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Abstract 

Since the introduction of the concept of intuitionistic fuzzy soft sets as a generalization 

of fuzzy soft set, many researchers have contributed in one way or the other in the 

development of the intuitionistic fuzzy soft sets. In this paper, we recall the definitions 

of fuzzy set, intuitionistic fuzzy set and soft set. We discuss properties of intuitionistic 

fuzzy soft set operations. We prove some theorems and propositions in the background 

of intuitionistic fuzzy soft set. We also state and prove various De Morgan’s types of 

results. Finally, we present an adjustable approach to intuitionistic fuzzy soft set based 

decision making problems using level soft sets with concrete example and illustration. 
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1. Introduction 

To find solution to complicated problems in economics, engineering, environment, medical and social sciences, we cannot 

successfully use traditional approaches due to various uncertainties associated with these problems. In an attempt to solve the 

problems, many theories were developed. These theories among others include theory of probability [1], theory of fuzzy sets 

[2], theory of interval mathematics [3], rough sets [4], vague sets [5] which we can consider as mathematical tools for dealing 

with uncertainties. However, all these theories have their own inherent limitations in dealing with uncertainties. One major 

problem common to these theories is their incompatibility with the parameterization tools. To overcome these limitations, 

Molodtsov [6] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties and imprecision 

that is free from the difficulties that have troubled the classical mathematical theories. Molodtsov pointed out the application 

of soft set in several directions. This theory has proven useful in many different fields such as decision making [7], data 

analysis [8], forecasting and so on. 

Research on soft sets has been very active, since its introduction by Molodtsov in [6] up to the present and several important 

results have been achieved both in theory and application. Maji et al. [9] defined different algebraic operations in soft set 

theory and published a detailed theoretical study on soft sets. Ali et al., [10] further presented and investigated some new 

algebraic operations for soft sets. Sezgin and Atagun  [11] proved that certain De Morgan’s law holds in soft set theory with 

respect to different operations on soft sets and discuss the basic properties of operations on soft sets such as intersection, 

extended intersection, restricted union and restricted difference. Maji et al., [12] extended crisp soft set to fuzzy soft set. Maji 

et al., [9] extended classical soft set to intuitionistic fuzzy soft sets, which were further discussed in Maji et al., [9] and Yin et 

al., [13].  

As a generalization of fuzzy soft set theory, intuitionistic fuzzy soft set theory makes descriptions of the objective world more 

realistic, practical and accurate in some cases, making it very promising. We basically study the properties of the operations 

of intuitionistic fuzzy soft set and De Morgan’s laws. Also, we use the approach introduced by Jiang et al., [14] and construct 

some practical problems involving decision making. The definitions of the level soft sets are found in Jiang et al., [14]. 

1. Some Preliminary Concepts 

1.1. Fuzzy Set 

We recall the definition of the notion of fuzzy set by Zadeh [2]: 

Definition 2.1.1. Let 𝑈 be a universe. A fuzzy set 𝑋 over 𝑈 is a set defined by a function 𝜇X representing a mapping, 

𝜇X: 𝑈 ⟶ [0, 1]  
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𝜇X is called the membership function of X, and the value 𝜇X(𝑢) is called the grade of membership of 𝑢 ∈ 𝑈and represents the 

degree of 𝑢 belonging to the fuzzy set 𝑋. Thus a fuzzy set 𝑋 over 𝑈, can be represented as follows: 

𝑋 = {
𝑢

𝜇X(𝑢)
∶ 𝑢 ∈ 𝑈, 𝜇X(𝑢) ∈ [0, 1]} or  𝑋 = {

𝜇X(𝑢)

𝑢
∶ 𝑢 ∈ 𝑈, 𝜇X(𝑢) ∈ [0, 1]} or  

𝑋 = {〈𝑢, 𝜇X(𝑢) 〉 ∶ 𝑢 ∈ 𝑈, 𝜇X(𝑢) ∈ [0, 1]}. 
 Example 2.1.1. Let 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4}. A fuzzy set 𝑋 over 𝑈 can be represented by 

𝑋 = {
ℎ1
0.4

,
ℎ2
0.6

,
ℎ3
0.2

,
ℎ4
0.7
} 

 

1.2.  Intuitionistic Fuzzy Set 

Definition 2.2.1. [15]. Let 𝑋 be a nonempty set. An intuitionistic fuzzy set 𝐴 in 𝑋 is an object having the form 

 𝐴 = {〈𝑥, 𝜇A(𝑥), 𝜆A(𝑥)〉: 𝑥 ∈ 𝑋}, where the functions 𝜇A(𝑥), ∶ 𝑋 ⟶ [0, 1] and 

 𝜆A(𝑥): 𝑋 ⟶ [0, 1] defined respectively, the degree of membership and degree of non-membership of the element 𝑥 ∈ 𝑋 to 

the set 𝐴, which is a subset of 𝑋 and for every element 𝑥 ∈ 𝑋, 0 ≤  𝜇A(𝑥) + 𝜆A(𝑥) ≤ 1. 

Furthermore, we have 𝜋A(𝑥) = 1 − 𝜇A(𝑥) − 𝜆A(𝑥) called the intuitionistic fuzzy set index or hesitation margin of 𝑥 in 𝐴. 

𝜋A(𝑥) is the degree of indeterminacy of 𝑥 ∈ 𝑋 to the intuitionistic fuzzy set 𝐴 and 𝜋A(𝑥) ∈ [0, 1], that is, 𝜋A(𝑥): 𝑋 ⟶ [0, 1] 
and  0 ≤  𝜋A ≤ 1 for every 𝑥 ∈ 𝑋. 𝜋A(𝑥) expresses the lack of knowledge of whether 𝑥 belongs to intuitionistic fuzzy set 𝐴 

or not. 

For instance, let 𝐴 be an intuitionistic fuzzy set with 𝜇A(𝑥) = 0.55 and 𝜆A(𝑥) = 0.25,⟹ 𝜋A(𝑥) = 1 − (0.55 + 0.25) =
0.2. It can be interpreted as the degree that the object 𝑥 belongs to intuitionistic fuzzy set 𝐴 is 0.55, the degree that the object 

𝑥 does not belong to the intuitionistic fuzzy set 𝐴 is 0.25 and the degree of hesitancy is 0.2. 
 

1.2.1. Basic Operations on Intuitionistic Fuzzy Set 

Let 𝐴 = {〈𝑥, 𝜇A(𝑥), 𝜆A(𝑥)〉: 𝑥 ∈ 𝑋} and 𝐵 =  {〈𝑥, 𝜇B(𝑥), 𝜆B(𝑥)〉: 𝑥 ∈ 𝑋} be two intuitionistic fuzzy sets over 𝑋. 

(i) [Inclusion] 𝐴 ⊆ 𝐵 ⟷ 𝜇A(𝑥) ≤  𝜇B(𝑥) and 𝜆A(𝑥) ≥  𝜆B(𝑥), ∀𝑥 ∈ 𝑋. 

(ii) [Equality] 𝐴 = 𝐵 ⟷ 𝜇A(𝑥) =  𝜇B(𝑥) and 𝜆A(𝑥) =  𝜆B(𝑥), ∀𝑥 ∈ 𝑋. 

(iii) [Complement] 𝐴𝐶 = {〈𝑥, 𝜆A(𝑥), 𝜇A(𝑥)〉: 𝑥 ∈ 𝑋}. 

(iv) [Union] 𝐴 ∪ 𝐵 =  {〈𝑥,𝑚𝑎𝑥(𝜇A(𝑥), 𝜇B(𝑥)),𝑚𝑖𝑛(𝜆A(𝑥), 𝜆B(𝑥))〉: 𝑥 ∈ 𝑋}. 

(v) [Intersection] 𝐴 ∩ 𝐵 = {〈𝑥,𝑚𝑖𝑛(𝜇A(𝑥), 𝜇B(𝑥)),𝑚𝑎𝑥(𝜆A(𝑥), 𝜆B(𝑥))〉: 𝑥 ∈ 𝑋}. 
 

1.3. Soft Set 

We first recall some basic notions in soft set theory. Let 𝑈  be an initial universe set, E be a set of parameters or attributes 

with respect to  𝑈,  𝑃(𝑈) be the power set of 𝑈 and A ⊆ E. 

Definition 2.3.1[6]. A pair (𝐹, 𝐴) is called a soft set over 𝑈, where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑈). In other words, a 

soft set over 𝑈 is a parameterized family of subsets of the universe 𝑈. For 𝑥 ∈ 𝐴, 𝐹(𝑥) may be considered as the set of 𝑥-

elements or as the set of 𝑥-approximate elements of the soft set (𝐹, 𝐴). The soft set (𝐹, 𝐴) can be represented as a set of 

ordered pairs as follows:(𝐹, 𝐴) = {( x, 𝐹(x)), x ∈A, 𝐹(𝑥)  ∈ P(𝑈)}
  

 

Definition 2.3.2 [9]. Let (𝐹, 𝐴) and (G, B) be two soft sets over U. Then 

(i) (𝐹, A) is said to be a soft subset of (G, B), denoted by 

              (𝐹, 𝐴) ⊆̃ (G, B), if 𝐴 ⊆ B and 𝐹(𝑥) ⊆ G(𝑥), ∀𝑥 ∈ A 

(ii) (𝐹, 𝐴) and (G, B) are said to be soft equal, denoted by  

              (𝐹, 𝐴) = (G, B), if (𝐹, 𝐴) ⊆̃ (G, B) and (G, B) ⊆̃ (𝐹, 𝐴) . 
 

