REDUCED STEP POINT COLLOCATION INTERPOLATION METHOD FOR THE SOLUTION OF HEAT EQUATION

Sunday Babuba and I. A. Bakari
Department of Mathematics, Federal University Dutse, Ibrahim Aliyu Bye - Pass, P.M.B. 7156 Dutse, Jigawa State - Nigeria

Abstract

In this study, we developed a new finite difference approximate method for solving heat equations. We study the numerical accuracy of the method. Detailed numerical results have shown that the method provides better results than the known explicit finite difference method. There is no semi-discretization involved and no reduction of PDE to a system of ODEs in the new approach, but rather a system of algebraic equations directly results.

Keywords: lines; multistep collocation; parabolic; Taylor's polynomial

1. Introduction

In this study, we will deal with a single parabolic partial differential equation in one space variable, where t and x are the time and space coordinates respectively, and the quantities h and k are the mesh sizes in the space and time directions.
We consider,
$\frac{\partial U}{\partial t}=\frac{\partial^{2} U}{\partial x^{2}}, \quad 0 \leq x \leq b, 0 \leq t \leq T$
Subject to the initial and boundary conditions
$U(x, 0)=f(x), 0 \leq x \leq b$,
$U(0, t)=g_{1}(t), t \geq 0$
$U(b, t)=g_{2}(t), t \geq 0$
We are interested in the development of numerical techniques for solving heat equations. Of recent, there is a growing interest concerning continuous numerical methods of solution for ODEs [1,2]. We are interested in the extension of a particular continuous method to solve the heat equation. This is done based on the collocation and interpolation of the PDE directly over multi steps along lines but without reduction to a system of ODEs. We intend to avoid the cost of solving a large system of coupled ODEs often arising from the reduction method by semi-discretization. The method also, eliminates the usual draw-back of stiffness arising in the conventional reduction method by semi-discretization [3,4].

2. The Solution Method

We subdivide the interval $0 \leq x \leq b$ into N equal subintervals by the grid points $x_{m}=m h, m=0, \ldots, N$ where $N h=b$. On these meshes we seek l-step approximate solution to $U(x, t)$ of the form
$U(x, t)=\sum_{r=0}^{p-2} a_{r} Q_{r}(x, t) \quad x \in\left[x_{m}, x_{m+1}\right]$
such that $0=x_{0}<\ldots<x_{m}<\ldots<x_{N}=b$. The basis function $Q_{r}(x, t), r=0, \ldots, p-2$ are assumed known, a_{r} are constants to be determined and $p \leq l+s$, where S is the number of collocation points. The equality holds if the number of interpolation points used is equal to l. There will be flexibility in the choice of the basis function $Q_{r}(x, t)$ as may be desired for specific application. For this work, we consider the Taylor's polynomial $Q_{r}(x, t)=x^{r} t^{r}$. The interpolation values $U_{m, n}, \ldots, U_{m+l-1, n}$ are

Correspondence Author: Sunday B., Email: sundaydzupu @ yahoo.com, Tel: +2348039282881
Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13-18
assumed to have been determined from previous steps, while the method seeks to obtain $U_{m+l, n}[5,6]$. We apply the above interpolation conditions on eqn. (2.0) to obtain
$a_{0} Q_{0}\left(x_{m+g}, t_{n}\right)+\ldots+a_{p-2} Q_{p-2}\left(x_{m+g}, t_{n}\right)=U\left(x_{m+g}, t_{n}\right), \quad g=-\frac{1}{170}\left(\frac{1}{170}\right) l-\frac{509}{170}$
We can write eqn. (2.1) as a simple matrix equation in the augmented form as,
$\left[\begin{array}{cll}Q_{0}\left(x_{m-\frac{1}{170}}, t_{n}\right) & \ldots & Q_{p-2}\left(x_{m-\frac{1}{170}}, t_{n}\right) \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ Q_{0}\left(x_{m+l-\frac{509}{170}}, t_{n}\right) & \ldots & Q_{p-2}\left(x_{m+l-\frac{509}{170}}, t_{n}\right)\end{array}\right]\left[\begin{array}{l}a_{0} \\ \ldots \\ \ldots \\ \ldots \\ a_{p-2}\end{array}\right]=\left[\begin{array}{l}U\left(x_{m-\frac{1}{170}}, t_{n}\right) \\ \ldots \\ \ldots \\ \ldots \\ U\left(x_{m+l-\frac{509}{170}}, t_{n}\right)\end{array}\right]$
Using three interpolation points and one collocation point, implies that $S=1, p=4, l=3$ and $r=0,1,2$.
Substituting for p in eqn. (2.1) we have,

