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 Abstract  

Einstein’s General Theory of Relativity (EGTR) has been credited as the greatest 

intellectual achievement of the 20th Century. According to this theory gravitation is not 

due to a force rather a manifestation of curved space and time. In this paper, we 

constructed the golden Riemannian affine connection for a body whose tensor field 

varies with radial and polar angle using golden Riemannian metric tensor. The 

Riemannian affine connection were applied to the well known Einstein’s general 

relativistic equation of motion for test particle of non zero rest masses in the 

gravitational field to obtain the corresponding golden Riemannian relativistic equation 

of motion for test particles of non zero rest masses (acceleration tensors). The 

Riemannian relativistic equation of motion for test particles of non zero rest masses 

(acceleration tensors) was substituted into the well known Riemannian tensorial 

geodesic equation of motion to obtain the corresponding golden Riemannian tensorial 

geodesic equation of motion for test particles of non-zero rest masses. The results are 

that the generalized affine connection, golden Riemannian relativistic equation of 

motion for test particles of non zero rest masses and the golden Riemann’s tensorial 

geodesic equation of motion are augumented with additional correction terms of the 

order 𝒄−𝟐 which are not found in Schwarzschild’s metric tensors, Einstein’s 

gravitational field equation for test particle and the Riemann’s tensorial geodesic 

equation of motion and are uncovered for theoretical development and experimental 

verification and application. 

 

Keywords:   Motion, Test Particle, Golden Riemannian Metric Tensor, Riemann’s tensorial geodesic equation, 

Radial Angle and Polar Angle.         

1.0  Introduction 
Einstein’s geometrical theory of gravitation (general relativity) was published in the year 1915. Einstein’s General Theory 

of Relativity (EGTR) has been credited as the greatest intellectual achievement of the 20th Century. According to this 

theory gravitation is not due to a force rather a manifestation of curved space and time, with the curvature being produced 

by the mass-energy and momentum content of the space time [1]. It unifies special relativity and sir Isaac Newton’s law of 

universal gravitation [1,2]. After the publication of Einstein’s geometrical field equation in 1915, the search for their exact 

and analytical solutions for the entire gravitational field in nature began [3]. 

More than any other theory of modern physics, general relativity is usually seen as the work of one man, Albert Einstein. In 

taking this point of view, however, one tends to overlook the fact that gravitation has been the subject of controversial 

discussion since the time of Newton [3,4]. That Newton’s theory of gravitation assumes action at a distance, i.e., action 

without an intervening mechanism or medium, was perceived from its earliest days as being problematical. Around the turn 

of the last century, in the classical physics, the problems of Newtonian gravitation theory had become more acute, also due 

to the rise of field theory suggesting alternative perspectives. Consequently, there was a proliferation of alternative theories  
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of gravitation which were quickly forgotten after the triumph of general relativity. Yet in order to understand this triumph, 

it is necessary to compare general relativity to its contemporary competitors. General relativity owes much to this 

competition. The proliferation of theories of gravitation provides an exemplary case for studying the role of alternative 

pathways in the history of science. Thus, from this perspective, the emergence of general relativity constitutes an ideal 

topic for addressing longstanding questions in the philosophy of science on the basis of detailed historical evidence [5]. 

The extension of Einstein’s planetary theory of gravitation (general relativity) has continued till today without satisfactory 

resolution to its numerous objections. A number of physicists have continued to hold on to the view that Einstein’s 

planetary theory of gravitation can be generalized in such a way as to account satisfactorily for the principle of reciprocity, 

mathematical difficulty, inconsistency with quantum mechanics and violation of principle of equivalence. On the basis of 

this, we shall show in this paper one way of extending Einstein’s planetary theory using Riemannian golden metric tensors 

and whose tensors field varies with radial and polar angle only. Schwarzschild’s metric is the solution of Einstein’s 

gravitational field equation exterior to a static homogeneous spherical body [6]. 

