COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVES.

${ }^{1}$ E. Ukeje and ${ }^{2}$ K. Nwachukwu-Nwokeafor
${ }^{1}$ Dept of Mathematics, Michael Okpara University of Agriculture, Umudike. ${ }^{2}$ Dept. of Computer Engineering, Michael Okpara University of Agriculture, Umudike.

Abstract

The work redefined a general subclass of bi-univalent functions using Ruscheweyh derivative, establish connections with already existing class and obtained their coefficient estimates using Faber polynomial expansion .There is an improvement on the bounds following introduction of ω-fixed-point.

Keywords: Bi-univalent function, Faberpolynomial, Ruscheweyh derivative, subordination,

1. Introduction

Let $A(w) \subset A$ be the class of analytic functions of the form
$f(z)=z-\omega+\sum_{k=n}^{\infty} a_{k}(z-\omega)^{k}$
in the open unit disk $E=\{z:|z|<1\}$ which are univalent, normalized with $f(\omega)=0$ and $f^{\prime}(\omega)=1$ where ω is a fixed point, [1].
We denote by S the class of all analytic functions in A. For $f \in A(\omega)$, the Ruscheweyh derivative is
$D^{n} f(z)=(z-\omega)+\sum_{k=n}^{\infty} \frac{n!(k-1)!}{(k+n-1)!} a_{k}(z-\omega)^{k}$
where $n \in \square$ see $[1,2]$.
Let p be the class of functions $p(z)=1+\sum_{n=1}^{\infty} p_{n} z$ that are analytic in E and satisfy the condition $\operatorname{Re}(p(z))>0$ in E. By the CaratheodoryLemma [2] It is well known that every function $f \in S$ has an inverse f^{-1}, which is defined by $f^{-1}(f(z))=z$, $z \in E$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f): r_{0}(f) \geq \frac{1}{4}\right)$.
Suppose $\omega=0$ in (1.1) the inverse functions $g=f^{-1}$ is given by $g(w)=f^{-1}(w)$
$=w-a_{2} w^{2}+\left(2 a_{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots$
$=w+\sum_{n=2}^{\infty} A_{n} w^{n}$
A function $f \in A$ is said to be bi-univalent in E if both $f \in S$ and $g \in f^{-1} \in S$. Let \sum be the class of bi-univalent functions in E given by (1.1). The class of analytic bi-univalent functions was first introduced and studied by Lewin [3] where it was proved that $\left|a_{2}\right|<1.51$. Brannan and Clunie [4] improved Lewin's result to
$\left|a_{2}\right| \leq \sqrt{2}$ and later Netanyahu [5] proved that $\left|a_{2}\right| \leq 4 / 3$.
Brannan and Taha [6] also investigated certain subclasses of bi-univalent functions and found non-sharp estimates on the first two Taylor -Maclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$. For a brief history and interesting examples of the functions in the class \sum see [6].

Correspondence Author: Ukeje E., Email: Ukeje.emelike@mouao.edu.ng, Tel: +2348035636237
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 189-194

Other works include Frasin and Aouf [7], Ali etal [8] Hamidietal [9] and others .
Recently, SerapBulut [10] ,SibelYalcin [11] provided interesting geometric properties of the class Σ.
For $f(z)$ and $F(z)$ analytic in E, we say that f subordinate to F, written $f \prec F$,
if there exists a Schwarz function $u(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$ with $|u(z)|<1$ in E, such that $f(z)=F(u(z))$, see [12].
A function $D^{n} f \in \sum$ is said to be $\Lambda_{\Sigma}(n, \mu, \lambda, \varphi), \lambda \geq 1$ and $\mu \geq 0$, if the following subordination hold
$(1-\lambda)\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu}+\lambda\left(D^{n} f(z)\right)^{\prime}\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu-1} \prec \varphi(z)$
and

$$
\begin{equation*}
(1-\lambda)\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu}+\lambda\left(D^{n} g(w)\right)^{\prime}\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu-1} \prec \varphi(w) \tag{1.5}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$
Here, this work will use Faber polynomial expansions to establish bounds for the general coefficients $\left|a_{n}\right|$ of a redefined bi-univalent functions with ω fixed point $\Lambda_{\Sigma}(n, \mu, \lambda, \varphi)$.