Definition 2.3.3 [10]. Let (𝐹, 𝐴) be a soft set over 𝑈. Then the support of (𝐹, 𝐴) written supp(𝐹, 𝐴) is defined as 

supp(𝐹, 𝐴) = {𝑥 ∈  𝐴: 𝐹(𝑥) ≠ ∅}. 
(ii)  (𝐹, 𝐴) is called a non-null soft set if supp (𝐹, 𝐴) ≠ ∅. 

(ii) (𝐹, 𝐴) is called a relative null soft set denoted by ∅𝐴 𝑖𝑓 𝐹(𝑥) = ∅, ∀𝑥 ∈ 𝐴  

(iii) (𝐹, A) is called a relative whole soft set, denoted by 𝑈𝐴 𝑖𝑓 𝐹(𝑥) = 𝑈, ∀𝑥 ∈ 𝐴. 

Definition 2.3.4.[16]. Let (𝐹, A) be a soft set over 𝑈. If 𝐹(𝑥) ≠ ∅ for all 𝑥 ∈ 𝐴, then (𝐹, A) is called a non-empty soft set. 

Definition 2.3.5 [10]. Let (𝐹, 𝐴) and (G, B) be two soft sets over U. Then the union of (𝐹, 𝐴) and (G, B), denoted by 

(𝐹, 𝐴) ∪̃ (𝐺, 𝐵) is a soft set defined as (𝐹, 𝐴) ∪̃ (𝐺, 𝐵) = (𝐻, 𝐶), 𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝐴 ∪ 𝐵 𝑎𝑛𝑑 ∀𝑥 ∈ 𝐶, 

𝐻(𝑥) =  {

𝐹(𝑥),               𝑖𝑓 𝑥 ∈ 𝐴 − 𝐵 

𝐺(𝑥),               𝑖𝑓𝑥 ∈ 𝐵 − 𝐴

𝐹(𝑥) ∪  𝐺(𝑥),   𝑖𝑓 𝑥 ∈ 𝐴 ∩ 𝐵

 

Definition 2.3.6[16]. Let (𝐹, A) and (𝐺, 𝐵) be two soft sets over U. Then the restricted union of (𝐹, 𝐴) and (G, B), denoted 

by (𝛤, 𝐴) ∪̃𝑅  (𝐺, 𝐵) is a soft set defined as; 
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(𝐹, 𝐴) ∪̃𝑅  (𝐺, 𝐵) = (𝐻, 𝐶), where C = 𝐴 ∩ 𝐵 ≠ ∅ and ∀ x ∈ C, H(x) = 𝐹(x) ∪ G(x). 

Definition 2.3.7 [10]. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over U. Then the extended intersection of (𝐹, A) and (𝐺, 𝐵), 
denoted by (𝐹, 𝐴) ∩̃𝐸 (𝐺, 𝐵), is a soft set defined as (𝐹, 𝐴) ∩̃𝐸 (𝐺, 𝐵) = (H, C) where C = A ∪ B and ∀ x ∈ C, 

 𝐻(𝑥) =  {

𝐹(𝑥),               𝑖𝑓 𝑥 ∈ 𝐴 − 𝐵 

𝐺(𝑥),               𝑖𝑓𝑥 ∈ 𝐵 − 𝐴

𝐹(𝑥) ∩  𝐺(𝑥),   𝑖𝑓 𝑥 ∈ 𝐴 ∩ 𝐵

 

Definition 2.3. 8 [10]. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over U. Then the restricted intersection of (𝐹, 𝐴) and   (𝐺, 𝐵) 
denoted by (𝐹, 𝐴) ⋒ (G, B), is a soft set defined as          (𝐹, 𝐴) ⋒ (𝐺, 𝐵) = (𝐻, 𝐶) where C = A∩ B and ∀ x ∈ C, H(x) = 𝐹(x) 

∩G (x). 

Definition 2.3.9 [9]. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over U. Then the AND-product or AND-intersection of (𝐹, 𝐴) 

and (𝐺, 𝐵) denoted by (𝐹, 𝐴)⋀̃  (𝐺, 𝐵) is a soft set defined as 

(𝐹, 𝐴)⋀̃  (𝐺, 𝐵) = (𝐻, 𝐶), 𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝐴 × 𝐵 𝑎𝑛𝑑 ∀ (𝑥, 𝑦) ∈ 𝐴 × 𝐵, H(𝑥, 𝑦) = 𝐹(x) ∩ G(y).  

Definition 2.3.10 [9]. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over U. Then the OR-product or OR-union of (𝐹, 𝐴) and (G, 

B), denoted by (𝐹, 𝐴)⋁̃  (𝐺, 𝐵) is a soft set defined as 

(𝐹, 𝐴)⋁̃ (𝐺, 𝐵) = (𝐻, 𝐶), 𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝐴 × 𝐵 𝑎𝑛𝑑 ∀ (𝑥, 𝑦) ∈ 𝐴 × 𝐵, H(x, y) = 𝐹(x) ∪ G(y).  

2.4   Fuzzy Soft Set 

Let 𝑈 be an initial universe set and 𝐸 be a set of parameters (which are fuzzy words or sentences involving fuzzy words). Let 

𝑃(𝑈) denotes the set of all fuzzy subsets of 𝑈, and 𝐴 ⊆ 𝐸. 

Definition 2.4.1 [12]. A pair (𝐹, 𝐴) is called a fuzzy soft set over 𝑈, where 𝐹 is a mapping given by 𝐹:𝐴 ⟶ 𝑃(𝑈). In other 

words, a fuzzy soft set over 𝑈 is a parameterized family of fuzzy subsets of the universe 𝑈. For 𝑥 ∈ 𝐴, 𝐹(𝑥) may be 

considered as the set of 𝑥-elements or as the set of 𝑥-approximate elements of the fuzzy soft set (𝐹, 𝐴). Therefore, a fuzzy 

soft set (𝐹, 𝐴) over 𝑈 can be represented by the set of ordered pairs  

(𝐹, 𝐴) = {(𝑥, 𝐹(𝑥)): 𝑥 ∈ 𝐴, 𝐹(𝑥) ∈ 𝑃(𝑈)}. 

Example 2.4.1. Suppose that 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} be a universe set and 𝐸 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} be a set of parameters 𝐴 =

{𝑎1, 𝑎2, 𝑎3} ⊆ 𝐸, 𝐹(𝑎1) = {
ℎ2

0.8
,
ℎ4

0.6
}, 𝐹(𝑎2) = 𝑈 and  𝐹(𝑎3) = {

ℎ1

0.3
,
ℎ3

0.4
,
ℎ5

0.9
}, then the fuzzy soft set (𝐹, 𝐴) is written as                    

  

(𝐹, 𝐴) =  {(𝑎1, {
ℎ2

0.8
,
ℎ4

0.6
}) , (𝑎2, 𝑈), (𝑎3, {

ℎ1

0.3
,
ℎ3

0.4
,
ℎ5

0.9
} )}. 

 

3. Intuitionistic Fuzzy Soft Set 

Definition 3.1 [13]. Let 𝑈 be an initial universe set, 𝐸 a set of parameters, 𝐼(𝑈) denotes the set of all intuitionistic fuzzy 

subsets of 𝑈 and 𝐴 ⊆ 𝐸. Then a pair (�̂�, 𝐴) is called an intuitionistic fuzzy soft set over 𝑈, where �̂� is a mapping given by 

�̂� ∶ 𝐴 ⟶ 𝐼(𝑈). 
In general, for every 𝑒 ∈ 𝐴, �̂�(𝑒) is an intuitionistic fuzzy set of 𝑈 and it is called intuitionistic fuzzy value set of parameter 

𝑒. Obviously, �̂�(𝑒) can be written as an intuitionistic fuzzy set such that �̂�(𝑒) =  {〈𝑥, 𝜇�̂�(𝑒)(𝑥), 𝜆�̂�(𝑒)(𝑥)〉: 𝑥 ∈ 𝑈}. Where 

 𝜇�̂�(𝑒) and 𝜆�̂�(𝑒) are the membership and non-membership functions, respectively. The set of all intuitionistic fuzzy soft sets 

over 𝑈 with parameters from 𝐸 is called an intuitionistic fuzzy soft class and it is denoted by 𝐼�̂�(𝑈, 𝐸). 

Definition 3.2. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈. We say that (�̂�, 𝐴) is an intuitionistic fuzzy 

soft subset of (�̂�, 𝐵) and written as (�̂�, 𝐴) ⊆̃ (�̂�, 𝐵) if, 
(i) 𝐴 ⊆ 𝐵, 

(i) For any 𝑒 ∈ 𝐴, �̂�(𝑒) ⊆ �̂�(𝑒), that is, for all 𝑥 ∈ 𝑈 and 𝑒 ∈ 𝐴, 𝜇�̂�(𝑒)(𝑥) ≤  𝜇�̂�(𝑒)(𝑥) and 𝜆�̂�(𝑒)(𝑥) ≥  𝜆�̂�(𝑒)(𝑥). 

Definition 3.3. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈. Then (�̂�, 𝐴) and (�̂�, 𝐵) are said to be 

intuitionistic fuzzy soft equal, denoted by (�̂�, 𝐴) = (�̂�, 𝐵) if (�̂�, 𝐴) ⊆̃ (�̂�, 𝐵) and (�̂�, 𝐵) ⊆̃ (�̂�, 𝐴). 