$$
\begin{equation*}
a_{0} Q_{0}\left(x_{m+g}, t_{n}\right)+a_{1} Q_{1}\left(x_{m+g}, t_{n}\right)+a_{2} Q_{2}\left(x_{m+g}, t_{n}\right)=U_{m+g},_{n} \quad g=-\frac{1}{170}, 0, \frac{1}{170} \tag{2.3}
\end{equation*}
$$

Putting the values of g in eqn. (2.3) and writing it as matrix in augmented form we have,

$$
\left[\begin{array}{lll}
Q_{0}\left(x_{m-\frac{1}{170}}, t_{n}\right) & Q_{1}\left(x_{m-\frac{1}{170}}, t_{n}\right) & Q_{2}\left(x_{m-\frac{1}{170}}, t_{n}\right) \tag{2.4}\\
Q_{0}\left(x_{m}, t_{n}\right) & Q_{1}\left(x_{m}, t_{n}\right) & Q_{2}\left(x_{m}, t_{n}\right) \\
Q_{0}\left(x_{m+\frac{1}{170}}, t_{n}\right) & Q_{1}\left(x_{m+\frac{1}{170}}, t_{n}\right) & Q_{2}\left(x_{m+\frac{1}{170}}, t_{n}\right)
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
U\left(x_{m-\frac{1}{170}}, t_{n}\right) \\
U\left(x_{m}, t_{n}\right) \\
U\left(x_{m+\frac{1}{170}}, t_{n}\right)
\end{array}\right]
$$

From eqn. (2.4) we obtain the following values
$Q_{0}\left(x_{m-\frac{1}{170}}, t_{n}\right)=1 \quad Q_{1}\left(x_{m-\frac{1}{170}}, t_{n}\right)=x_{m-\frac{1}{170}} t_{n} \quad Q_{2}\left(x_{m-\frac{1}{170}}, t_{n}\right)=x^{2}{ }_{m-\frac{1}{170}} t^{2}{ }_{n}$
$Q_{0}\left(x_{m}, t_{n}\right)=1 \quad Q_{1}\left(x_{m}, t_{n}\right)=x_{m} t_{n} \quad Q_{2}\left(x_{m}, t_{n}\right)=x^{2}{ }_{m} t^{2}{ }_{n}$
$Q_{0}\left(x_{m+\frac{1}{170}}, t_{n}\right)=1 \quad Q_{1}\left(x_{m+\frac{1}{170}}, t_{n}\right)=x_{m+\frac{1}{170}} t_{n} \quad Q_{2}\left(x_{m+\frac{1}{170}}, t_{n}\right)=x^{2}{ }_{m+\frac{1}{170}} t_{n}{ }^{2}$
Putting the above values in eqn. (2.4) becomes
$\left[\begin{array}{ccc}1 & x_{m-\frac{1}{170}} t_{n} & x^{2}{ }_{m-\frac{1}{170}} t^{2}{ }_{n} \\ 1 & x_{m} t_{n} & x^{2}{ }_{m} t^{2}{ }_{n} \\ 1 & x^{{ }_{m+\frac{1}{170}} t_{n}} & x^{2}{ }_{m+\frac{1}{170}} t^{2}{ }_{n}\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}U^{m-\frac{1}{170}{ }^{n}} \\ U_{m, n} \\ U_{m+\frac{1}{170}{ }^{n}}\end{array}\right]$
When we solve eqn. (2.5) to obtain the value of a_{2} to be
$a_{2}=\frac{14450 U_{m+\frac{1}{170^{n}}}+14450 U_{m-\frac{1}{170} n^{n}}-28900 U_{m, n}}{h^{2} t^{2}{ }_{n}}$,
We substitute $r=0,1,2$ in eqn. (2.0) to obtain
$U(x, t)=a_{0} Q_{0}+a_{1} Q_{1}+a_{2} Q_{2}$
By substitution of $Q_{0} Q_{1}$ and Q_{2} in eqn. (2.6) we obtain

$$
\begin{equation*}
U(x, t)=a_{0}+a_{1} x t+a_{2} x^{2} t^{2} \tag{2.7}
\end{equation*}
$$