2. Main Results

Using the Faber polynomial expansion of functions $f \in A$ of (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed as [13] .
$g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) w^{n}$
where
$K_{n-1}^{-n}=\frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{[2(-n+1]!(n-3)!} a_{2}^{n-3} a_{3}+\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4}$
$+\frac{(n)!}{[2(-n+2)]!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right]$
$+\frac{(-n!)}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]$
$+\sum_{j \geq 7} a_{2}^{n-j} V_{j}$
Such that V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables
$a_{2}, a_{3}, \ldots, a_{n}$ [14].In particular , the first three terms of K_{n-1}^{-n} are
$\frac{1}{2} K_{1}^{-2}=-a_{2}$
$\frac{1}{3} K_{2}^{-3}=2 a_{2}^{2}-a_{3}$
$\frac{1}{4} K_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)$
In general , for any $P \in \square$, an expansion of K_{n}^{p} is as [13]
$K_{n}^{p}=p a_{n}+\frac{p(p-1)}{2} E_{n}^{2}+\frac{p!}{(p-3)!3!} E_{n}^{3}+\ldots+\frac{p!}{(p-n)!n!} E_{n}^{n}$
where $E_{n}^{p}=E_{n}^{p}\left(a_{2}, a_{3}, \ldots\right)$ and by [14]
$E_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{m=1}^{\infty} \frac{m!\left(a_{1}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n}}}{\mu_{1}!\ldots \mu_{n}!}$
while $a_{1}=1$, and the sum is taken over all nonnegative integers μ_{1}, \ldots, μ_{n} satisfying
$\mu_{1}+\mu_{2}+\ldots+\mu_{n}=m$
$\mu_{1}+2 \mu_{2}+\ldots+n \mu_{n}=n$
Evidently, $E_{n}^{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}[15]$.
Theorem 2.1
For $\lambda \geq 1$ and $\mu \geq 0$, let $D^{n} f \in \Lambda_{\Sigma}(n, \mu, \lambda, \varphi)$. If $a_{k}=0 ; 2 \leq k \leq n-1$, then
$\left|a_{n}\right| \leq \frac{2}{\psi_{n, k}^{n-1}(r+d)^{n-1}[\mu+(n-1) \lambda]}$
where $_{\psi_{n k}}=\frac{n!(k-1)!}{(n+k-1)!},|z|=r<1$ and $|\omega|=d$
Proof: Let functions f given by (1.1), we have
$(1-\lambda)\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu}+\lambda\left(D^{n} f(z)\right)^{\prime}\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu-1}=1+\sum_{n=2}^{\infty} F_{n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right)(z-\omega)^{n-1}$
and
$(1-\lambda)\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu}+\lambda\left(D^{n} g(w)\right)^{\prime}\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu-1}=1+\sum_{n=2}^{\infty} F_{n-1}\left(b_{2}, b_{3}, \ldots, b_{n}\right)(w-\omega)^{n-1}$
where
$F_{1}=\psi_{2, k}(r+d)(\mu+\lambda) a_{2}$
$F_{2}=\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{\frac{\mu-1}{2} a_{2}^{2}+a_{3}\right\}$
$F_{3}=\psi_{4, k}^{3}(r+d)^{3}(\mu+3 \lambda)\left\{\frac{\psi(\mu-1)(\mu-2)}{3!} a_{2}^{3}+(\mu-1) a_{4} a_{2}+a_{4}\right\}$
In general,see[11,12].Consequently,the inequality (1.4) and (1.5) imply the existence of two positive real part functions
$u(z)=1+\sum_{n=1}^{\infty} c_{n}(z-\omega)^{n}$ and $_{v(w)=1+} \sum_{n=1}^{\infty} t_{n}(w-\omega)^{n}$
where $\operatorname{Re} u(z)>0$ and $\operatorname{Re} v(\omega)>0$ in p so that
$(1-\lambda)\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu}+\lambda\left(D^{n} f(z)\right)^{\prime}\left(\frac{D^{n} f(z)}{z-\omega}\right)^{\mu-1}=\varphi(u(z))$
and
$(1-\lambda)\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu}+\lambda\left(D^{n} g(w)\right)^{\prime}\left(\frac{D^{n} g(w)}{w-\omega}\right)^{\mu-1}=\varphi(v(w)$
where $\varphi(u(z))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \psi_{n, k}^{k} \varphi_{k} E_{n}^{k}\left(c_{1}, c_{2}, \ldots, c_{n}\right)(z-\omega)^{n}$
and $\varphi(v(w))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \psi_{n, k}^{k} \varphi_{k} E_{n}^{k}\left(d_{1}, d_{2}, \ldots, d_{n}\right)(w-\omega)^{n}$
Comparing the corresponding coefficients of (2.5) and (2.7) yields
$\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda) a_{n}=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \varphi_{k} E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right)(z-\omega)^{n}$
similarly, from (2.6) and (2.8) will give
$\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda) b_{n}=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \varphi_{k} E_{n-1}^{k}\left(t_{1}, t_{2}, \ldots, t_{n-1}\right)(w-\omega)^{n}$
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 189-194

