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Abstract 

The photogravitational restricted four-body problem including the effect of 

perturbations in Coriolis and centrifugal forces is employed to describe the motion of 

an infinitesimal particle near the out-of-plane equilibrium points in the vicinity of 

three finite radiating bodies. The three bodies (
321 ,, PPP ) are moving in circular orbits 

about their common centre of mass fixed at the origin of the coordinate system, 

according to the solution of Lagrange where they are always at the vertices of an 

equilateral triangle. The fourth body 4P of infinitesimal mass does not affect the 

motion of the three bodies. We consider that two of the bodies (
2P  and

3P ) have the 

same radiation and mass value  while the dominant primary body 
1P  is of mass 21

. The equilibrium points ( zz LL 21 , ) lying out of the orbital plane of the three bodies as 

well as the allowed regions of motion as determined by the zero velocity curves are 

studied numerically. It is observed that their positions as well as the allowed regions of 

motion while not affected by the small perturbation in the Coriolis force, are essentially 

varied under the joint effects of radiation pressure parameters and centrifugal force. 

Finally the stability of these points is studied and they are found to be unstable.  

 

Keywords: Equilibrium points; Restricted four-body problem; Coriolis and centrifugal forces; Radiation; Zero 
velocity curves; Stability.  

 

1. Introduction 
The Restricted four-body problem (R4BP) is perhaps the simplest model after its famous predecessor, the restricted three-

body problem (R3BP) and a natural generalization of it. It deals with the motion of an infinitesimal particle under the 

Newtonian gravitational attraction of three bodies, called primaries, whose trajectories are the solution of the three 

Newtonian body problems. It is known that in the planar general problem of three bodies attracting each other according to 

Newtonian gravitational law, there exist only two permanent central configurations, namely, the collinear (Eulerian) and the 

equilateral (Lagrangian). In the first case, the primaries of the problem lie on a single straight line while in the second one, 

the primary bodies lie at the vertices of an equilateral triangle. In analogy with the R3BP, we consider here the restricted 

problem of four bodies consisting of three primaries moving in circular orbits keeping an equilateral triangle configuration 

and a massless particle moving under the gravitational attraction of the primaries.  
The R4BP has witnessed intensive research contributions in the scientific community resulting into several applications such 

as the Sun–Jupiter and Saturn system [1]; star, two massive planets and a massless Trojan [2]; star, brown dwarf, gas giant 

and a massless Trojan [3]; Jupiter, Trojan Asteroid, spacecraft [4]; Spacecraft orbit design in the circular restricted three-body 

problem [5]. Applications of Gravity Assists in the Bicircular and Bielliptic R4BP and references therein. 

In the same vein, many authors and scientists have extended these ideas in the R4BP: The existence of equilibrium points and 

their stability was treated by [6, 7]. The radiation effect of the problem was carried out by [8—13]. Also, [14] studied the 

problem with oblate primaries. Positions of the equilibrium points of the problem with triaxiality of the primaries was studied 

[15—17] and effect of the Coriolis and centrifugal forces of the problem has been investigated [18, 19]. 
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On the other hand, in recent years many perturbing forces, such as oblateness, radiation forces of the primaries, Coriolis and 

centrifugal forces, variation of the masses of the primaries etc. have been included in the study of R3BP. The R3BP with 

oblateness effects has been studied by many investigators such as [20, 21]. The case where the photogravitational effect is 

taken into account was treated by [22—25], and the small perturbations in the Coriolis and centrifugal forces of the problem 

was studied by [26, 27]. 

The case of the R3BP where one or both the primaries are a source of radiation is a long-standing, well-known problem 

usually referred to as “the photogravitational problem of three bodies’’. This is because this case was initially studied by 

Radzievskii [28, 29]. As it is known, out of plane points have no analogy in the classical R3BP. As we have already 
mentioned, the existence of the out of the orbital plane equilibrium points, in the photogravitational R3BP was first pointed 

out by Radzievskii. He found two equilibrium points on the ( zx, ) plane in symmetrical positions with respect to the ( yx, ) 

plane. Reference [30] proved the existence of two more out of plane equilibrium points, 
8L and

9L , which are always linearly 

unstable. They also established that 
6L  and 

7L are linearly stable for a small range of radiation pressures provided both the 

primaries are luminous. The regions of stability for the above out of plane points (
9876 ,,,L ) were discussed by [31]. Using the 

three dimensional equations of motion [32, 33] have shown the existence of out of plane points 
6L  and 

7L  and proved their 

instability when one or both primaries are oblate with or without radiation and the latter case when the orbits of the primaries 

are elliptic as well. Reference [34] examined the out of plane equilibrium points 
76 ,L  by considering the effect of a small 

change in Coriolis and centrifugal forces, when the primaries are both radiating and oblate spheroids. 