Definition 3.4. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈. Then, the Union of (�̂�, 𝐴) and (�̂�, 𝐵) is 

written as (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) and is defined as (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) =  (�̂�, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and ∀ 𝑒 ∈ 𝐶, 

 �̂�(𝑒) =  {

�̂�(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�(𝑒),                    𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�(𝑒) ∪ �̂�(𝑒),      𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Definition 3.5. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈, such that 𝐴 ∩ 𝐵 ≠ ∅. The restricted 

intersection of (�̂�, 𝐴) and (�̂�, 𝐵) is defined to be the intuitionistic fuzzy soft set (�̂�, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 and �̂�(𝑒) =

�̂�(𝑒) ∩ �̂�(𝑒), ∀𝑒 ∈ 𝐶. This is written as (�̂�, 𝐴) ⋒ (�̂�, 𝐵) =  (�̂�, 𝐶). 
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Definition 3.6. Let 𝑈 be an initial universe set, 𝐸 be the universe set of parameters and 𝐴 ⊂ 𝐸. The intuitionistic fuzzy soft 

set (�̂�, 𝐴) is called a relative null intuitionistic fuzzy soft set  with respect to the parameter set 𝐴 denoted by ∅𝐴, if �̂�(𝑒) = 

null intuitionistic fuzzy set of 𝑈, for all 𝑒 ∈ 𝐴. The relative null intuitionistic fuzzy soft set ∅𝐸 with respect to the universe set 

of parameters 𝐸 is called the absolute null intuitionistic fuzzy soft set over 𝑈. 

Definition 3.7. Let 𝑈 be an initial universe set, 𝐸 be a universe set of parameters and 𝐴 ⊆ 𝐸. The intuitionistic fuzzy soft set 

(�̂�, 𝐴) is called a relative whole intuitionistic fuzzy soft set with respect to the parameter set 𝐴 denoted by 𝑈𝐴, if �̂�(𝑒) = 𝑈, 

for all 𝑒 ∈ 𝐴. The relative whole intuitionistic fuzzy soft set 𝑈𝐸 with respect to the universe set of parameters 𝐸 is called the 

absolute intuitionistic fuzzy soft set over 𝑈. 

Definition 3.8. The relative complement of an intuitionistic fuzzy soft set (�̂�, 𝐴) over 𝑈 is denoted by (�̂�, 𝐴)𝑟 and is defined 

by (�̂�𝑟 , 𝐴), where ∀𝑒 ∈ 𝐴, 𝜇�̂�𝑟(𝑒) = 𝜆�̂�(𝑒)  and 𝜆�̂�𝑟(𝑒) = 𝜇�̂�(𝑒), that is, �̂�𝑟(𝑒) = (𝜆�̂�(𝑒), 𝜇�̂�(𝑒)). Clearly, ((�̂�, 𝐴)𝑟)𝑟 = (�̂�, 𝐴). 

Definition 3.9. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over a common universe 𝑈, such that 𝐴 ∩ 𝐵 ≠ ∅. 

The restricted difference of (�̂�, 𝐴) and (�̂�, 𝐵) is denoted by          (�̂�, 𝐴) ∼𝑅 (�̂�, 𝐵) and is defined as (�̂�, 𝐴) ∼𝑅 (�̂�, 𝐵) =

 (𝐾, 𝑃), where 𝑃 = 𝐴 ∩ 𝐵 and ∀ 𝑝 ∈ 𝑃, 𝐾(𝑝) =  �̂�(𝑝) − �̂�(𝑝) (the intuitionistic fuzzy difference of two intuitionistic fuzzy 

sets �̂�(𝑝) and �̂�(𝑝) is denoted by �̂�(𝑝) − �̂�(𝑝) and is defined as �̂�(𝑝) − �̂�(𝑝) =  �̂�(𝑝) ∩ �̂�𝑐(𝑝) . 
Definition 3.10. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈.The extended intersection of (�̂�, 𝐴) and 

(�̂�, 𝐵) denoted by (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) is defined as 

 (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) =  (�̂�, 𝐶) , 𝐶 = 𝐴 ∪ 𝐵, and ∀𝑒 ∈ 𝐶, �̂�(𝑒) =  {

�̂�(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�(𝑒),                    𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�(𝑒) ∩ �̂�(𝑒),      𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Definition 3.11. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈, such that 𝐴 ∩ 𝐵 ≠ ∅. The restricted union 

of (�̂�, 𝐴) and (�̂�, 𝐵) denoted by (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) is defined by (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) = (�̂�, 𝐶) where 𝐶 = 𝐴 ∩ 𝐵 and �̂�(𝑒) =

�̂�(𝑒) ∪ �̂�(𝑒), ∀𝑒 ∈ 𝐶.  

4. De Morgan’s Laws on Intuitionistic fuzzy soft set 

It is well known from standard set that De Morgan’s Laws interrelate union and intersection via complements. In theorem 4.1 

and theorem 4.2, we shall show that De Morgan‘s Laws interrelate union (∪̃) and extended intersection ∩̃𝐸, restricted union 

(∪̃𝑅) and restricted intersection (⋒) operations respectively. 

Theorem 4.1. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈. Then the following holds: 

(i) ((�̂�, 𝐴) ∪̃ (�̂�, 𝐵))
𝑟
=  (�̂�, 𝐴)𝑟  ∩̃𝐸 (�̂�, 𝐵)

𝑟 , 

(ii) ((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵))
𝑟
= (�̂�, 𝐴)𝑟  ∪̃ (�̂�, 𝐵)𝑟 . 

Proof: 

(i) Suppose that (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) = (�̂�, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵, then for all 𝑒 ∈ 𝐶, 

�̂�(𝑒) =  {

�̂�(𝑒),                𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�(𝑒),                 𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�(𝑒) ∪ �̂�(𝑒),    𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Now, ((�̂�, 𝐴) ∪̃ (�̂�, 𝐵))
𝑟
= (�̂�, 𝐶)𝑟 = (�̂�𝑟 , 𝐶). For all 𝑒 ∈ 𝐶, we have  

�̂�𝑟(𝑒) =  {

�̂�𝑟(𝑒),                      𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�𝑟(𝑒),                       𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�𝑟(𝑒) ∩ �̂�𝑟(𝑒),      𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Also, let (�̂�, 𝐴)𝑟  ∩̃𝐸 (�̂�, 𝐵)
𝑟 = (�̂�, 𝐷), where 𝐷 = 𝐴 ∪ 𝐵, then for all 𝑒 ∈ 𝐷, we obtain 

�̂�(𝑒) =  {

�̂�𝑟(𝑒),                      𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�𝑟(𝑒),                       𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�𝑟(𝑒) ∩ �̂�𝑟(𝑒),      𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Clearly, �̂�𝑟(𝑒) =  �̂�(𝑒). Hence, the result has been established. 

(i) Let (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) = (�̂�, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵, then for all 𝑒 ∈ 𝐶, 

�̂�(𝑒) =  {

�̂�(𝑒),                𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�(𝑒),                𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�(𝑒) ∩ �̂�(𝑒),   𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Now, ((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵))
𝑟
= (�̂�, 𝐶)

𝑟
= (�̂�𝑟 , 𝐶). For all 𝑒 ∈ 𝐶, 
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�̂�𝑟(𝑒) = (�̂�, 𝐶)
𝑟
=  {

�̂�𝑟(𝑒),                𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�𝑟(𝑒),                𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�𝑟(𝑒) ∪ �̂�𝑟(𝑒),   𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 . 

Also, (�̂�, 𝐴)𝑟  ∪̃ (�̂�, 𝐵)𝑟 = (�̂�𝑟 , 𝐴) ∪̃ (�̂�𝑟 , 𝐵), 
= (�̂�, 𝐶), (say), where 𝐶 = 𝐴 ∪ 𝐵. For all 𝑒 ∈ 𝐶, 

�̂�(𝑒) =   {

�̂�𝑟(𝑒),                𝑖𝑓 𝑒 ∈ 𝐴/𝐵

�̂�𝑟(𝑒),                𝑖𝑓 𝑒 ∈ 𝐵/𝐴

�̂�𝑟(𝑒) ∪ �̂�𝑟(𝑒),   𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

. 

Obviously, �̂�𝑟(𝑒) =  �̂�(𝑒). Hence, ((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵))
𝑟
= (�̂�, 𝐴)𝑟  ∪̃ (�̂�, 𝐵)𝑟. 

Theorem 4.2. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic fuzzy soft sets over 𝑈. Then the following holds: 

(i) ((�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵))
𝑟
= (�̂�, 𝐴)𝑟  ⋒ (�̂�, 𝐵)𝑟, if 𝐴 ∩ 𝐵 ≠ ∅, 

(ii) ((�̂�, 𝐴) ⋒ (�̂�, 𝐵))
𝑟
= (�̂�, 𝐴)𝑟  ∪̃𝑅 (�̂�, 𝐵)

𝑟, if 𝐴 ∩ 𝐵 ≠ ∅. 

Proof: 

(i) (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) = (�̂�, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅. For all 𝑒 ∈ 𝐶, 

              �̂�(𝑒) =  �̂�(𝑒) ∪ �̂�(𝑒). 

Now, let ((�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵))
𝑟

= (�̂�, 𝐶)
𝑟
= (�̂�𝑟 , 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅. For any 𝑒 ∈ 𝐶, we have the following, �̂�𝑟(𝑒) =

 (�̂�(𝑒))
𝑟

= (�̂�(𝑒) ∪ �̂�(𝑒))
𝑟

 

=  �̂�𝑟(𝑒) ∩ �̂�𝑟(𝑒). 
Also, let (�̂�, 𝐴)𝑟  ⋒ (�̂�, 𝐵)𝑟 = (𝐼, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅. For any 𝑒 ∈ 𝐶, 

𝐼(𝑒) =  �̂�𝑟(𝑒) ∩ �̂�𝑟(𝑒). 
Since, �̂�𝑟(𝑒) =  𝐼(𝑒). Therefore, the result is established. 

