 𝐴 = (
𝛽𝜎𝑟

2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2) , 𝐵 = (𝑏 −

𝛽𝜆𝑟𝑘1
𝛽 − 1

) , 𝐶 = (
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

− 𝛽) 

letΔ0 = 𝑏2 +
𝛽(2𝑏𝜆𝑟𝑘1 − 2𝜎𝑟

2 − 𝜆𝑟
2𝑘1

2)

1 − 𝛽
, then 

𝑀1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
=
(𝑏 +

𝛽𝜆𝑟𝑘1

1−𝛽
) ± √Δ0

(
𝜎𝑟
2

1−𝛽
)

,               𝛽 < 1  

Equation (27) has different solutions depending on whether Δ0 > 0,Δ0 = 0 andΔ0 < 0. Now, let Δ0 > 0 then the quadratic 

function has two different roots denoted by 𝑀1 and 𝑀1 respectively such that  
𝑑𝐷2(𝑡)

𝑑𝑡
= 𝐴[(𝐷2(𝑡) − 𝑀1)(𝐷2(𝑡) − 𝑀2)]                                                                                   (31) 

Therefore, equation (31) becomes  
𝑑𝐷2(𝑡)

(𝐷2(𝑡) − 𝑀1)(𝐷2(𝑡) − 𝑀2)
= 𝐴𝑑𝑡                                                                                              (32) 

1

𝑀1 −𝑀2

(
1

𝐷2(𝑡) − 𝑀1

−
1

𝐷2(𝑡) − 𝑀2

) 𝑑𝐷2(𝑡) = 𝐴𝑑𝑡                                                             (33) 

The integral of (33) with respect to 𝑡, from 𝑡 to 𝑇 is: 

1

𝑀1 −𝑀2

∫ (
𝑑𝐷2(𝑠)

𝐷2(𝑠) − 𝑀1

−
𝑑𝐷2(𝑠)

𝐷2(𝑠) − 𝑀2

)
𝑇

𝑡

= 𝐴∫ 𝑑𝑠
𝑇

𝑡

 

𝐷2(𝑡) =
𝑀1𝑀2 −𝑀1𝑀2𝑒

𝐴(𝑀1−𝑀2)(𝑇−𝑡)

𝑀1 −𝑀2𝑒
𝐴(𝑀1−𝑀2)(𝑇−𝑡)

 

Note that 

𝐴 = (
𝛽𝜎𝑟

2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2) = −(

𝛽𝜎𝑟
2

2(1 − 𝛽)
+
1

2
𝜎𝑟
2) for𝛽 < 1 

Therefore,  

𝐷2(𝑡) =
𝑀1𝑀2 −𝑀1𝑀2𝑒

−(
1

2
𝜎𝑟
2+

𝛽𝜎𝑟
2

2(1−𝛽)
)(𝑀1−𝑀2)(𝑇−𝑡)

𝑀1 −𝑀2𝑒
−(

1

2
𝜎𝑟
2+

𝛽𝜎𝑟
2

2(1−𝛽)
)(𝑀1−𝑀2)(𝑇−𝑡)

                                                               (34) 

Next we solve for 𝐷3(𝑡) in (28) 

𝐷3
′ (𝑡) = (

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2)𝐷3

2(𝑡) + (𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡)   + (

𝛽𝜐2

2(𝛽 − 1)
)                                   (35) 

From (35), we have 

𝐴1 = (
𝛽𝜌2𝜎𝜂

2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2) , 𝐵1 = (𝛼 +

𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
) , 𝐶1 = (

𝛽𝜐2

2(𝛽 − 1)
) 

The discriminant = 𝐵1
2 − 4𝐴1𝐶1 = 𝛼

2 −
2𝛽𝜌𝜎𝜂𝜐𝛼

1 − 𝛽
−
𝛽𝜐2𝜎𝜂

2

1 − 𝛽
,        𝛽 < 1 

Again, let∆1= 𝛼
2 −

2𝛽𝜌𝜎𝜂𝜐𝛼

1 − 𝛽
−
𝛽𝜐2𝜎𝜂

2

1 − 𝛽
 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 61 – 70 



66 
 

Optimal Investment Problem…       Danjuma and Tyokyaa                 Trans. Of NAMP 

Then,  

𝑀3,4 =
(𝛼 −

𝛽𝜌𝜎𝜂𝜐

1−𝛽
) ± √∆1

(𝜎𝜂
2 +

𝛽𝜌2𝜎𝜂
2

1−𝛽
)