In the present paper, we deal with the equilibrium points which exist out of the orbital plane by considering all the three 

primary bodies as radiation sources in the presence of small perturbations given in the Coriolis and the centrifugal forces. The 

primaries are modeled as a radiation sources with two of the bodies having the same radiation and mass value. Also, the 

infinitesimal body is assumed to have no influence on the motion of these primaries. 

Here, our effort is geared towards investigating the effects produced by perturbations in Coriolis and centrifugal forces and 

the radiation pressure from the primaries on the existence of out of plane equilibrium points and their stability in the R4BP. 

More precisely, we study the equilibrium points, the zero velocity curves and the linear stability for this problem. This work 

may be applicable to the study of a test particle in the Sun-Jupiter- Trojan-spacecraft system and the results obtained in this 
study will have thus practical application in astrophysics. 

It is known, that in the Lagrange central configuration the Routh’s criterion for the linear stability of the configuration is the 

inequality,   

,
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where 
21 , mm and 3m  are the three primary bodies.  

In the photogravitational case, the necessary condition for the stability of the configuration is the inequality [8] 
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where 
21,qq and 

3q are the corresponding radiation pressure forces of the primaries.  

In present work, we will consider sets of (
ii qm , ) which satisfy the above condition. So, throughout the paper we shall assume 

that we have a dominant primary body with mass 962.01 m and two small equal primaries with masses 019.032  mm . 

All the development and computations, both algebraic and numerical, have been performed with Mathematica ® version 11 

[35]. 
 

The paper is organized in six sections. Section 2 provides the equations of motion for the system under investigation. Section 

3 locates the positions of the out of plane points. Section 4 is devoted to the surfaces and curves of zero velocity. The regions 

of allowed motion as determined by the zero velocity curves as well as the positions of out of plane points are given. Section 

5 established their stability; while Section 6 discusses the obtained results and conclusion of the paper.  

 

2. Equations of Motion  
The system we consider is the motion of an infinitesimal object, e.g. a spacecraft, in the presence of three finite celestial 

objects (
321 ,, PPP ) with masses 

21,mm and
3m , which we treat as point mass. We suppose that 

321 mmm   always lie at the 

vertices of an equilateral triangle and one of them, 1m (say), is on the negative x-axis at the origin of time. This system is also 

dimensionless, i.e., we normalize the units with the supposition such that the sum of the masses, the separation between the 
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primaries, the Gaussian constant and unit of time are equal to unity. The equilateral configuration is possible for all 

distributions of the masses, whilst the fourth body of negligible mass moves in the same plane. Let us denote the small 

perturbations in Coriolis and centrifugal forces by 1  and 2 respectively, with 1, 21  . The radiation pressure parameters 

of the primaries
321 ,, qqq , using the same notation as in the classical three-body problem [8], are given by the relations iq  = 1 

–
ib , i = 1, 2, 3 where 

21,bb and 3b are the ratios of the force 
rF  which is caused by radiation to the force 

gF
 
which results 

from gravitational due to the three primary bodies. For 3,2,1i , it is clear that:  If iq =1, the radiation pressure has no effect. 

If 10 1  q , the gravitational force is greater than the radiational one. If iq =0, the radiation force balances the gravitational 

one. If iq 0, the radiation pressure overrides the gravitational attraction. Let the coordinates of the infinitesimal mass be (x, 

y) and masses 
21,mm and

3m  are 

)0,3(  ,  )
2

1
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  is the mass parameter. 

Now we consider perturbations in the Coriolis and centrifugal forces with the help of the parameter  and , respectively, 

such that 1,1 11  
 
and 1,1 22   .The unperturbed value of each is unity. 