(ii) Let (�̂�, 𝐴) ⋒ (�̂�, 𝐵) = (�̂�, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅ and �̂�(𝑒) =  �̂�(𝑒) ∩ �̂�(𝑒). 

Now, ((�̂�, 𝐴) ⋒ (�̂�, 𝐵))
𝑟
= (�̂�, 𝐶)𝑟 = (�̂�𝑟 , 𝐶). 

For all 𝑒 ∈ 𝐶, �̂�𝑟(𝑒) =  (�̂�(𝑒))𝑟 = (�̂�(𝑒) ∩ �̂�(𝑒))𝑟 = �̂�𝑟(𝑒) ∪ �̂�𝑟(𝑒). 

Also, (�̂�, 𝐴)𝑟  ∪̃𝑅 (�̂�, 𝐵)
𝑟 = (�̂�𝑟 , 𝐴) ∪̃𝑅  (�̂�

𝑟 , 𝐵) = (𝐽, 𝐷), (say), where 𝐷 = 𝐴 ∩ 𝐵. 

For all 𝑒 ∈ 𝐷, 𝐽(𝑒) = �̂�𝑟(𝑒) ∪ �̂�𝑟(𝑒). Clearly, �̂�𝑟(𝑒) = 𝐽(𝑒). Hence,         

 ((�̂�, 𝐴) ⋒ (�̂�, 𝐵))
𝑟
= (�̂�, 𝐴)𝑟  ∪̃𝑅 (�̂�, 𝐵)

𝑟 , if 𝐴 ∩ 𝐵 ≠ ∅. 

 

5. Properties of Intuitionistic Fuzzy Soft Set Operations 

Proposition 5.1. Let (�̂�, 𝐴) and (�̂�, 𝐵) be two intuitionistic soft sets over 𝑈. Then, the      following holds. 

(i) (�̂�, 𝐴) ⋒ (�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null. 

(ii)  (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null. 

(iii) (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈,  whenever, it is non-null and if �̂�(𝑥) and �̂�(𝑥) are ordered 

by inclusion relation for all 

 𝑥 ∈ 𝑠𝑢𝑝𝑝((�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵)). 

(iv) (�̂�, 𝐴)⋀̃(�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null. 

(v) (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null and if 𝐴 and 𝐵  are disjoint. 

(vi) (�̂�, 𝐴)⋁̃(�̂�, 𝐵) = (�̂�, 𝐴 × 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null and if  �̂�(𝑥) and 𝐺(𝑦) are 

ordered by inclusion relation for all 

(𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵). 

(vii) (�̂�, 𝐴)+̃(�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈, if it is non-null.  

 

 

Proof: 

(i) Let (�̂�, 𝐴) ⋒ (�̂�, 𝐵) = (𝐾, 𝐶) where 𝐾(𝑥) = �̂�(𝑥) ∩ �̂�(𝑥) for all 𝑥 ∈ 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅. By hypothesis,(𝐾, 𝐶) is a 

non-null intuitionistic fuzzy soft set over 𝑈. If  𝑥 ∈ 𝑠𝑢𝑝𝑝(𝐾, 𝐶), then 𝐾(𝑥) = �̂�(𝑥) ∩ �̂�(𝑥) ≠ ∅. It follows that 

�̂�(𝑥) ≠ ∅ and �̂�(𝑥) ≠ ∅ are both intuitionistic fuzzy set over 𝑈. Hence, 𝐾(𝑥)  is an intuitionistic fuzzy set over 𝑈, 

for all 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝐾, 𝐶).Thus, (𝐾, 𝐶) is an intuitionistic fuzzy soft set over 𝑈. 
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(ii) Let (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) = (�̂�, 𝐴 ∪ 𝐵), where �̂�(𝑥) =  {

�̂�(𝑥),               𝑖𝑓 𝑥 ∈ 𝐴 − 𝐵 

�̂�(𝑥),               𝑖𝑓𝑥 ∈ 𝐵 − 𝐴

�̂�(𝑥) ∩ 𝐺(𝑥),   𝑖𝑓 𝑥 ∈ 𝐴 ∩ 𝐵

 

For all 𝑥 ∈ 𝐴 ∪ 𝐵. Then by the hypothesis(�̂�, 𝐴 ∪ 𝐵) is a non-null intuitionistic fuzzy soft set over 𝑈. Let 𝑥 ∈

𝑠𝑢𝑝𝑝(�̂�, 𝐴 ∪ 𝐵).  If  𝑥 ∈ 𝐴 − 𝐵, then ∅ ≠ �̂�(𝑥) = �̂�(𝑥). If 𝑥 ∈ 𝐵 − 𝐴, then ∅ ≠ �̂�(𝑥) = �̂�(𝑥), and if 𝑥 ∈ 𝐴 ∩ 𝐵, 

then �̂�(𝑥) = �̂�(𝑥) ∩ �̂�(𝑥)  ≠ ∅. Since, �̂�(𝑥)  ≠ ∅ and �̂�(𝑥)  ≠ ∅, are both intuitionistic fuzzy set over 𝑈 then 

�̂�(𝑥) is an intuitionistic fuzzy set over 𝑈 for all 𝑥 ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 ∪ 𝐵). Therefore, (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) = (�̂�, 𝐴 ∪ 𝐵) 

is an intuitionistic fuzzy soft set over 𝑈.  

(iii) Let (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) = (�̂�, 𝐴 ∩ 𝐵) where �̂�(𝑥) = �̂�(𝑥) ∪ �̂�(𝑥) for all 𝑥 ∈ 𝐴 ∩ 𝐵 ≠ ∅. Then by hypothesis (�̂�, 𝐴 ∩

𝐵) is a non-null intuitionistic fuzzy soft set over 𝑈. if 𝑥 ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 ∩ 𝐵), �̂�(𝑥) = �̂�(𝑥) ∪ �̂�(𝑥) ≠ ∅. Since, �̂�(𝑥) 

and �̂�(𝑥) are ordered by inclusion relation for all 𝑥 ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 ∩ 𝐵), �̂�(𝑥) ∪ 𝐺(𝑥) = �̂�(𝑥) or �̂�(𝑥) ∪ �̂�(𝑥) =

�̂�(𝑥). Since, �̂�(𝑥) ≠ ∅ and �̂�(𝑥) ≠ ∅ are both intuitionistic fuzzy set over 𝑈, 𝑡ℎ𝑒𝑛 𝑅(𝑥) 

is an intuitionistic fuzzy set over 𝑈 for all 𝑥 ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 ∩ 𝐵). Therefore, (�̂�, 𝐴 ∩ 𝐵) is an intuitionistic fuzzy soft 

set over 𝑈. 

(iv) Let (�̂�, 𝐴)⋀̃(�̂�, 𝐵) = (�̂�, 𝐴 × 𝐵), where �̂�(𝑥, 𝑦) = �̂�(𝑥) ∩ 𝐺(𝑦), for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵. Then by hypothesis, 

(�̂�, 𝐴 × 𝐵) is a non-null intuitionistic fuzzy soft set over 𝑈. If (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵), then �̂�(𝑥, 𝑦) = �̂�(𝑥) ∩

�̂�(𝑦) ≠ ∅. It follows that �̂�(𝑥) ≠ ∅ and �̂�(𝑦) ≠ ∅ are both intuitionistic fuzzy set over 𝑈. Hence, �̂�(𝑥, 𝑦) 

is an intuitionistic fuzzy set over 𝑈 for all (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵). Therefore,  (�̂�, 𝐴)⋀̃(�̂�, 𝐵) is an intuitionistic 

fuzzy soft set over 𝑈. 

(v) Let (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) = (�̂�, 𝐴 ∪ 𝐵), where �̂�(𝑥) =  {

�̂�(𝑥),               𝑖𝑓 𝑥 ∈ 𝐴 − 𝐵,

�̂�(𝑥),               𝑖𝑓𝑥 ∈ 𝐵 − 𝐴,

�̂�(𝑥) ∪ �̂�(𝑥),   𝑖𝑓 𝑥 ∈ 𝐴 ∩ 𝐵,

 

For all 𝑥 ∈ 𝐴 ∪ 𝐵,and 𝐴 ∩ 𝐵 = ∅, it follows that either 𝑥 ∈ 𝐴 − 𝐵 or  𝑥 ∈ 𝐵 − 𝐴, for           all 𝑥 ∈ 𝐴 ∪ 𝐵. If 

𝑥 ∈ 𝐴 − 𝐵, then �̂�(𝑥) = �̂�(𝑥) is an intuitionistic fuzzy set over 𝑈 and if   𝑥 ∈ 𝐵 − 𝐴, then �̂�(𝑥) = �̂�(𝑥) is an 

intuitionistic fuzzy set over 𝑈. Therefore,  (�̂�, 𝐴) ∪̃ (�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈.  

