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Abstract 

 

A new Continuous interpolant method based on polynomial approximation is 

here proposed for solving wave equation subject to some initial and boundary 

conditions. The method results from discretization of the wave equation which 

leads to the production of a system of algebraic equations. By solving the system 

of algebraic equations by employing the continuous interpolant scheme we 

obtain the problem approximate solutions. 
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1.0 Introduction 

There is a growing interest in the recent literatures concerning continuous numerical methods for solving ODEs. In science and 

engineering, this interest is extended to the development of continuous numerical techniques for solving wave equation subject 

to initial and boundary conditions. Their advantages over discrete ones are now well known, including their connection to large 

families. In (1)we saw the presentation of an extension of this continuous method for solving ODEs to solve PDEs in two 

dimensions as a conjecture. Hitherto, efforts have been on top gear to derive continuous numerical interpolant for solving wave 

equation.  When this is achieved then a generalized scheme that can solve all the branches of PDEs- parabolic, hyperbolic and 

elliptic equations is possible. In this paper therefore, we develop a new continuous numerical interpolant which is based on 

interpolation and collocation at some points along the coordinates. 

 

2.0 Solution Method 

To set up the solution method we select an integer N  such that 0N . Then subdivide the interval Xx 0  into N  equal 

subintervals with mesh points along the space coordinate given by 
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, where .XNh   Similarly, reverse the 

roles of x  and t and select another integer  M such that .0M Also, subdivide the interval Tt 0  into M  equal 

subintervals with mesh points along time axis given by jkt j  , Mj 
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11  where TMk   and kh, are the mesh sizes along 

space and time axes respectively. Here, we seek for the approximate solution  txU ,  to  txU p ,1
of the form  
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Over  0,0  kh  mesh sizes, such that                                                           

.......0,......0 1010 MN tttxxx  Let p  be the sum of interpolation points along space 

and time coordinates. Hence, bg   where g is the number of interpolation points along the space axis and b  the number 

of interpolation points along time coordinate. The basis function   1,...,1,0,,  prtxQr
 is the Taylor’s polynomials which is 

known, ra are the constants to be determined. There will be flexibility in the choice of the basis function as may be 
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desired for specific application. For this work, we consider the Taylor’s polynomial   rr

r txtxQ , . The interpolation values 

jhiji UU ,1, ,..., 
 are assumed to have been determined from previous steps, while the method seeks to obtain 

jhiU ,
as in (1). 

Applying the above interpolation conditions on eqn. (2.0) we obtain, 

       kjhikjhippkjhikjhi txUtxQatxQatxQa   ,,...,, 121100
               (2.1) 
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 arbitrarily and 0k , then by Crammer’s rule, eqn. (2.1) becomes 
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Where
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 1
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1W    exists.  Hence, by equation (2.2) we obtain 

1,  WFa                                                                                         (2.3) 

The vector  Tpaaa 10 ,...,     is now determined in terms of known parameters in F . If 1r  is the  thr 1  row of   then 

Fa rr 1          
(2.4) 

Eqn. (2.4) determines the values of ra . Let us take first and second derivatives of eqn. (2.0) with respect to x ,            
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Substituting eqn. (2.4) into eqn. (2.5), we obtain 
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We reverse the roles of x  and t  in eqn. (2.1) and we arbitrarily set 
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and 0k , then againby Cramer‘s rule 

eqn. (2.1) becomes. 
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The vector  Tpaaa 10 ,...,     is now determined in terms of known parameters in .EL  If 
1rL  is the  thr 1  row of L  then 

ELa rr 1          
(2.9) 

Also, eqn. (2.9) determines the values of
ra . Taking the first and second derivatives of eqn. (2.0) with respect to t , we obtain  
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Substituting eqn. (2.9) in eqn. (2.10) we have 
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But by eqn. (1.0) it is obvious that eqn. (2.11) is equal to eqn. (2.6), therefore,  
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Collocating eqn. (2.12) at ixx    and  
jtt    we obtain a new continuous numerical interpolant that solves eqn. (2.0) 

explicitly. 

 

3.0  Numerical Examples 

In this section we give some numerical examples to compute approximate solutions for equation (2.0) by the method discussed 

in this paper. This is in order to test the numerical accuracy of the new method. To achieve this, we truncate the Taylor’s 

polynomial after second degree and use it as the basis function for the computations. The resultant interpolant is used to solve 
the following two test problems. 

 Example 1 
  Use the scheme to approximate the solution to the wave equation 
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Table 1: Result of action of Eqn. (2.12) on example 1 
x  

 

Exact solution 
),( txU  

 

Schmidt method 
 txU ,  

 

New Method 
),( txU  

 

Errors 

 

  New Method                      Schmidt method 
0 0 0 0 0 0 

0.1 0.305212482 0.305992120 0.305235901 2.3419 X E-5 7.7963840 X E- 4 

0.2 0.580548640 0.582031600 0.580593187 4.4547 X E-5 1.4829604 X E -3 

0.3 0.799056652 0. 801097772 0.799117966 6.1314 X E-5 2.0411200 X E- 3 

0.4 0.939347432 0.941746912 0.939419511 7.2079 X E-5 2.3994802 X E -3 

0.5 0.987688340 0.990211303 0.987764129 7.5789 X E-5 2.5229632 X E -3 

0.6 0.939347432 0.941746912 0.939419511 7.2079 X E-5 2.3994802 X E -3 

0.7 0.799056652 0. 801097772 0.799117966 6.1314 X E-5 2.0411200 X E- 3 

0.8 0.580548640 0.582031600 0.580593187 4.4547 X E-5 2.0411200 X E- 3 

0.9 0.305212482 0.305992120 0.305235901 2.3419 X E-5 7.7963840 X E- 4 

1 0 0 0 0 0 

 

Example 2 
Use the scheme to approximate the solution to the wave equation  
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Table2: Result of action of Eqn. (2.12) on example2  
 

x  

 

Exact Solution  
 txU ,  

 

Schmidt method 

 txU ,  

 

New method 

 txU ,  
 

             Errors 
 

New Method  Schmidt Method 

0 0 0 0 0 0 

0.1 0.305212482 0.304983829 0.305235901 2.3419 X E-5      2.2865 X E -4 

0.2 0.58054864 0.580113718 0.580593187 4.4547 X E-5      4.3492 X E -4 

0.3 0.799056652 0.798458034 0.799117966 6.1314X E-5      5.9862 X E -4 

0.4 0.939347432 0.9386437114 0.939419511 7.2079 X E-5    7.0372 X E– 4 

0.5 0.987688340 0.986948407 0.987764129 7.5789 X E-5     7.3993 X E– 4 

0.6 0.939347432 0.305992120 0.939419511 7.2079 X E-5     7.0372 X E– 4 

0.7 0.799056652 0.798458034 0.799117966 6.1314 X E-5      5.9862 X E -4 

0.8 0.58054864 0.580113718 0.580593187 4.4547 X E-5     4.3492 X E -4 

0.9 0.305212482 0.304983829 0.305235901 2.3419 X E-5      2.2865 X E -4 

1 0 0 0 0                         0 
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