,         𝛽 < 1 

Equation (28) has different solution depending on whether ∆1> 0, ∆1= 0 and∆1< 0. Let ∆1> 0, then the quadratic function 

has two distinct roots denoted by 𝑀3 and 𝑀4 respectively such that 
𝑑𝐷3(𝑡)

𝑑𝑡
= 𝐴1[(𝐷3(𝑡) − 𝑀3)(𝐷3(𝑡) − 𝑀4)]                                                                                     (36) 

𝑑𝐷3(𝑡)

(𝐷3(𝑡) − 𝑀3)(𝐷3(𝑡) −𝑀4)
= 𝐴1𝑑𝑡                                                                                                  (37) 

1

𝑀3 −𝑀4
(

1

𝐷3(𝑡) − 𝑀3
−

1

𝐷3(𝑡) − 𝑀4
) 𝑑𝐷3(𝑡) = 𝐴1𝑑𝑡                                                                (38) 

The integral of (38) from 𝑡 to 𝑇 with respect to 𝑡 is: 

1

𝑀3 −𝑀4
∫ (

1

𝐷3(𝑠) −𝑀3
−

1

𝐷3(𝑠) −𝑀4
)

𝑇

𝑡

𝑑𝐷3(𝑠) = 𝐴1∫ 𝑑𝑠
𝑇

𝑡

 

𝐷3(𝑡) =
𝑀3𝑀4 −𝑀3𝑀4𝑒

𝐴1(𝑀3−𝑀4)(𝑇−𝑡)

𝑀3 −𝑀4𝑒
𝐴1(𝑀3−𝑀4)(𝑇−𝑡)

 

Observe that  

𝐴1 = (
𝛽𝜌2𝜎𝜂

2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2) = −(

𝛽𝜌2𝜎𝜂
2

2(1 − 𝛽)
+
1

2
𝜎𝜂
2) ,   𝛽 < 1 

Therefore,  

𝐷3(𝑡) =
𝑀3𝑀4 −𝑀3𝑀4𝑒

−(
1

2
𝜎𝜂
2+

𝛽𝜌2𝜎𝜂
2

2(1−𝛽)
)(𝑀3−𝑀4)(𝑇−𝑡)

𝑀3 −𝑀4𝑒
−(

1

2
𝜎𝜂
2+

𝛽𝜌2𝜎𝜂
2

2(1−𝛽)
)(𝑀3−𝑀4)(𝑇−𝑡)

                                                        (39) 

Theorem 1 

From (16), (17), (21) and (24), the optimal proportion of wealth invested in security, loan and treasury under stochastic 

interest rates and stochastic volatility framework, and in the case of CRRA utility function is given by: 

𝜋𝑠𝑝
∗ (𝑡) =

𝜈

1 − 𝛽
+
𝜌𝜎𝜂𝐷3(𝑡)

1 − 𝛽
 

𝜋𝑙𝑝
∗ (𝑡) =

(𝜆𝑟𝑘1 − 𝜐𝜎𝑠𝜎𝑟
2)

𝑏1𝜎𝑟
2(1 − 𝛽)

−
𝐷2(𝑡)

𝑏1(1 − 𝛽)
−
𝜌𝜎𝑠𝜎𝜂𝐷3(𝑡)

𝑏1(1 − 𝛽)
 

𝜋0𝑝
∗ (𝑡) = 1 − 𝜋𝑠𝑝

∗ (𝑡) − 𝜋𝑙𝑝
∗ (𝑡) 

             = 1 +
𝜐𝜎𝑠𝜎𝑟

2 − 𝜐𝑏1𝜎𝑟
2 − 𝜆𝑟𝑘1

𝑏1𝜎𝑟
2(1 − 𝛽)

+
1

𝑏1(1 − 𝛽)
𝐷2(𝑡) +

𝜌𝜎𝜂(𝜎𝑠 − 𝑏1)

𝑏1(1 − 𝛽)
𝐷3(𝑡) 

4. Numerical Examples  

Here, we present the numerical simulation for the evolution of the optimal investment strategy and the effects of some of the 

market parameters on optimal investment strategy. We assume that the investment period 𝑇 = 10 years, 𝑘 = 0. The 

remaining parameters:𝑎 = 0.0187, 𝑏 = 0.2339, 𝑟0 = 0.05, 𝜂0 = 1, 
𝛽 = −2, 𝜆𝑟 = 1, 𝑘1 = 0.0073, 𝜎𝑟 = 0.0854, 𝛼 = 2, 𝛿 = 0.3, 𝜌 = 0.5, 𝜎𝜂 = 1, 𝜐 = 1.5, 𝑏1 = 0.7,  

𝜎𝑠 = 0.02 are gotten from ([13], [18]) 