The well known Schwarzschild’s covariant metric tensors in the gravitational field is given explicitly as [6,7] 

𝑔11 = {1 +
2

𝑐2
𝑓(𝑟)}

−1

                                                                                                                       (1.1) 

𝑔22 = −𝑟2                                                                                                                                             (1.2) 

𝑔33 = −𝑟2𝑠𝑖𝑛2𝜃                                                                                                                                   (1.3) 

𝑔00 = − {1 +
2

𝑐2
(𝑟)}                                                                                                                           (1.4) 

𝑔𝜇𝜐 = 0;                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                              (1.5) 

𝑥0 = 𝑐𝑡            (1.6)  

The contra-variant metric tensor is given as  

𝑔11 = − {1 +
2

𝑐2
𝑓(𝑟)}

−1

                                                                                                                   (1.7) 

𝑔22 = −
1

𝑟2
                                                                                                                                             (1.8) 

𝑔33 = −
1

𝑟2𝑠𝑖𝑛2𝜃
                                                                                                                                  (1.9) 

𝑔00 = 1 +
2

𝑐2 𝑓(𝑟)                                                                                                                                 (1.10) 

𝑔𝜇𝑣 = 0;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                      (1.11) 

Theoretical Analysis 

 

2.0  Construction of Golden Riemannian Affine Connection 

The coefficients of affine connection for any gravitational field in terms of the metric tensors is given explicitly as [6,7,8]. 

Γμν
σ =

1

2
gσν(gμν,λ + gνλ,μ − gμλ,ν)                                                                                                   (2.1) 

where the comma as in usual notation denotes partial differentiation with respect to xλ, xμ, xν.  

gσν and gσν  are the covariant and contravariant metric tensors.  

The golden Riemannian covariant metric tensor for a body whose tensor field varies with radial and polar angle is given 

explicitly as [8,9] 

𝑔11(𝑟, 𝜃) = {1 +
2

𝑐2
𝑓(𝑟, 𝜃)}

−1

                                                                                                          (2.2) 

𝑔22(𝑟, 𝜃) = 𝑟2 {1 +
2

𝑐2
𝑓(𝑟, 𝜃)}

−1

                                                                                                     (2.3) 

𝑔33(𝑟, 𝜃) = 𝑟2𝑠𝑖𝑛2𝜃 {1 +
2

𝑐2
𝑓(𝑟, 𝜃)}

−1

                                                                                          (2.4) 

𝑔00(𝑟, 𝜃) = − {1 +
2

𝑐2
(𝑟, 𝜃)}                                                                                                             (2.5) 

𝑔𝜇𝜐(𝑟, 𝜃) = 0;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            (2.6) 

𝑥0 = 𝑐𝑡          (2.7) 

The contra-variant metric tensor is given as 

𝑔11(𝑟, 𝜃) = [1 +
2

𝑐2
𝑓(𝑟, 𝜃)]                                                                                                               (2.8) 
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𝑔22(𝑟, 𝜃) =
1

𝑟2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]                                                                                                             (2.9) 

𝑔33(𝑟, 𝜃) =
1

𝑟2𝑠𝑖𝑛2𝜃
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]                                                                                                 (2.10) 

𝑔00(𝑟, 𝜃) = − [1 +
2

𝑐2 𝑓(𝑟, 𝜃)]
−1

                                                                                                          (2.11) 

𝑔𝜇𝑣(𝑟, 𝜃) = 0;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                (2.12) 

We substituted equations (2.2) to (2.12 into equation (2.1) to obtain the coefficient of affine connections which are found to 

be given in terms of ( 𝑟, 𝜃) as 

Γ00
1 = −

1

2
𝑔11𝑔00,1                                                                                                                                     (2.13)  

Γ11
1 =

1

2
𝑔11𝑔11,1                                                                                                                                         (2.14)  

Γ12
1 ≡ Γ21

1 =
1

2
𝑔11𝑔11,2                                                                                                                             (2.15) 

Γ22
1 = −

1

2
𝑔11𝑔22,1            (2.16) 

Γ33
1 = −

1

2
𝑔11𝑔33,1                                                                                                                                    (2.17) 

Γ00
2 = −

1

2
𝑔22𝑔00,2                                                                                                                                   (2.18) 

Γ11
2 = −

1

2
𝑔22𝑔11,2                                                                                                                                   (2.19) 

Γ12
2 ≡ Γ21

2 =
1

2
𝑔22𝑔22,1                                                                                                                           (2.20) 

Γ33
2 = −

1

2
𝑔22𝑔33,2                                                                                                                                  (2.21) 

Γ01
0 ≡ Γ10

0 =
1

2
𝑔00𝑔00,1                                                                                                                          (2.22)  

Γ02
0 ≡ Γ20

0 =
1

2
𝑔00𝑔00,2                                                                                                                          (2.23)  

Γ13
3 ≡ Γ31

3 =
1

2
𝑔33𝑔33,1                                                                                                                          (2.24) 

Γ23
3 ≡ Γ32

3 =
1

2
𝑔33𝑔33,2                                                                                                                         (2.25) 

Γ22
2 =

1

2
𝑔22𝑔22,2                                                                                                                                     (2.26)  

Where the comma denotes partial differentiation w.r.t (𝑟, 𝜃) = (1,2). 