The equations of motion of the infinitesimal mass (Spacecraft) of the photogravitational R4BP under small perturbations in 
the Coriolis and centrifugal forces, in the rotating coordinate system following [26, 8] are 

x  y2 = 
x  

xy  2 = 
y                                                             (1) 
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where 21,rr and 3r  are the distances of the infinitesimal body from the primaries,   is the photogravitational potential, dots 

denote time derivatives, the suffixes x and y indicate the partial derivatives of   with respect to x and y respectively.  

The energy (Jacobi) integral of system (1) is given by the expression  

yx  2 2 + 
2z  = 2Ω – C        (3) 

     where C is the Jacobi constant.  

We note here that in the previous studies [8, 10, 12, 23, 29, 30] a necessary condition in order to exist critical points out of 

plane, is that the radiation parameter must be negative. As a consequence, we shall investigate in the next section the 

existence and location of out of plane equilibrium points in the case where 01 1  q , 10 2  q  (since
32 qq  ), 

1,1 11   and 1,1 22   .  

 

3. Positions of out-of-plane equilibrium points  

The positions of the out-of-plane equilibrium points are the solutions of equations (1) with 

0 zyxzyx                                                                      (4) 

and considering z ≠0. Thus, equations (1) yield 0 zyx
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If 0y , equation (6) is fulfilled (since
32 qq  ) and we solve equations (5) and (7) for 0y  and z ≠0. When the effects of 

perturbations in the Coriolis and centrifugal forces as well as radiation of the primaries are neglected (classical case), the 

resulting system has not any real solution ( zx ,0, ) since its second equation (equation (7)) is fulfilled only for 0z . Hence, 

as in the classical (gravitational) three-body problem, the classical four-body problem has not equilibrium points in the 
present problem. Now equations (5) and (7) are expressed, respectively, as 

0x 0
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and the subscript ‘0’ is used to denote the equilibrium values. 

From equation (9) we have that 
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which means that if k = constant the locus of these points is an Apollonius circle . From equation (10) it can be seen that, for 

the existence of any real solution, one of the following conditions is necessary to hold: 

021 qq       or      021  qq                                                               (11) 

The second condition means that the gravitational attractions balance the corresponding radiation pressure forces. This case 

will not be considered here. 

The first condition means that the radiation pressure force of just one of the primaries exceeds its gravitational attraction.  

The existence of these points is of particular astronomical interest in connection with planetary system formation, satellite 

motion, etc. These points are found to be located in the ),( zx  plane in symmetrical positions with respect to the ),( yx  plane. 

They are dynamically equivalent, which means that are characterized by the same Jacobian constant C  and by the same state 

of stability. As it is known, such points do not appear if only gravitational forces are considered.  For any given  , the 

existence, position and stability of these points depend on  ,  , 1q and 2q . So, the value of radiation factors could be taken 

in 10 2  q , 01 1  q  and the effect of Coriolis and centrifugal forces in 1,1 11   and 1,1 22  

respectively. 

Now, for 019.0 , ,1 2   and 10 2  q  there are intervals of 1q  of the form 01 1  q for which there exist out of 

the plane equilibrium points, which we call here 
zL1 and 

zL2  . The positions are shown numerically in Tables 1─3 under the 

joint effects of radiation pressure parameters and centrifugal force.  Figures 1, 2 and 3 show the positions of out-of-plane 

points in ),( 2qx  and ),( 2qz , as 2q  varies, for fixed values of 1q  and .  Figure 1 shows the effect of increasing 2q in the 

interval [1, 0.77] for fixed 03.01 q and 01.1 , Figure 2 corresponds to 2q in the interval [1, 0.26] for fixed 01.01 q  

and 01.1  while Figure 3 corresponds to 2q in the interval [1, 0.77] for fixed 03.01 q and 2.1 . From the results we 

conclude that the radiation effects from the primaries is more significant than the centrifugal force on the positions of out of 

plane equilibrium points. We also observe that when there are small perturbations 1  and 2 in the Coriolis and centrifugal 

forces in the present case, the number of equilibrium points are the same as that in the problem with no perturbations [10], 

but positions of the equilibrium points have changed. The small change in the Coriolis force does not affect the positions of 

the equilibrium points. 
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 Table 1. Effect of radiation and centrifugal forces on the positions of out-of-plane equilibrium points for 0190.0 ,