Note that for $a_{k}=0: 2 \leq k \leq n-1$ we have $b_{n}=-a_{n}$ and so
$\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda) a_{n}=\varphi_{1} c_{n-1}$
$-\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda) b_{n}=\varphi_{1} t_{n-1}$
Now taking the absolute values of either of the above two equations and using the facts that $\left|\varphi_{1}\right| \leq 2 \quad,\left|c_{n-1}\right| \leq 1$ and $\left|t_{n-1}\right| \leq 1$ will give
$\left|a_{n}\right| \leq \frac{\left|\varphi_{1} c_{n-1}\right|}{\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda)}=\frac{\left|\varphi_{1} t_{n-1}\right|}{\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda)}$
$\leq \frac{2}{\psi_{n, k}^{n-1}(r+d)^{n-1}(\mu+(n-1) \lambda)}$
Theorem 2.2. Let $D^{n} f \in \Lambda_{\Sigma}(n, \mu, \lambda, \varphi), \lambda \geq 1$ and $\mu \geq 0$. Then
i $\cdot\left|a_{2}\right| \leq \min \left\{\frac{2}{\psi_{2, k}(r+d)(\mu+\lambda)}, \sqrt{\frac{8}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)(\mu+1)}}\right\}$
ii $\cdot\left|a_{3}\right| \leq \min \left\{\begin{array}{l}\frac{4}{\psi_{2, k}^{2}(r+d)^{2}(\mu+\lambda)^{2}}+\frac{2}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)}, \\ \frac{8}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)(\mu+1)}+\frac{2}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)}\end{array}\right\}$
Proof.
Replacing n by 2 and 3 in (2.7) and (2.8) , respectively, we find that
$\psi_{2, k}(r+d)(\mu+\lambda) a_{2}=\varphi_{1} c_{1}$
$\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{\frac{\mu-1}{2} a_{2}^{2}+a_{3}\right\}=\varphi_{1} c_{2}+\varphi_{2} c_{1}^{2}$
while the inverse of (2.13) and (2.14) respectively are :
$-\psi_{2, k}(r+d)(\mu+\lambda) a_{2}=\varphi_{1} d_{1}$
$\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{\frac{\mu-1}{2} a_{2}^{2}+2 a_{2}^{2}-a_{3}\right\}=\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2}$
$\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{\frac{\mu+3}{2} a_{2}^{2}-a_{3}\right\}=\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2}$
From (2.13) or (2.15) , one gets
$\left|a_{2}\right| \leq \frac{\left|\varphi_{1} c_{1}\right|}{\psi_{2, k}(r+d)(\mu+\lambda)}=\frac{\left|\varphi_{1} d_{1}\right|}{\psi_{2, k}(r+d)(\mu+\lambda)} \leq \frac{2}{\psi_{2, k}(r+d)(\mu+\lambda)}$
Adding2.11 to 2.16 gives
$\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{a_{2}^{2}\left(\frac{\mu-1}{2}+\frac{\mu+3}{2}\right)\right\}=\varphi_{1}\left(c_{2}+d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)$
ie $\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{a_{2}^{2}(\mu+1)\right\}=\varphi_{1}\left(c_{2}+d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)$
or equivalently
$\left|a_{2}\right| \leq \sqrt{\frac{8}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)(\mu+1)}}$
Subtracting (2.16) from (2.14), we have
$\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{\left(\frac{\mu-1}{2}-\frac{\mu+3}{2}\right) a_{2}^{2}+2 a_{3}\right\}=\varphi_{1}\left(c_{2}-d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)$
or $2 \psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)\left\{-a_{2}^{2}+a_{3}\right\}=\varphi_{1}\left(c_{2}-d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)$
i.e. $\left|a_{3}\right|=\left|a_{2}^{2}\right|^{2}+\frac{\left|\varphi_{1}\left(c_{2}-d_{2}\right)\right|}{2 \psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)} \leq\left|a_{2}\right|^{2}+\frac{2}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)}$

