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Abstract 

In this paper, the numerical simulation of a Susceptible-Exposed-Infected-Recovered 

(SEIR) epidemic model with saturated incidence rate including saturation term for the 

susceptible individuals was analyzed.  

The local and global stabilities of both disease free and endemic equilibrium were also 

investigated. The effect of transmission coefficient was also analyzed using Runge 

Kutta of order 4 for the numerical analysis. 
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1. INTRODUCTION 

In [1] (2016), analysis of SEIRS Epidemic model with disease induced death was modified. Also in [2] effect of Disease 

transmission coefficient was also investigated with a saturated incidence rate i.e. 

Imsm
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 . The paper covers when 02 mand  

which changes the incidence rate to 

sm

SI

1

 and the new model is now SEIR i.e. there is a permanent immunity. Any individual cured 

will no longer goes into the susceptible class again. In [3] numerical simulation on saturated term on SEIRS epidemic model was 

also investigated. Analysis of initial state and treatment are discussed in [4], [5] and [6]. 

    

2. THE BASIC MATHEMATICAL MODEL 

  In this paper, SEIRS model [1] was adopted and modified by making 2mand equals zero 

Existing model (SEIRS) KOLAWOLE (2017) 
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when 0  and 02 m  gives the proposed model in (1) 

Proposed Model (SEIR) 
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Therefore at disease free equilibrium (DFE) = 
.0,0,0,),,,( 
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Also at endemic equilibrium i.e. when 0I . The endemic equilibrium points are   RIESRIES ,,,,,,  
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Therefore the Endemic Equilibrium Points are (S,E,I,R) =   RIES ,,,  
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3. DERIVATIVE OF R   

There are two diseases state but only one way to create new infections. Hence, we are concerned with E and I compartment of the 

model. Thus, from equation (2) gives 
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And                 (3a) 
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From equation (3a) we obtain the characteristics equation of matrix G as 
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The dominant eigenvalue is our R , therefore 
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4. LOCAL STABILITY OF DISEASE FREE EQUILIBRUM 

If we let 

RRIIEExSS  ,,,1
 

Therefore, the resulting linearized equations are; 
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The resulting Jacobian Matrix is  
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So at the Disease Free Equilibrium point 



S  therefore by substituting 




1S yields 
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which are all negative. Hence the disease free equilibrium is unstable. 
 

LOCAL STABILITY OF ENDEMIC EQUILIBRIUM 

Let S-S*= w, E-E*= x, I-I*= y, R-R*= z 

We linearize the system in matrix form we have  
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The equation gives 
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By Descartes’s Rule of Sign, let 
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Let 0,0,0,0 6543  AAAA .Then )(f  have no change in sign meaning there are no positive roots of )(f  

Also if  is replaced by -   
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),( f have four sign changes which implies, there are exactly four negative roots of ),( f . Since there is no positive roots for

0,0,0,0 6543  AAAA . 

 
That is all Eigen values are negatives, then the endemic or Disease free equilibrium is locally asymptotically stable if

0,0,0,0 6543  AAAA . 

Global Stability of the disease-free equilibrium  
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At disease free equilibrium we have, 
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Hence the disease free equilibrium is globally asymptotically stable. 
RESULTS AND DISCUSSION 

    
Fig. 1: Graph of SEIR against t with         Fig. 2: Graph of SEIR against t when 

1.0,25.0,1.0,3.0,50,01.0 1  m
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Fig. 3: Graph of SEIR against t when    Fig. 4: Graph of SEIR against t when 

1.0,25.0,1.0,3.0,50,05.0
1
 m

        
1.0,25.0,1.0,3.0,50,07.0

1
 m  

 

4. RESULTS AND DISCUSSION 

From Figures 1-4, the simulation result considering 0 on the effect of disease transmission coefficient on SEIR model indicates that, the 

lower the disease transmission coefficient the better asymptotic stability of disease free and endemic equilibrium. Hence for better eradication   

should be so small in an infected environment.  

0 shows that, there is a kind of permanent immunity i.e. any individual cured is no longer going to the susceptible class. Hence SEIR 

epidemic model. The result is in line with [1] and [2]. 
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