10 2  q  , 03.01 q and 01.1  

 
 

 
 
 
 

 

Table 2. Effect of radiation and centrifugal forces on the positions of out-of-plane equilibrium points for 0190.0 , 10 2  q

, 01.01 q and 01.1  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3. Effect of radiation and centrifugal forces on the positions of out-of-plane equilibrium points for

0190.0 , 10 2  q  , 03.01 q and 2.1  
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2q
                         0x  

  0z  

1.00                 0.00242476 2.16888 

0.99                 0.00228217 2.21315 

0.98                 0.00214194 2.26044 

0.97                 0.00200415 2.31110 

0.96                 0.00186892 2.36556 

0.95                 0.00173633 2.42431 

0.94                 0.00160651 2.48794 

0.93                 0.00147959 2.55715 

0.92                 0.00135568 2.63280 

0.91                 0.00123495 2.71595 

0.90                 0.00111755 2.80792 
0.89                                  0.00100365 2.91037 

2q
                          0x  

    0z  

1.00                   0.0158335 0.804461 

0.99                   0.0155804 0.808791 

0.98                   0.0153275 0.813211 

0.97                   0.0150749 0.817725 

0.96                   0.0148225 0.822336 

0.95                   0.0145704 0.827048 

0.94                   0.0143187 0.831864 

0.93                   0.0140672 0.836788 
0.92                   0.0138160 0.841825 

0.91                   0.0135652 0.846979 

0.90                   0.0133148 0.852253 

0.89                   0.0130647 0.857654 

2q
                         0x  0z  

1.00                  0.00204298 2.16812 

0.99                  0.00192272 2.21242 

0.98                  0.00180447 2.25974 

0.97                  0.00168829 2.31043 

0.96                  0.00157428 2.36492 

0.95                  0.00146251 2.42370 

0.94                  0.00135309 2.48736 

0.93                  0.00124612 2.55660 

0.92                  0.00114171 2.63228 

0.91                  0.00103997 2.71545 
0.90                  0.00094106 2.80747 

0.89                  0.00084510 2.90995 
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Fig. 1. Position of 
zL1 and 

zL2 in the ( zx  ) plane as a function of 2q  in the interval [1, 0.77], for 03.01 q , 01.1 , 019.0
 

     

Fig. 2. Position of 
zL1 and 

zL2 in the ( zx  ) plane as a function of 2q  in the interval [1, 0.26], for ,01.01 q 01.1 , 019.0  
 

     

 Fig. 3. Position of 
zL1 and 

zL2 in the ( zx  ) plane as a function of 2q  in the interval [1, 0.77], for 03.01 q , 2.1 ,

019.0
 

 

4. Zero velocity curves in the ( zx  ) plane 

The usefulness of the Jacobi constant integral in clarifying certain general properties of the relative motion of a small body by 

the construction and investigation of zero velocity curves in every problem of celestial dynamics was pointed out by many 

investigators in the past. In this section we present the contours of the surface (3) on the ( zx  ) plane, for zero velocity, 

which provide the zero velocity curves. In Fig. 4 we present the zero velocity curves under the joint effects of radiation and 

centrifugal forces for fixed value of 019.0 . We have plotted only the curves for Jacobi constant values corresponding to 

the out of plane equilibrium point 
zL1  and 

zL2  . In Fig. 4 panel (a) we consider 03.01 q , 2q =0.99 and 01.1 ; panel  
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(b) 03.01 q , 2q =0.99 and 2.1  
and panel (c) 01.01 q , 2q =0.5 and 01.1 . Large (black) dots indicate the primary 

bodies, while the small (black) ones are the out of plane equilibrium points of the problem. We note here that between centre 

of the dominant primary 1P  and its companion out of plane equilibrium points, the zero velocity curves form small rhombus 

of regions not allowed to motion which shrink very fast under the variation of radiation pressure and the particle comes very 

close to 1P  (Fig. 4 panel (c)). In Fig. 4 panel (d) zero velocity curves which correspond to combined effect of panels (a), (b) 

and (c) are represented on figure as blue, green and red respectively. 