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 189-194

Using the value of a_{2}^{2} from(2.17) and into (2.20)will yield respectively
$\left|a_{3}\right| \leq \frac{4}{\psi_{2, k}^{2}(r+d)^{2}(\mu+\lambda)^{2}}+\frac{2}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)}$
and $\left|a_{3}\right| \leq \frac{8}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)(\mu+1)}+\frac{2}{\psi_{3, k}^{2}(r+d)^{2}(\mu+2 \lambda)}$
The corollary below establishes a connection between this work and [15]
Corollary 2.3 Let $D^{n} f \in \Lambda_{\Sigma}(n, \mu, \lambda, \varphi), n \geq 2, \mu \geq 0$ and $\lambda=1, k=1$ then
$\left|a_{2}\right|=\frac{2}{(r+d)(\mu+1)}$
and $\left|a_{3}\right| \leq \frac{4}{(r+d)^{2}(\mu+1)^{2}}+\frac{2}{(r+d)^{2}(\mu+2)}$.

Corollary 2.4Let $D^{n} f \in \Lambda_{\Sigma}(n, \mu, \lambda, \varphi), n \geq 2, \lambda \geq 1$ and $\mu=1, k=1$ then
$\left|a_{2}\right|=\frac{2}{(r+d)(\lambda+1)}$
$\left|a_{3}\right| \leq \frac{4}{(r+d)^{2}(\lambda+1)^{2}}+\frac{2}{(r+d)^{2}(1+2 \lambda)}$

CONCLUSION

Linear property of Ruscheweyh derivative was establish in this work following some of the results shown

ACKNOWLEDGEMENT.

I write to express my sincere gratitude to my Supervisor ,Prof. A.T. Oladipo of Ladoke Akintola University of Technology Ogbomoso who provided some of the invaluable materials used in this work. I thank him immensely for his continuous support.

References

[1] Emelike Ukeje, Generalization of Coefficient Inequalities and Convolution properties of a class of Analytic Functions with Respect to a differential operator. Journal of the Nigerian Association of Mathematical Physics, volume 34, (March, 2016), pp5-12 J. of NAMP.
[2] P.L. Duren, univalent functions, vol. 259 of Grundlehren der Mathematischen, springer, New York, NY, USA, 1983.
[3] M. Lewin 'On a coefficient problem for bi-univalent functions' Proceedings of the American Mathematical Society, vol. 18, 63-68, 1967.
[4] D. A. Brannan and J. S. Clunie (Edc) Aspects of contemporary complex analysis (Proceedings of the NATO advanced study institute held at the University Durham : July 1, 20,1979) Academic Press, New York and London ,1980.
[5] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch Rational Mech. Anal 32 (1969), 100-112
[6] D. A. Brannan and T.S. Taha , on some classes of bi-univalent functions in Mathematical Analysis and its applications (S. M. Mazhar, A. Hamoui and N.S. Faour, Editors) (Kuwait: February 18-21, 1985), KFAS Proceedings series, Vol, 3, Pergamon Press (Elsvier Science Limited), Oxford, 1988, pp, 53-60: see also Studia Univ. Babes-Bolyai Math . 31(2) (1986), 70-77.
[7] H. M. Srivastava, A. K. Mishra and P. Gochihayat Certain subclasses of analytic and bi-univalent functions, Appl. Math Lett. 23(2010) 1188-1192.
[8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math Lett. 24 (2011)
[9] R. M. Ali , S. K. Lee , V. Ravichandran and S. Supramaniam, 'coefficient estimate for bi-univalent MaMindastarlike and convex functions ' Applied Mathematics Letters, vol. 25 no. 3 , pp 344-351, 2012.
[10] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, 'Faber polynomial coefficient estimates for meromorphic bi-starlike functions 'International Journal of Mathematics and Mathematical Sciences, Vol. 2013, Article 1D 498159, 4 pages, 2013.
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 189 -194
[11] SerapBulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions defined by Salagean differential operator MATEMATNYK μ BECHNK, 67, 3(2015) 185-193 September 2015.
[12] Sahsene Altinkaya and Sibel Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions stud. Univ. Babes-Bolyai Math. 61(2016), No 1, 37-44.
[13] H. Airault and A. Bouali "Differential calculus on the Faber polynomials "Bulletin des Sciences Mathematiques, Vol. 130 , no 3 , pp. 179-222, 2006.
[14] H. Airault and J. Ren, "An algebra of differential operators and generating functions on the set of univalent" Bulletin des Sciences Mathematiques, vol. 126, no. 5, pp. 345-367, 2002.
[15] P. G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1) (1991), 268-278.
[16] H. Airault, "Remarks on Faber polynomials" international Mathematical Forum., Journal for Theory and Applications, Vol.3, No.9-12,pp.449-456,2008.