Equation (2.13) to (2.26) can be given more explicitly as  

Γ00
1 =

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                                                                   (2.27) 

Γ11
1 = −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                                                           (2.28) 

Γ12
1 ≡ Γ21

1 = −
1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                             (2.29) 

Γ22
1 = −𝑟 +

𝑟2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                                                  (2.30) 

Γ33
1 = −𝑟𝑠𝑖𝑛2𝜃 +

𝑟2𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                             (2.31) 

Γ00
2 =

1

𝑟2𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                                             (2.31) 

Γ11
2 =

1

𝑟2𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                                        (2.32) 

Γ12
2 ≡ Γ21

2 =
1

𝑟
−

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                                         (2.33) 
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Γ33
2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                            (2.34) 

Γ01
0 ≡ Γ10

0 =
1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
                                                                                (2.35) 

Γ02
0 ≡ Γ20

0 =
1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                                (2.36) 

Γ13
3 ≡ Γ31

3 =
1

𝑟
−

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                         (2.37) 

Γ23
3 ≡ Γ32

3 = 𝑐𝑜𝑡𝜃 −
1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                  (2.38) 

Γ22
2 = −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
                                                                                        (2.39) 

Γ𝛼𝛽
𝜇

= 0;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                             (2.40) 

Equation (2.27) to (2.40), are the golden Riemannian affine connections.The golden Riemannian affine connections (2.27) to 

(2.40)contains 14 non-zero affine connection coefficients while Schwarzschild’s contains only 9 non zero affine connection 

due to the inclusion of rotational effects. These coefficients are very instrumental in the construction of general relativistic 

equations of motion for test particles of non-zero rest mass. Also the golden Riemannian affine connections can be used to 

construct Einstein’s equation of motion, Riemann’s Christoffel tensors and Ricci tensors. 

 

3.0 Derivation of the Golden Riemannian Equation of motion for Test Particle  

The well known Einstein’s equation of motion for test particle of non zero rest masses in the gravitational field is given 

explicitly as [9,10] 

ẍα + Γμν
α ẋμẋν = 0                                                                                                                                  (3.1) 

where, 

Γμν
α  is the Christoffel’s symbol 

ẍα is the Riemann acceleration tensor 

ẋμẋν  is the Riemann velocity tensors 

The generalized Einstein’s general relativistic equations of motion for test particles of non-zero rest masses in the 

gravitational field is given explicitly as [9,11] 

𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝜇𝜈

𝛼 (𝑓(𝑟, 𝜃))
𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
= 0                                                                                                   (3.2) 

where, 

Γ𝜇𝜈
𝛼 (𝑓(𝑟, 𝜃)) is the generalized Einstein’s affine connection and 𝑥𝛼 is the space time coordinates tensors 

Substituting the generalized affine connections (2.27) to (2.40) into equation (3.2) we obtain equations 

For 𝛼 = 1 

𝑎1 = �̈� +
1

𝑐2
[1 +

1

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
𝑐�̇�2 −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2 

−
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇��̇� − 𝑟�̇�2 +

𝑟2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2 

−𝑟𝑠𝑖𝑛2𝜃�̇�2 +
𝑟2𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2                                                            (3.3) 

For 𝛼 = 2 

𝑎2 = �̈� +
1

𝑟2𝑐2
[1 +

1

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
𝑐�̇�2 +

1

𝑟2𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2 

2

𝑟
�̇��̇� −

2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇��̇� −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2 

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃�̇�2 +
𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2                                                             (3.4) 

For 𝛼 = 3 

𝑎3 = �̈� +
2

𝑟
�̇��̇� −

2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇��̇� + 2𝑐𝑜𝑡𝜃�̇��̇� 
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−
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇��̇�                                                                                       (3.5) 

For 𝛼 = 0 

𝑎0 = 𝑐�̈� +
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�𝑐�̇� 

+
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�𝑐�̇�                                                                                      (3.6) 

Equation (3.3) to (3.6) is the golden Riemannian equations of motion for test particles of non zero rest masses. The 

instantaneous speed of a particle of non zero rest mass in this gravitational field can be obtained from equation (3.3). 

 

4.0 Derivation of Golden Riemannian Tensorial Geodesic Equation of Motion  

The Riemann’s tensorial geodesic equation of motion for particles of non-zero rest masses in a gravitational field is given 

explicitly as [11] 

𝑚0𝑎𝜇 = 𝑓𝑛𝑔
𝜇

                                                                                                                               (4.1) 

where, 

𝑚0 is the rest mass of the particles 

aμ is the Riemann’s acceleration vector  

𝑓𝑛𝑔
𝜇

  is the force tensor corresponding to all the non-gravitational interaction on the particles.  