Substituting the value of a_{2} in eqn. (2.7) we obtain
Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13-18
$U(x, t)=a_{0}+a_{1} x t+x^{2} t^{2}\left(\frac{14450 U^{{ }_{m+\frac{1}{170}, n}}+14450 U^{m-\frac{1}{170}, n}}{}-28900 U_{m, n}\right)$
Taken the first and second derivatives of eqn. (2.8) with respect to x we have
$U^{\prime \prime}(x, t)=t^{2}\left(\frac{28900 U_{m+\frac{1}{170}, n}+28900 U_{m-\frac{1}{170}, n}-57800 U_{m, n}}{h^{2} t^{2}{ }_{n}}\right)$,
we collocate eqn. (2.9) at $t=t_{n}$ to arrive at
$U^{\prime \prime}(x, t)=\frac{28900 U_{m+\frac{1}{170}, n}+28900 U_{m-\frac{1}{170}, n}-57800 U_{m, n}}{h^{2}}$
Similarly, we reverse the roles of x and t in eqn. (2.0), and we also subdivide the interval $0 \leq t \leq T$ into y equal subintervals by the grid points $t_{n}=n k, \quad n=0, \ldots, y$ where $y k=T$. On these meshes we seek l - step approximate solution to $U(x, t)$ of the form
$U(x, t)=\sum_{r=0}^{p-2} a_{r} Q_{r}(x, t) \quad t \in\left[t_{n}, t_{n+l}\right]$
Such that $0=t_{0}<\ldots<t_{n}<\ldots<t_{y}=T$, the basis function $Q_{r}(x, t), r=0, \ldots, p-2$ are assumed known, a_{r} are constants to be determined and $p \leq l+s$, where s is the number of collocation points [7,8]. The equality holds if the number of interpolation points used is equal to l. There will be flexibility in the choice of the basis function $Q_{r}(x, t)$ as may be desired for specific application. For this method, we consider the Taylor's polynomial $Q_{r}(x, t)=x^{r} t^{r}$. The interpolation values $U_{m, n}, \ldots, U_{m, n+l-1}$ are assumed to have been determined from previous steps, while the method seeks to obtain $U_{m, n+l}[9,10]$. We apply the above interpolation conditions on eqn. (2.11) to obtain
$a_{0} Q_{0}\left(x_{m}, t_{n+f}\right)+\ldots+a_{p-2} Q_{p-2}\left(x_{m}, t_{n+f}\right)=U\left(x_{m}, t_{n+f}\right), f=0\left(\frac{1}{170}\right) l-\frac{339}{170}$
We can write (2.12) as a simple matrix equation in the augmented form as
$\left[\begin{array}{cll}Q_{0}\left(x_{m}, t_{n}\right) & \ldots & Q_{p-2}\left(x_{m}, t_{n}\right) \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ Q_{0}\left(x_{m}, t_{n+l-1-\frac{339}{170}}\right) & \ldots & Q_{p-2}\left(x_{m}, t_{n+l-\frac{339}{170}}\right.\end{array}\right]\left[\begin{array}{l}a_{0} \\ \ldots \\ \ldots \\ \ldots \\ a_{p-2}\end{array}\right]=\left[\begin{array}{l}U\left(x_{m}, t_{n}\right) \\ \ldots \\ \ldots \\ \ldots \\ U\left(x_{m}, t_{n+l-\frac{339}{170}}\right)\end{array}\right]$
Using two interpolation points and one collocation point in eqn. (2.13) implies that $p=3, r=0,1 \quad l=2$ and $f=0, \frac{1}{170}$, and by substitution eqn.(2.13) becomes

$$
\left[\begin{array}{ll}
Q_{0}\left(x_{m}, t_{n}\right) & Q_{1}\left(x_{m}, t_{n}\right) \tag{2.14}\\
Q_{0}\left(x_{m}, t_{n+\frac{1}{170}}\right) & Q_{1}\left(x_{m}, t_{n+\frac{1}{170}}\right)
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
U\left(x_{m}, t_{n}\right) \\
U\left(x_{m}, t_{n+\frac{1}{170}}\right)
\end{array}\right]
$$