(vi) Let (�̂�, 𝐴)⋁̃(�̂�, 𝐵) = (�̂�, 𝐴 × 𝐵), where �̂�(𝑥, 𝑦) = �̂�(𝑥) ∪ �̂�(𝑦), for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵. Then by hypothesis, 

(�̂�, 𝐴 × 𝐵) is a non-null intuitionistic fuzzy soft set over 𝑈. If (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵), then �̂�(𝑥, 𝑦) = �̂�(𝑥) ∪

�̂�(𝑦) ≠ ∅.  Since �̂�(𝑥) and �̂�(𝑦) are ordered by inclusion relation for all (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵), �̂�(𝑥) ∪ �̂�(𝑦) =
�̂�(𝑥) or �̂�(𝑥) ∪ �̂�(𝑦) = �̂�(𝑦). Since, �̂�(𝑥) ≠ ∅ and �̂�(𝑦) ≠ ∅ are both intuitionistic fuzzy set over 𝑈 for all 

(𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵). Therefore, (�̂�, 𝐴)⋁̃(�̂�, 𝐵) is an intuitionistic fuzzy soft set over 𝑈.  

(vii) (�̂�, 𝐴)+̃(�̂�, 𝐵) = (�̂�, 𝐴 × 𝐵), where �̂�(𝑥, 𝑦) = �̂�(𝑥) + �̂�(𝑦), for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵. Then by the hypothesis, 

(�̂�, 𝐴 × 𝐵) is a non-null intuitionistic fuzzy soft set over 𝑈. Suppose (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(𝐻, 𝐴 × 𝐵), then �̂�(𝑥, 𝑦) =

�̂�(𝑥) + �̂�(𝑦) ≠ ∅. It means that �̂�(𝑥) ≠ ∅ and �̂�(𝑦) ≠ ∅ are both intuitionistic fuzzy set over 𝑈. Hence, �̂�(𝑥, 𝑦) is 

an intuitionistic fuzzy set over 𝑈 for all (𝑥, 𝑦) ∈ 𝑠𝑢𝑝𝑝(�̂�, 𝐴 × 𝐵). Therefore, (�̂�, 𝐴)+̃(�̂�, 𝐵) is an intuitionistic 

fuzzy soft set over 𝑈.  
 

Some of the theorems below are due to Yin, et al., [13]. 

Theorem 5.1. Let (�̂�, 𝐴) be an intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∪̃ 𝑈𝐸 = 𝑈𝐸   

(ii) (�̂�, 𝐴) ⋒ 𝑈𝐸 = (�̂�, 𝐴) 

(iii) (�̂�, 𝐴) ∪̃  (�̂�, 𝐴) =  (�̂�, 𝐴) 

(iv) (�̂�, 𝐴) ⋒ (�̂�, 𝐴) =  (�̂�, 𝐴). 

Proof. The proof is trivial, hence omitted. 

The following results can be easily deduced. 

Theorem 5.2. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∪̃  (�̂�, 𝐵) = (�̂�, 𝐵) ∪̃  (�̂�, 𝐴). 

(ii) ((�̂�, 𝐴) ∪̃  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) = (�̂�, 𝐴) ∪̃ ((�̂�, 𝐵)  ∪̃ (�̂�, 𝐶)). 

Theorem 5.3. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∩̃𝐸 ∅𝐸 = ∅𝐸 . 

(ii) (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐴) = (�̂�, 𝐴)  
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(iii) (�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵) = (�̂�, 𝐵) ∩̃𝐸 (�̂�, 𝐴)  

(iv)  ((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵)) ∩̃𝐸 (�̂�, 𝐶) = (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∩̃𝐸 (�̂�, 𝐶)). 

Proof: The proof is straight forward. 

Theorem 5.4. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∪̃𝑅 ∅𝐸 = (�̂�, 𝐴). 

(ii) (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐴) = (�̂�, 𝐴)  

(iii) (�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵) = (�̂�, 𝐵) ∪̃𝑅 (�̂�, 𝐴)  

(iv)  ((�̂�, 𝐴) ∪̃𝑅 (�̂�, 𝐵)) ∪̃𝑅 (�̂�, 𝐶) = (�̂�, 𝐴) ∪̃𝑅 ((�̂�, 𝐵) ∪̃𝑅 (�̂�, 𝐶)). 

Proof: The proof is straight forward. 

Theorem 5.5. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ⋒ (�̂�, 𝐵) = (�̂�, 𝐵) ⋒ (�̂�, 𝐴). 

(ii) ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ⋒ (�̂�, 𝐶) = (�̂�, 𝐴) ⋒ ((�̂�, 𝐵)  ⋒ (�̂�, 𝐶)). 

Proof: The proof is straight forward. 

The following theorem shows that, the absorption law with respect to the operations union (∪̃) and restricted intersection (⋒) 
holds. 

Theorem 5.6. Let (�̂�, 𝐴) and (�̂�, 𝐵)  be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) ((�̂�, 𝐴) ∪̃  (�̂�, 𝐵)) ⋒ (�̂�, 𝐴) = (�̂�, 𝐴)  

(ii) ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃ (�̂�, 𝐴) = (�̂�, 𝐴). 

Proof: (i) ((�̂�, 𝐴) ∪̃  (�̂�, 𝐵)) ⋒ (�̂�, 𝐴) = (�̂�, (𝐴 ∪ 𝐵) ∩ 𝐴). For any 𝑒 ∈ 𝐴, we consider the following cases. 

Case 1:  𝑒 ∈ 𝐵. Then �̂�(𝑒) = (�̂�(𝑒) ∪ 𝐺(𝑒)) ∩ �̂�(𝑒) =  �̂�(𝑒). 

Case 2:  𝑒 ∉ 𝐵. Then �̂�(𝑒) =  �̂�(𝑒) ∩ �̂�(𝑒) =  �̂�(𝑒). 
Therefore, �̂� and �̂� are the same operators and so  

((�̂�, 𝐴) ∪̃  (�̂�, 𝐵)) ⋒ (�̂�, 𝐴) = (�̂�, 𝐴). 

(ii) The proof of (ii) follows from (i). 

The following theorem shows that, the absorption law with respect to the operations extended intersection (∩̃𝐸) and restricted 

union (∪̃𝑅) holds. 

Theorem 5.7.  Let (�̂�, 𝐴) and (�̂�, 𝐵)  be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃𝑅 (�̂�, 𝐴) = (�̂�, 𝐴)  

(ii) ((�̂�, 𝐴) ∪̃𝑅  (�̂�, 𝐵)) ∩̃𝐸 (�̂�, 𝐴) = (�̂�, 𝐴). 

Proof. The proof is similar to the proof of theorem 5.6 and hence omitted. 

The absorption laws with respect to the operation ∩̃𝐸 and ∪̃, ⋒ and ∪̃𝑅 may not hold in general as shown in the following 

example. 

Example 5.1. Let 𝑈 be a universe, 𝐸 = {𝑒1, 𝑒2, 𝑒3}, 𝐴 = {𝑒1, 𝑒2} and 𝐵 = {𝑒1, 𝑒3}. Let (�̂�, 𝐴) and (�̂�, 𝐵) be any intuitionistic 

fuzzy soft set over 𝑈. Suppose that  

((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐴) = (�̂�, 𝐴 ∪ 𝐵) and ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃𝑅 (�̂�, 𝐴) = (𝐼, 𝐴 ∩ 𝐵). 

Since, 𝐴 ⊂ 𝐸 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 = {𝑒1} ⊂ 𝐴, we have 

((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐴) ≠ (�̂�, 𝐴) and  

((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃𝑅 (�̂�, 𝐴) ≠ (�̂�, 𝐴). 

The following theorem shows that, the distributive law with respect to the operations restricted intersection (⋒) and union 

(∪̃) holds. 

Theorem 5.8. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ⋒ ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃  ((�̂�, 𝐴) ⋒ (�̂�, 𝐶)). 

(ii) (�̂�, 𝐴) ∪̃ ((�̂�, 𝐵) ⋒ (�̂�, 𝐶)) = ((�̂�, 𝐴) ∪̃  (�̂�, 𝐵)) ⋒ ((�̂�, 𝐴) ∪̃  (�̂�, 𝐶)) 
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Proof: 

(i) Let (�̂�, 𝐴) ⋒ ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = (𝐼, 𝐴 ∩ (𝐵 ∪ 𝐶)), 

((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃  ((�̂�, 𝐴) ⋒ (�̂�, 𝐶)) = (𝐽, (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵)), 

                                                                   = (𝐽, 𝐴 ∩ (𝐵 ∪ 𝐶)). 
Now for any 𝑒 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶), it follows that 𝑒 ∈ 𝐴 and 𝑒 ∈ 𝐵 ∪ 𝐶. 

We consider the following cases. 

Case 1: 𝑒 ∈ 𝐴, 𝑒 ∉ 𝐵 and 𝑒 ∈ 𝐶. Then 𝐼(𝑒) = �̂�(𝑒) ∩ �̂�(𝑒) = 𝐽(𝑒). 

Case 2: 𝑒 ∈ 𝐴, 𝑒 ∈ 𝐵 and 𝑒 ∉ 𝐶. Then 𝐼(𝑒) = �̂�(𝑒) ∩ �̂�(𝑒) = 𝐽(𝑒). 

Case 3: 𝑒 ∈ 𝐴, 𝑒 ∈ 𝐵 and 𝑒 ∈ 𝐶. Then 𝐼(𝑒) = �̂�(𝑒) ∩ (�̂�(𝑒) ∪ �̂�(𝑒)) = 

(�̂�(𝑒) ∩ �̂�(𝑒)) ∪ (�̂�(𝑒) ∩ �̂�(𝑒)) =  𝐽(𝑒). 

Therefore, 𝐼 and 𝐽 are the same operators and so  

(�̂�, 𝐴) ⋒ ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃  ((�̂�, 𝐴) ⋒ (�̂�, 𝐶)). 

(ii) The proof of (ii) follows from (i). 

The following theorem shows that, the distributive law with respect to operations extended intersection (∩̃𝐸) and restricted 

(∪̃𝑅) holds. 