Substituting equations (3.7) to (3.10) into the well known Riemannian tensorial geodesic equation of motion equation (4.1) 

we obtain the following corresponding golden Riemannian tensorial geodesic equations of motion given as 

𝑓𝑛𝑔
1 = 𝑚0 {�̈� +

1

𝑐2
[1 +

1

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
𝑐�̇�2 −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2 

−
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇��̇� − 𝑟�̇�2 +

𝑟2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2 

−𝑟𝑠𝑖𝑛2𝜃�̇�2 +
𝑟2𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�2}                                            (4.2) 

𝑓𝑛𝑔
2 = 𝑚0 {�̈� +

1

𝑟2𝑐2
[1 +

1

𝑐2
𝑓(𝑟, 𝜃)]

𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
𝑐�̇�2 +

1

𝑟2𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2 

2

𝑟
�̇��̇� −

2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇��̇� −

1

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2 

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃�̇�2 +
𝑠𝑖𝑛2𝜃

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�2}                                            (4.3) 

𝑓𝑛𝑔
3 = 𝑚0 {�̈� +

2

𝑟
�̇��̇� −

2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇��̇� + 2𝑐𝑜𝑡𝜃�̇��̇� 

−
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇��̇�}                                                                            (4.4) 

𝑓𝑛𝑔
0 = 𝑚0 {𝑐�̈� +

2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝑟
�̇�𝑐�̇� 

+
2

𝑐2
[1 +

2

𝑐2
𝑓(𝑟, 𝜃)]

−1 𝜕𝑓(𝑟, 𝜃)

𝜕𝜃
�̇�𝑐�̇�}                                                                          (4.5) 

Equations (4.2) to (4.5) are the golden Riemannian geodesic equation of motion for a test particle of non zero rest masses. 

 

5.0  Remarks and Conclusion  

The Riemannian equation of motion for test particle of static homogeneous spherical distribution of mass whose tensor field 

varies with radial and polar angle were obtained as equation (3.3), (3.4), (3.5) and (3.6). Expressions for the golden 

Riemannian tensorial geodesic equations of motion were obtained as equations (4.2), (4.3), (4.4) and (4.5) respectively.  

The immediate theoretical, physical and astrophysical consequences of the results obtained in this paper are 

Firstly the golden Riemannian affine connections (2.27) to (2.40) reduces to pure Schwarzschild’s affine connections 𝑓(𝑟) 

and contains unknown Post Schwarzschild’s additional correction terms when the gravitational field depends on𝑓(𝑟, 𝜃), has 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 203 –208 



208 

 

Riemannian Equation of…         Okara, Lumbi, Ephraim, Tyoh and Nwagbara           Trans. Of NAMP 
 

 

(1 +
2

𝑐2
𝑓) which are not found in the existing well known Schwarzchild’s metrictensors and gives us a better understanding 

of gravitational field effect. 

Secondly, the golden Riemannian equations of motion for test particle (3.3) to (3.6) reduce to the corresponding pure 

Einstein’s equation of motion and to the order of 𝑐−2contains post Einstein’s correction terms, equation (3.3) to (3.6) 

has(1 +
2

𝑐2 𝑓) which are not found in the existing Einstein’s equation of motion implying that it will predict correction terms 

in the gravitational field of all massive body. These results contain the time component as Einstein’s equation which implies 

that it will predict the existence of gravitational wave also contains additional rotational correction terms which are not found 

in Einstein’s equation of motion for test particle. 

Thirdly, the golden Riemannian tensorial geodesic equations of motion (4.2) to (4.5) reduces to the corresponding pure 

Riemannian tensorial geodesic equation of motion and to the order of 𝑐−2 contains post Einstein’s correction terms and 

contains (1 +
2

𝑐2 𝑓) in the 𝜑-component which are not found in the existing Riemannian tensorial geodesic equation of 

motion implying that it will predict correction terms to the spinning effect in the gravitational field of all massive body. 

Equations (4.2) to (4.5) has(1 +
2

𝑐2 𝑓) in the 𝜃-component which are not found in the existing Riemannian tensorial geodesic 

equation of motion implying that it will predict correction terms to the rotation effect in the gravitational field of all massive 

body.  This results can be used to determine the energy density of the universe, temperature of the universe and to explain 

gravitational red shift. 
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