From eqn. (2.14) we obtain the following values:

$$
\left.\begin{array}{ll}
Q_{0}\left(x_{m}, t_{n}\right)=1 & Q_{1}\left(x_{m}, t_{n}\right)=x_{m} t_{n} \tag{2.15}\\
Q_{0}\left(x_{m}, t_{n+\frac{1}{170}}\right)=1 & Q_{1}\left(x_{m}, t_{n+\frac{1}{170}}\right)=x_{m} t_{n+\frac{1}{170}}
\end{array}\right\}
$$

Substituting the values of eqn. (2.15) into eqn. (2.14), we have this matrix below
Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13-18
$\left[\begin{array}{ll}1 & x_{m} t_{n} \\ 1 & x_{m} t_{n+\frac{1}{170}}\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]=\left[\begin{array}{l}U_{m, n} \\ U_{m, n+\frac{1}{170}}\end{array}\right]$
Solving eqn. (2.16) for value of a_{1} we obtain
$a_{1}=\frac{128 U_{m, n+\frac{1}{128}}-128 U_{m, n}}{k x_{m}}$
When we substitute $r=0,1$, into eqn. (2.11), we obtain
$U(x, t)=a_{0} Q_{0}+a_{1} Q_{1}$
By substituting the values of a_{1}, Q_{0}, Q_{1} in equation (2.17) we have
$U(x, t)=a_{0}+128 x t \frac{\left(U_{m, n+\frac{1}{128}}-U_{m, n}\right)}{k x_{m}}$
Taken the first derivatives of equation (2.18) with respect to t we obtain
$U^{\prime}(x, t)=128 x\left(\frac{U_{m, n+\frac{1}{128}}-U_{m, n}}{k x_{m}}\right)$
We collocate eqn. (2.19) at $x=x_{m}$ yields
$U^{\prime}(x, t)=128\left(\frac{U_{m, n+\frac{1}{128}}-U_{m, n}}{k}\right)$
But from eqn. (1.0) we find that eqn. (2.20) is equal to eqn. (2.10), which implies that
$128 \frac{\left(U_{m, n+\frac{1}{128}}-U_{m, n}\right)}{k}=\frac{16384 U_{m+\frac{1}{128^{n}}}+16384 U_{m-\frac{1}{128^{n}}}-32768 U_{m, n}}{h^{2}}$,
manipulating mathematically and putting $r=\frac{k}{h^{2}}$, we obtain
$U_{m, n+\frac{1}{128}}=(1-256 r) U_{m, n}+128 r\left(U_{m+\frac{1}{128^{n}}}+U_{m-\frac{1}{128^{n}}}\right)$
Eqn. (2.21) is a new scheme for solving the heat equation.
To illustrate this method, we use it to solve problems (3.1) and (3.2) respectively.

Advantages of the method

1) We intend to avoid the cost of solving a large system of coupled ODEs often arising from the reduction methods.
2) We also intend to eliminate the usual draw-back of stiffness arising in the conventional reduction method by semidiscretization.

3. Specific Problem

Example 3.1
Use the scheme to approximate the solution to the heat equation
$\frac{\partial U}{\partial t}-\frac{\partial^{2} U}{\partial x^{2}}=0,0<x<1 \quad 0<t$
$U(0, t)=U(1, t)=0, t>0$
$U(x, 0)=\sin \pi x, \quad 0 \leq x \leq 1$

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13 - 18

Table 1: Result of action of Eqn. (2.21) on problem 3.1

x	$\begin{gathered} \text { New Method } \\ U(x, t) \end{gathered}$	Schmidt Method$U(x, t)$	Exact Solution$U(x, t)$	Errors	
				New Method	Schmidt Method
0	0	0	0	0	0
0.1	0.308928027	0.308928287	0.308927305	7.2213XE-7	9.8292XE-7
0.2	0.587645438	0.587616523	0.587614653	3.0785XE-6	1.8700XE-6
0.3	0.808784075	0.808784758	0.808782185	1.8904XE-6	2.5735XE-6
0.4	0.950782703	0.950783506	0.950780481	2.2227XE-6	3.0257XE-6
0.5	0.999712097	0.999712941	0.999709759	2.3381XE-6	3.1821XE-6
0.6	0.950782703	0.950783506	0.950780481	2.2227XE-6	3.0257XE-6
0.7	0.808784075	0.808784758	0.808782185	1.8904XE-6	2.5735XE-6
0.8	0.587645438	0.587616523	0.587614653	3.0785XE-6	1.8700XE-6
0.9	0.308928027	0.308928287	0.308927305	7.2213XE-7	9.8292XE-7
1.0	0	0	0	0	0