Theorem 5.9. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∪̃𝑅 ((�̂�, 𝐵) ∩̃𝐸  (�̂�, 𝐶)) = ((�̂�, 𝐴) ∪̃𝑅  (�̂�, 𝐵)) ∩̃𝐸  ((�̂�, 𝐴) ∪̃𝑅  (�̂�, 𝐶)). 

(ii) (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃𝑅  (�̂�, 𝐶)) = ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃𝑅  ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐶)). 

Proof. The proof is similar to the proof of theorem 5.8. 

The following theorem shows that, the distributive law with respect to operations extended intersection (⋒) and restricted 

(∪̃𝑅) holds. 

Theorem 5.10. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, 

(i) (�̂�, 𝐴) ∪̃𝑅 ((�̂�, 𝐵) ⋒ (�̂�, 𝐶)) = ((�̂�, 𝐴) ∪̃𝑅  (�̂�, 𝐵)) ⋒ ((�̂�, 𝐴) ∪̃𝑅  (�̂�, 𝐶)). 

(ii) (�̂�, 𝐴) ⋒ ((�̂�, 𝐵) ∪̃𝑅  (�̂�, 𝐶)) = ((�̂�, 𝐴) ⋒ (�̂�, 𝐵)) ∪̃𝑅  ((�̂�, 𝐴) ⋒ (�̂�, 𝐶)). 

Proof. The proof follows from Theorem 5.8. 

Theorem 5.11. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. Then, (�̂�, 𝐴) ⊆̃ (�̂�, 𝐵) ⟹

(�̂�, 𝐴) ∪̃ (�̂�, 𝐶) ⊆̃ (�̂�, 𝐵) ∪̃ (�̂�, 𝐶) and  (�̂�, 𝐴) ⋒ (�̂�, 𝐶) ⊆̃  (�̂�, 𝐵) ⋒ (�̂�, 𝐶) 

Proof: Let (�̂�, 𝐴) ∪̃ (�̂�, 𝐶) = (𝐼, 𝐴 ∪ 𝐶) and (�̂�, 𝐵) ∪̃ (�̂�, 𝐶) =  (𝐽, 𝐵 ∪ 𝐶). 

From (�̂�, 𝐴) ⊆̃ (�̂�, 𝐵), we have 𝐴 ⊆ 𝐵 and �̂�(𝑒) ⊆ �̂�(𝑒) for any 𝑒 ∈ 𝐴. 

Now for any 𝑒 ∈ 𝐴 ∪ 𝐶, we consider the following cases: 

Case 1: 𝑒 ∈ 𝐴 − 𝐶. Then 𝑒 ∈ 𝐵 − 𝐶. Hence, 𝐼(𝑒) =  �̂�(𝑒) ⊆ �̂�(𝑒) =  𝐽(𝑒). 
Case 2: 𝑒 ∈ (𝐵 ∩ 𝐶) − 𝐴. Then, 𝐼(𝑒) = �̂�(𝑒) ⊆  �̂�(𝑒) ∪ �̂�(𝑒) =  𝐽(𝑒). 
Case 3: 𝑒 ∈ 𝐶 − 𝐵. Then, 𝑒 ∈ 𝐶 − 𝐴. Hence  𝐼(𝑒) = �̂�(𝑒) =  𝐽(𝑒). 

Case 4: 𝑒 ∈ (𝐴 ∩ 𝐶). Then, 𝑒 ∈ (𝐵 ∩ 𝐶). Hence  𝐼(𝑒) =  �̂�(𝑒) ∪ �̂�(𝑒) ⊆ �̂�(𝑒) ∪ �̂�(𝑒) =  𝐽(𝑒). 
The following theorem shows that, the associative law with respect to operations extended intersection (∩̃𝐸) and union (∪̃) 

holds under certain condition. 

Theorem 5.12. Let (�̂�, 𝐴), (�̂�, 𝐵) and (�̂�, 𝐶) be intuitionistic fuzzy soft sets over 𝑈. such that (�̂�, 𝐶) ⊆̃ (�̂�, 𝐴). Then, 

(i) (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) ⊆̃ ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) . 

(ii) (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶), if 𝐴 ⊆ 𝐵. 

Proof.  

(i) Suppose that (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = (𝐼, 𝐴 ∪ (𝐵 ∪ 𝐶)), 

 ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) = (𝐽, (𝐴 ∪ 𝐵) ∪ 𝐶). 

Now, for any 𝑒 ∈ 𝐴 ∪ (𝐵 ∪ 𝐶), we consider the following cases. 

Case 1: 𝑒 ∈ 𝐴, 𝑒 ∈ 𝐵 and 𝑒 ∉ 𝐶. Then 𝐼(𝑒) =  �̂�(𝑒) ∩ �̂�(𝑒) =  𝐽(𝑒). 
Case 2: 𝑒 ∈ 𝐴, 𝑒 ∉ 𝐵 and 𝑒 ∈ 𝐶. Then, 
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 𝐼(𝑒) =  �̂�(𝑒) ∩ �̂�(𝑒) = �̂�(𝑒) ⊆  �̂�(𝑒) = �̂�(𝑒) ∩ �̂�(𝑒) =  𝐽(𝑒). 
Case 3: 𝑒 ∈ 𝐴, 𝑒 ∉ 𝐵 and 𝑒 ∉ 𝐶. Then 𝐼(𝑒) =  �̂�(𝑒) =  𝐽(𝑒). 
Case 4: 𝑒 ∈ 𝐴, 𝑒 ∈ 𝐵 and 𝑒 ∈ 𝐶. Then,  

 𝐼(𝑒) =  �̂�(𝑒) ∩ (�̂�(𝑒) ∪ �̂�(𝑒)) = (�̂�(𝑒) ∩ �̂�(𝑒)) ∪ (�̂�(𝑒) ∩ �̂�(𝑒)) =  𝐽(𝑒). 

Case 5: 𝑒 ∉ 𝐴, 𝑒 ∈ 𝐵 and 𝑒 ∉ 𝐶. Then 𝐼(𝑒) =  �̂�(𝑒) =  𝐽(𝑒). 

Therefore, (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) ⊆̃ ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) . 

If 𝐴 ⊆ 𝐵, then cases 2 and 3 do not hold. It follows that  

(�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶). 

It is worth noting that (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = ((�̂�, 𝐴) ∩̃𝐸  (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) may not be true if 𝐴 ⊈ 𝐵 as shown in 

the following example. Hence, the associative law with respect to the operations  ∩̃𝐸 and ∪̃ does not hold in general. 

Example 5.2. Let 𝑈 = {𝑥, 𝑦}, 𝐴 = 𝐸 =  {𝑒1, 𝑒2, 𝑒3}, 𝐵 =  {𝑒1, 𝑒2} and 𝐶 =  {𝑒3}. Define intuitionistic fuzzy soft sets (�̂�, 𝐴), 

(�̂�, 𝐵) and (�̂�, 𝐶) over 𝑈 as follows: 

�̂�(𝑒1) =  {〈𝑥, 0.4, 0.4〉, 〈𝑦, 0.3, 0.6〉}, 
�̂�(𝑒2) =  {〈𝑥, 0.5, 0.4〉, 〈𝑦, 0.4, 0.5〉}, 
�̂�(𝑒3) =  {〈𝑥, 0.5, 0.4〉, 〈𝑦, 0.6, 0.3〉}, 

�̂�(𝑒1) =  {〈𝑥, 0.4, 0.4〉, 〈𝑦, 0.4, 0.6〉}. 

�̂�(𝑒2) =  {〈𝑥, 0.5, 0.3〉, 〈𝑦, 0.4, 0.5〉}, 
�̂�(𝑒1) =  {〈𝑥, 0.3, 0.6〉, 〈𝑦, 0.4, 0.5〉}. 
Suppose that 

(�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) = (𝐼, 𝐴 ∪ (𝐵 ∪ 𝐶)). 

((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶) = (𝐽, (𝐴 ∪ 𝐵) ∪ 𝐶). 

Now, we have 

𝜇𝐼(𝑒3)(𝑥) = 𝑚𝑖𝑛{𝜇�̂�(𝑒3)(𝑥), 𝜇�̂�(𝑒3)(𝑥)} = 𝑚𝑖𝑛{0.5, 0.3} = 0.3 and  

𝜇𝐽(𝑒3)(𝑥) = 𝑚𝑎𝑥{𝜇�̂�(𝑒3)(𝑥), 𝜇�̂�(𝑒3)(𝑥)} = 𝑚𝑎𝑥{0.5, 0.3} = 0.5. 

It follows that, 𝜇𝐼(𝑒3)(𝑥) < 𝜇𝐽(𝑒3)(𝑥). 

Therefore, (�̂�, 𝐴) ∩̃𝐸 ((�̂�, 𝐵) ∪̃  (�̂�, 𝐶)) ≠ ((�̂�, 𝐴) ∩̃𝐸 (�̂�, 𝐵)) ∪̃ (�̂�, 𝐶). 

6. Intuitionistic Fuzzy Soft Set Based Decision Making 

Definition 6.1. Let Ƹ =  〈�̂�, 𝐴〉 be an intuitionistic fuzzy soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is a set of parameters. For 𝑠, 𝑡 ∈

[0, 1], the (𝒔, 𝒕) − 𝒍𝒆𝒗𝒆𝒍 soft set of Ƹ is a crisp soft set 𝐿(Ƹ; 𝑠, 𝑡) = 〈�̂�(𝑠,𝑡), 𝐴〉 defined by �̂�(𝑠,𝑡)(𝑎) = 𝐿(�̂�(𝑎); 𝑠, 𝑡) =

 {𝑥 ∈ 𝑈: 𝜇�̂�(𝑎)(𝑥) ≥ 𝑠 𝑎𝑛𝑑 𝜆�̂�(𝑎)(𝑥) ≤ 𝑡 } for all 𝑎 ∈ 𝐴. 