From these figures, it is obvious that the radiation pressure of the primary bodies effect significantly the structure of the 

regions allowed to motion of the particle as determined by the zero velocity surface compare to the effects of perturbations in 
Coriolis and centrifugal forces.  
 

 

 
Fig. 4. Zero velocity curves in the ( zx  ) plane for (a) 03.01 q , 99.032  qq , 01.1 , C=0.00504603876        (b) 

,03.01 q 99.032  qq , ,2.1 C=0.00504687247 (c) ,01.01 q 5.032  qq , ,01.1  C=0.00860476470 (d) the zero 

velocity curves which correspond to combined effect of  (a), (b) and (c) are represented on figure as blue, green, red, 

respectively. Large (black) dots are the primary bodies and small (black) ones are the equilibrium points of the problem. The 

mass parameter for all cases is 019.0 . 
 

5. Linear stability of out-of-plane equilibrium points 

In order to study the linear stability of the out of plane equilibrium point (
00 ,0, zx ) we displace the infinitesimal body to the 

point ( 0x + , , 0z ) where  , , are the corresponding perturbations along the axes Ox, Oy and Oz. So we linearize 

the system (1) to obtain the variational equations of motion as 

  2  = 0

xx  + 0

xy  + 0

xz   

  2 = 0

yx  + 0

yy  + 0

yz         (12) 

  =  000

zzzyzx    

where the superscript ‘o’ indicates that the partial derivatives are to be evaluated at out of plane points (
00 ,0, zx ) 

Explicitly, the partial derivatives of system (12) are  

,00000  zyyzyxxy
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The characteristic equation corresponding to system (12) is  

0246  cba         (13) 

with  

zzyyxxa 00024    
200000000 )(4 xzzzxxzzzzyyyyxxb   

zzyyxxyyxzc 000020 )(   
which is a polynomial of sixth degree in λ 

The eigenvalues of the characteristic equation (13) determine the stability or instability of the respective equilibrium points. 

An equilibrium point will be stable if the characteristic equation has six imaginary roots or complex roots with non-positive 

real parts.  

We have computed the characteristic roots 6,...2,1, ii  as the perturbation parameters increase ( 10 2  q , 01 1  q ,

1,1 11   and 1,1 22    ) with an arbitrary small step and found no case in which all the roots are all 

imaginary. This lead to the instability of the out of plane points.  
 

6. Discussion and conclusion 
 In this paper we have studied the existence, location and the stability of the out of plane equilibrium points for particles 

moving in the vicinity of three massive bodies which emit light radiation under the influence of small perturbations in the 

Coriolis and centrifugal forces formulated on the basis of Lagrange equilateral triangle configuration. As it is known, such 

points do not appear if only the gravitational forces are considered. Solutions of equations (8) and (9) give the positions of the 

out of plane points, they are affected by the radiation pressure and the perturbation in centrifugal force, but not by that of 

Coriolis force because equations (8) and (9) are independent of parameter   There are two out of plane equilibrium points 

that lie in the ( zx  ) plane in symmetrical positions with respect to the ( yx, ) plane. The effects of the parameters involved 

on the positions of the out of plane points are shown numerically (Tables 1─3) and graphically in Figures 1─3. The existence 

of these points is of particular astronomical interest in connection with planetary system formation, satellite motion, etc. The 

involved parameters is also seen to have significant effects on the topology of the zero velocity curves in the ( zx  ) plane 

(Fig. 4 panels (a)—(c)).  In particular, between the centre of the dominant primary body and its companion out of plane 

equilibrium points, the zero velocity curves form small rhombus of regions not allowed to motion which shrink very fast 

under the variation of radiation pressures and the particle comes very close to 1P . Finally, the stability of these points has 

been achieved numerically by determining the roots of the characteristic equation. The numerical investigation of these roots 

shows no case in which the roots are all imaginary in spite of the introduction of aforementioned parameters. Consequently, 

the motion is unbounded, and thus unstable, which agree with [8] when only the dominant primary body is a radiation source 

and with [10] in the absence of Coriolis and centrifugal forces. 
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