Example 3.2

Use the scheme to approximate the solution to the heat equation

$$
\begin{array}{lr}
\frac{\partial U}{\partial t}-\frac{\partial^{2} U}{\partial x^{2}}=2 & 0<t \\
U(0, t)=U(1, t)=0, & t>0 \\
U(x, 0)=\sin \pi x+(1-x), & 0 \leq x \leq 1, t=0
\end{array}
$$

Table II: Result of action of Eqn. (2.21) on problem 3.2

x	New Method $U(x, t)$	Schmidt Method $U(x, t)$	Exact Solution $U(x, t)$	Errors	
		New Method	Schmidt Method		
0	0	0	0	0	0
1.00	0.398928026	0.398928287	0.398927305	7.2153 XE-7	9.8289 XE-7
0.20	0.747616026	0.747616522	0.747614653	1.3735 XE-6	1.8699 XE-6
0.30	1.018784076	1.018784758	1.018782185	1.8905 XE-6	2.5734 XE-6
0.40	1.190782704	1.190783507	1.191332631	5.4993 XE-4	5.4912 XE-4
0.50	1.249712098	1.249712941	1.24970976	2.3375 XE-6	3.1810 XE-6
0.60	1.190782704	1.190783507	1.191332631	5.4993 XE-4	5.4912 XE-4
0.70	1.018784076	1.018784758	1.018782185	1.8905 XE-6	2.5734 XE-6
0.80	0.747616026	0.747616522	0.747614653	1.3735 XE-6	1.8699 XE-6
0.90	0.398928026	0.398928287	0.398927305	7.2153 XE-7	9.8289 XE-7
1.00	0	0	0	0	0

Conclusion

A continuous interpolant is proposed for solving parabolic partial differential equation in one space variable without discretization. To check the numerical method, it is applied to solve two different test problems with known exact solutions. The numerical results confirm the validity of the new numerical scheme and suggested that it is an interesting and viable numerical method which does not involve the reduction of PDE to a system of ODEs.

References

[1] Adam, A. \& David, R. (2002): One dimensional heat equation.
http://www.ng/online.redwoods.cc.ca.us/instruct/darnold/deproj/sp02/.../paper.pdf
[2] Awoyemi, D. O. (2002): An Algorithmic collocation approach for direct solution of special fourth - order initial value problems of ordinary differential equations. Journal of the Nigerian Association of Mathematical Physics, vol 6, pp 271 - 284.
[3] Awoyemi, D. O. (2003): A p - stable linear multistep method for solving general third order Ordinary differential equations. Int. J. Computer Math. 80 (8), 987-993.
[4] Bao, W., Jaksch, P. \& Markowich, P.A. (2003): Numerical solution of the Gross - Pitaevskii equation for Bose Einstein condensation. J. Compt. Phys. 187(1), 318-342.
Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13-18
[5] Benner, P. \& Mena, H. (2004): BDF methods for large scale differential Riccati equations in proc. of mathematical theory of network and systems. MTNS. Edited by Moore, B. D., Motmans, B., Willems, J., Dooren, P.V. \& Blondel, V.
[6] Bensoussan, A. Da Prato, G., Delfour, M. \& Mitter, S. (2007): Representation and control of infinite dimensional systems. 2nd edition. Birkhauser: Boston, MA. Motmans, B., Willems, J., Dooren, P. V. \& Blondel, V.
[7] Biazar, J. \& Ebrahimi, H. (2005): An approximation to the solution of hyperbolic equation by a domain decomposition method and comparison with characteristics method. Appl. Math. and Comput.163, 633-648.
[8] Brown, P. L. T. (1979): A transient heat conduction problem. AICHEJournal, 16, 207-215.
[9] Chawla, M. M. \& Katti, C. P. (1979): Finite difference methods for two - point boundary value problems involving high - order differential equations. BIT. 19, 27-39.
[10] Sunday, B. (2019): Continuous Numerical Interplant for the Solution of Wave Equations. The Nigerian Association of Mathematical Physics, 8: 185-188.

Transactions of the Nigerian Association of Mathematical Physics Volume 9, (March and May, 2019), 13-18