This definition is clearly an extension of level soft sets of fuzzy soft sets. That is, 𝑠 ∈ [0, 1] can be viewed as a given least 

threshold on membership values and 𝑡 ∈ [0, 1] can be seen as a given greatest threshold on non-membership values. In a 

real-life application of intuitionistic fuzzy sets based decision making, normally the thresholds are chosen in advance by the 

decision makers and represent their requirements on membership levels and non-membership levels, respectively.  

Definition 6.2. Let Ƹ =  〈�̂�, 𝐴〉 be an intuitionistic fuzzy soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is a set of parameters. Let 

𝜂: 𝐴 → [0, 1] × [0, 1] be an intuitionistic fuzzy set in 𝐴 which is called a Threshold intuitionistic fuzzy set. The level soft 

set of Ƹ with respect to 𝜂 is a crisp soft set 𝐿(Ƹ, 𝜂) =  〈�̂�𝜂, 𝐴〉 defined by 

 �̂�𝜂(𝑎) =  𝐿 (�̂�(𝑎);  𝜂(𝑎)) =  {𝑥 ∈ 𝑈: 𝜇�̂�(𝑎)(𝑥) ≥  𝜇𝜂(𝑎) 𝑎𝑛𝑑 𝜆�̂�(𝑎)(𝑥) ≤ 𝜆𝜂(𝑎)} for all 𝑎 ∈ 𝐴. Clearly, the level soft sets of 

intuitionistic fuzzy soft sets with respect to an intuitionistic fuzzy set are extensions of the level soft set. 

Definition 6.3. (The mid-level soft set of an intuitionistic fuzzy soft set). Let Ƹ =  〈�̂�, 𝐴〉 be an intuitionistic fuzzy soft set 

over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is a set of parameters. Based on the intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉, we can define an 

intuitionistic fuzzy set  

𝑚𝑖𝑑Ƹ: 𝐴 → [0, 1] × [0, 1] by 𝜇𝑚𝑖𝑑Ƹ(𝑎) =  
1

|𝑈|
 ∑ 𝜇�̂�(𝑎)𝑥∈𝑈 (𝑥) and 𝜆𝑚𝑖𝑑Ƹ(𝑎) =  

1

|𝑈|
 ∑ 𝜆�̂�(𝑎)𝑥∈𝑈 (𝑥) for all 𝑎 ∈ 𝐴. The 

intuitionistic fuzzy set 𝑚𝑖𝑑Ƹ is called the mid-threshold of the intuitionistic fuzzy soft set Ƹ.  In addition, the level soft set of 

Ƹ with respect to the mid-threshold intuitionistic fuzzy set 𝑚𝑖𝑑Ƹ, namely 𝐿(Ƹ,𝑚𝑖𝑑Ƹ ) is called the mid-level soft set of Ƹ and 

is represented simply by 𝐿(Ƹ;𝑚𝑖𝑑). In what follows the mid-level decision rule will mean using the mid-threshold and 

considering the mid-level soft set in intuitionistic fuzzy soft sets based decision making. 
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Definition 6.4. (The Top-Bottom-level soft set, Top-Top-level soft set and Bottom-Bottom-level soft set of an 

intuitionistic fuzzy soft set). Let Ƹ =  〈�̂�, 𝐴〉 be an intuitionistic fuzzy soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is a set of 

parameters. Based on the intuitionistic fuzzy soft set 

 Ƹ =  〈�̂�, 𝐴〉, we can define an intuitionistic fuzzy set 𝒕𝒐𝒑𝒃𝒐𝒕𝒕𝒐𝒎Ƹ: 𝐴 → [0, 1] × [0, 1] by 

𝜇𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚 Ƹ(𝑎) =  max
𝑥∈𝑈

𝜇�̂�(𝑎)(𝑥) and  𝜆𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚 Ƹ(𝑎) =  min
𝑥∈𝑈

𝜆�̂�(𝑎)  for all 𝑎 ∈ 𝐴. 

Intuitionistic fuzzy set 𝒕𝒐𝒑𝒕𝒐𝒑Ƹ: 𝐴 → [0, 1] × [0, 1] is defined by  

𝜇𝑡𝑜𝑝𝑡𝑜𝑝 Ƹ(𝑎) =  max
𝑥∈𝑈

𝜇�̂�(𝑎)(𝑥) and  𝜆𝑡𝑜𝑝𝑡𝑜𝑝 Ƹ(𝑎) =  max
𝑥∈𝑈

𝜆�̂�(𝑎)(𝑥) for all 𝑎 ∈ 𝐴. 

Also, intuitionistic fuzzy set 𝒃𝒐𝒕𝒕𝒐𝒎𝒃𝒐𝒕𝒕𝒐𝒎Ƹ: 𝐴 → [0, 1] × [0, 1] is define by 

𝜇𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚 Ƹ(𝑎) =  min
𝑥∈𝑈

𝜇�̂�(𝑎)(𝑥)  and  𝜆𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚 Ƹ(𝑎) =  min
𝑥∈𝑈

𝜆�̂�(𝑎)  for all 𝑎 ∈ 𝐴. 

To illustrate the above definitions, we shall consider the following Example 6.1. 

Example 6.1. Let us consider an intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉 which describes the conditions of some states in a 

country that an investor Mr. X with enough budgets is considering to locate his manufacturing industry. 

Suppose that there are six states in the initial universe 𝑈 =  {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6} under consideration and that 𝐴 =
 {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} is a set of decision parameters or attribute related to 𝑈. The 𝑎𝑖(𝑖 = 1,2,3,4,5) stand for the parameters 

“peaceful”, “power supply”, “accessible”, “densely populated” and “good weather”, respectively. Suppose that 

�̂�(𝑎1) =  {〈𝑆1, 0.8, 0.2〉, 〈𝑆2, 0.6, 0.2〉, 〈𝑆3, 0.7, 0.2〉, 〈𝑆4, 0.4, 0.3〉, 〈𝑆5, 0.9, 0.1〉, 〈𝑆6, 0.6, 0.4〉}, 
�̂�(𝑎2) =  {〈𝑆1, 0.7, 0.2〉, 〈𝑆2, 0.8, 0.1〉, 〈𝑆3, 0.5, 0.3〉, 〈𝑆4, 0.6, 0.4〉, 〈𝑆5, 0.8, 0.2〉, 〈𝑆6, 0.4, 0.3〉}, 
�̂�(𝑎3) =  {〈𝑆1, 0.7, 0.1〉, 〈𝑆2, 0.6, 0.2〉, 〈𝑆3, 0.3, 0.4〉, 〈𝑆4, 0.8, 0.1〉, 〈𝑆5, 0.9, 0.1〉, 〈𝑆6, 0.6, 0.3〉}, 
�̂�(𝑎4) =  {〈𝑆1, 0.6, 0.3〉, 〈𝑆2, 0.8, 0.1〉, 〈𝑆3, 0.9, 0.1〉, 〈𝑆4, 0.8, 0.2〉, 〈𝑆5, 0.7, 0.1〉, 〈𝑆6, 0.8, 0.2〉}, 
�̂�(𝑎5) =  {〈𝑆1, 0.8, 0.2〉, 〈𝑆2, 0.4, 0.5〉, 〈𝑆3, 0.9, 0.1〉, 〈𝑆4, 0.8, 0.1〉, 〈𝑆5, 0.5, 0.4〉, 〈𝑆6, 0.8, 0.2〉}. 

The intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉 is a parameterized family {�̂�(𝑎𝑖), 𝑖 = 1, 2,3,4,5} of fuzzy sets on 𝑈 and 〈�̂�, 𝐴〉 =

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑃𝑒𝑎𝑐𝑒𝑓𝑢𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 = {

〈𝑆1, 0.8, 0.2〉, 〈𝑆2, 0.6, 0.2〉, 〈𝑆3, 0.7, 0.2〉, 〈𝑆4, 0.4, 0.3〉, 〈𝑆5, 0.9, 0.1〉,
〈𝑆6, 0.6, 0.4〉

} ,

 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑠𝑡𝑎𝑡𝑒𝑠 = {
〈𝑆1, 0.7, 0.2〉, 〈𝑆2, 0.8, 0.1〉, 〈𝑆3, 0.5, 0.3〉, 〈𝑆4, 0.6, 0.4〉,

〈𝑆5, 0.8, 0.2〉, 〈𝑆6, 0.4, 0.3〉
} ,

𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 = {
〈𝑆1, 0.7, 0.1〉, 〈𝑆2, 0.6, 0.2〉, 〈𝑆3, 0.3, 0.4〉, 〈𝑆4, 0.8, 0.1〉,

〈𝑆5, 0.9, 0.1〉, 〈𝑆6, 0.6, 0.3〉
} ,

 𝑑𝑒𝑛𝑠𝑒𝑙𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠 = {
〈𝑆1, 0.6, 0.3〉, 〈𝑆2, 0.8, 0.1〉, 〈𝑆3, 0.9, 0.1〉, 〈𝑆4, 0.8, 0.2〉,

〈𝑆5, 0.7, 0.1〉, 〈𝑆6, 0.8, 0.2〉
}

 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑔𝑜𝑜𝑑 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = {
〈𝑆1, 0.8, 0.2〉, 〈𝑆2, 0.4, 0.5〉, 〈𝑆3, 0.9, 0.1〉, 〈𝑆4, 0.8, 0.1〉,

〈𝑆5, 0.5, 0.4〉, 〈𝑆6, 0.8, 0.2〉
} 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

Algorithm  

(I) Input the intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉. 
(II) Input a threshold intuitionistic fuzzy set 𝜂: 𝐴 → [0, 1] × [0, 1] (or give a threshold value pair (𝑠, 𝑡) ∈ [0,1] × [0, 1]; 

or choose a mid-level decision rule; or choose the top-bottom-level decision rule; or choose the top-top-level 

decision rule; or choose the bottom-bottom-level decision rule) for decision making. 