 
Fig. 1 The effect of time on the optimal investment strategy 

 
Fig. 2 The effect of the parameter 𝜎𝑟onSecurity 
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Fig. 3 The effect of the parameter 𝜎𝑟on Loan 

Fig. 4 The effect of the parameter 𝜎𝑟on Treasury 

 
Fig. 5 The effect of the positive parameter 𝜌 on Security 

 

Fig. 6 The effect of the positive parameter 𝜌on Loan 

Fig.7 The effect of the positive parameter 𝜌onTreasury 

 
Fig. 8 The effect of the negative parameter 𝜌on Security 
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Fig. 9 The effect of the negative parameter 𝜌on Loan      F  ig. 10 The effect of the negative parameter 𝜌 on Treasury 

 

Figure 1 illustrates the trends of how the optimal proportion of the wealth invested in the three assets change with time. From 

figure 1, there is a positive relationship between optimal investment in the treasury and time. That is, as time increases so also 

the optimal investment in the treasury. However, the optimal proportion invested in the security almost remains unchanged 

and the optimal proportion invested loan decreases. Figure 1 also shows that the optimal proportion invested in the treasury is 

negative at the beginning of the investment horizon which indicates that the investor takes a short position in the treasury. 

The treasury short position enables the investor to invest more in the risky instruments within the period but toward the end 

of the investment period, the investor invests more in the treasury to reach the optimal investment strategy. 

Figure 2 to figure 4 gives the relationship between optimal investment strategy and the parameter 𝜎𝑟. From figure 2, we 

found that the optimal proportion invested in security remains unchanged but the optimal proportion invested in the loan 

decreases as 𝜎𝑟 increases as shown in figure 3. This illustrates that the interest rate has little influence on the optimal 

investment in the security. While the optimal proportion invested in the treasury increases as 𝜎𝑟 increases as shown in figure 

4. This illustrates the intuitive observation that if the optimal investment in security remains almost unchanged and the 

optimal investment in the loan decreases then the optimal investment in the treasury increases. 

The Heston model, 𝜂(𝑡) reflects the volatility of the risky asset’s price therefore optimal investment strategy depends on the 

parameters of 𝜂(𝑡). Thus we plot the effects of the parameters of 𝜂(𝑡) on the optimal investment strategy. We observed that 

the optimal proportion invested in the security decreases for 𝜌 > 0 and increases for 𝜌 < 0. The parameter 𝜌, reflects the 

correlation between the security’s price and its volatility. The uncertainties of the two processes change in the same way 

when 𝜌 is positive and change in different ways when 𝜌 is negative. Therefore, the investor invests less money in the security 

when 𝜌 > 0 as 𝜌 increases as illustrated by figure 5while the investor’s investment remains unchanged in loan as shown in 

figure 6 and increases in treasury as shown in figure 7. The investor invests more in the security when 𝜌 < 0 as 𝜌 decreases 

as shown in figure 8 to hedge the risk which is consistent with intuition and this numerical example is illustrated by figure 8. 

However, the investor’s investment remains unchanged in loan as shown in figure 9 and decreases in treasury as shown in 

figure 10. 

 

5. Conclusion 

Allocating optimally the financial institution’s resources among competing investments is very important. In this 

research work, we considered optimization problem of a financial institution assets where the interest rate is driven by 

stochastic Affine interest rate model and the volatility of the security is described by the Heston stochastic volatility model. 

Here, the investor objective is to maximize the terminal wealth. The interest rate model is stochastic and follows the CIR 

Affine model. The volatility of the security is also stochastic and obeys the Heston’s stochastic volatility model. Therefore, 

the investor has to deal with the risk of both interest rate and volatility. Under the asset portfolio optimization problem, the 

financial market consists of three assets namely; security, loan and treasury. We derived the optimal investment strategy 

under the CRRA utility function, obtained the explicit solution of the (resulted Hamilton – Jacobi – Bellman equation) for the  
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optimal asset allocation problem and analyze the behavior of the optimal portfolio via some numerical examples with 

interpretation of its economic meanings in the real market. Some of the results we got are: 

i. The optimal investment strategy is to diversify the financial institution portfolio away from the risky assets and 

toward the riskless treasury. 

ii. Increasing the volatility of the interest rate causes shift of wealth from security and loan into treasury. This is as the 

result of the fact that investment in security and loan become more risky as the interest rate becomes more volatile 

iii. The parameter 𝜌 reflects the correlation between the security price and its volatility. The uncertainties of the two 

processes change in same sense when 𝜌 is positive and change in different ways when 𝜌 is negative. Therefore, the 

security price and its volatility are negatively correlated. 
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