(III) Compute the level soft set 𝐿(Ƹ; 𝜂) with respect to the threshold intuitionistic fuzzy set 𝜂 ( or the (𝑠, 𝑡) −level soft set 

𝐿(Ƹ; 𝑠, 𝑡); or the mid-level soft set 𝐿(Ƹ;𝑚𝑖𝑑); or the top-bottom-level soft set 𝐿(Ƹ; 𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚); or the top-top-level 

soft set 𝐿(Ƹ; 𝑡𝑜𝑝𝑡𝑜𝑝) or the bottom-bottom-level soft set 𝐿(Ƹ; 𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚)). 
(IV) Present the level soft set 𝐿(Ƹ; 𝜂) (or 𝐿(Ƹ; 𝑠, 𝑡);  𝐿(Ƹ;𝑚𝑖𝑑); 𝑜𝑟 𝐿(Ƹ; 𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚); 
 𝑜𝑟𝐿(Ƹ; 𝑡𝑜𝑝𝑡𝑜𝑝); 𝑜𝑟 𝐿(Ƹ; 𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚) ) in tabular form and compute the choice value 𝑐𝑖 of 𝑜𝑖 , for all 𝑖. 
(v) The optimal decision is to select 𝑜𝑘 if 𝑐𝑘 = 𝑚𝑎𝑥𝑖𝑐𝑖 . 
(vi) If 𝑘  has more than one value then any one of 𝑜𝑘 may be chosen. 

Table 1 gives the tabular representation of the intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉. 
 

Table 1: Tabular representation of intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝑨〉 
𝑈 𝐴⁄                        𝑎1                                   𝑎2                                 𝑎3                            𝑎4                            𝑎5 

𝑆1                      〈0.8, 0.2〉                       〈0.7, 0.2〉                     〈0.7, 0.1〉               〈0.6, 0.3〉         〈0.8, 0.2〉 
𝑆2                      〈0.6, 0.2〉                       〈0.8, 0.1〉                     〈0.6, 0.2〉               〈0.8, 0.1〉         〈0.4, 0.5〉 
𝑆3                      〈0.7, 0.2〉                       〈0.5, 0.3〉                     〈0.3, 0.4〉               〈0.9, 0.1〉         〈0.9, 0.1〉 
𝑆4                      〈0.4, 0.3〉                       〈0.6, 0.4〉                     〈0.8, 0.1〉               〈0.8, 0.2〉         〈0.8, 0.1〉 
𝑆5                      〈0.9, 0.1〉                       〈0.8, 0.2〉                     〈0.9, 0.1〉               〈0.7, 0.1〉         〈0.5, 0.4〉 
𝑆6                      〈0.6, 0.4〉                       〈0.4, 0.3〉                     〈0.6, 0.3〉               〈0.8, 0.2〉         〈0.8, 0.2〉 
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Now, let us take 𝑆 = 0.7 and  𝑡 = 0.3, then we have the following: 

𝐿(�̂�(𝑎1); 0.7, 0.3) = {𝑆1, 𝑆3, 𝑆5}, 

𝐿(�̂�(𝑎2); 0.7, 0.3) = {𝑆1, 𝑆2, 𝑆5}, 

𝐿(�̂�(𝑎3); 0.7, 0.3) = {𝑆1, 𝑆4, 𝑆5}, 

𝐿(�̂�(𝑎4); 0.7, 0.3) = {𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6}, 

𝐿(�̂�(𝑎5); 0.7, 0.3) = {𝑆1, 𝑆3, 𝑆4, 𝑆6}. 

Hence, the (0.7, 0.3) −level soft set Ƹ =  〈�̂�, 𝐴〉  is a soft set 𝐿(Ƹ; 0.7, 0.3) =  〈�̂�(0.7,0.3), 𝐴〉, where the set- valued mapping �̂�(0.7,0.3): 𝐴 →

𝑃(𝑈) is defined by  

 �̂�(0.7,0.3)(𝑎𝑖) = 𝐿(�̂�(𝑎𝑖); 0.7,0.3) for 𝑖 = 1,2,3,4,5. Table 2 gives the tabular representation of the (0.7,0.3) − 𝑙𝑒𝑣𝑒𝑙 soft set 𝐿(Ƹ; 0.7, 0.3) 

with choice value. 

Table 2: Tabular representation of the level soft set 𝑳(Ƹ; 𝟎. 𝟕, 𝟎. 𝟑) with choice value 

𝑈 𝐴⁄                       𝑎1                     𝑎2                      𝑎3                     𝑎4                𝑎5                    𝐶ℎ𝑜𝑖𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑆𝟏                            1                       1                        1                       0                   1                                  𝟒. 

𝑆𝟐                            0                       1                        0                       1                   0                                  2. 

𝑆𝟑                            1                       0                        0                       1                   1                                  3. 

𝑆𝟒                            0                       0                        1                       1                   1                                  3. 

𝑆𝟓                            1                       1                        1                       1                   0                                  𝟒. 

𝑆𝟔                            0                       0                        0                       1                   1                                  2. 

 

From the Table 2, it follows that, the maximum choice value is 𝑐1 = 𝑐5 = 𝟒 and therefore the optimal decision is to select 

either state 𝑆𝟏 or state 𝑆𝟓. 

For mid-level soft sets, let us consider Example 6.1 and Ƹ =  〈�̂�, 𝐴〉 with tabular representation in Table 3. 

it is clear that, the mid-threshold of 〈�̂�, 𝐴〉 is an intuitionistic fuzzy set 

𝑚𝑖𝑑〈�̂�,𝐴〉 = {〈𝑎1, 0.67, 0.23〉, 〈𝑎2, 0.63, 0.25〉, 〈𝑎3, 0.65, 0.2〉, 〈𝑎4, 0.77, 0.16〉, 〈𝑎5, 0.7, 0.25〉}, and the mid-level soft set of 

〈�̂�, 𝐴〉 is a soft set 𝐿(〈�̂�, 𝐴〉;𝑚𝑖𝑑) with its tabular representation given by Table 3. 

Table 3: Tabular representation of the mid-level soft set 𝑳(〈�̂�, 𝑨〉;𝒎𝒊𝒅) with choice value 

𝑈 𝐴⁄                       𝑎1                     𝑎2                      𝑎3                     𝑎4                𝑎5                    𝐶ℎ𝑜𝑖𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑆𝟏                            1                       1                        1                       0                   1                                  𝟒. 

𝑆𝟐                            0                       1                        0                       1                   0                                  2. 

𝑆𝟑                            1                       0                        0                       1                   1                                  3. 

𝑆𝟒                            0                       0                        1                       0                   1                                  2. 

𝑆𝟓                            1                       1                        1                       0                   0                                  3. 

𝑆𝟔                            0                       0                        0                       0                   1                                  1. 

 

From the Table 3, the maximum choice value is 𝑐1 = 4 and so the optimal decision is to select state 𝑆𝟏. 

For illustrative example of top-bottom-level soft sets, top-top-level soft sets and bottom-bottom-level soft sets, let us again 

consider the intuitionistic fuzzy soft set Ƹ =  〈�̂�, 𝐴〉 with its tabular representation given by Table 1.  

It is obvious that the top-bottom-threshold of 〈�̂�, 𝐴〉 is an intuitionistic fuzzy set 

𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚〈�̂�,𝐴〉 = {〈𝑎1, 0.9, 0.1〉, 〈𝑎2, 0.8, 0.1〉, 〈𝑎3, 0.9, 0.1〉, 〈𝑎4, 0.9, 0.1〉, 〈𝑎5, 0.9, 0.1〉}. 

and the top-bottom-level soft set of 〈�̂�, 𝐴〉 is a soft set 𝐿(〈�̂�, 𝐴〉; 𝑡𝑜𝑝𝑏𝑜𝑡𝑡𝑜𝑚) with its tabular representation given by Table 4. 

it is also clear that the top-top-threshold of 〈�̂�, 𝐴〉 is an intuitionistic fuzzy set 

𝑡𝑜𝑝𝑡𝑜𝑝〈�̂�,𝐴〉 = {〈𝑎1, 0.9, 0.4〉, 〈𝑎2, 0.8, 0.4〉, 〈𝑎3, 0.9, 0.4〉, 〈𝑎4, 0.9, 0.3〉, 〈𝑎5, 0.9, 0.5〉}. 

and the top-top-level soft set of 〈�̂�, 𝐴〉 is a soft set 𝐿(〈�̂�, 𝐴〉; 𝑡𝑜𝑝𝑡𝑜𝑝) with its tabular representation given by Table 5. 

It is obvious that the bottom-bottom-threshold of 〈�̂�, 𝐴〉 is an intuitionistic fuzzy set 

𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚〈�̂�,𝐴〉 = {〈𝑎1, 0.4, 0.1〉, 〈𝑎2, 0.4, 0.1〉, 〈𝑎3, 0.3, 0.1〉, 〈𝑎4, 0.6, 0.1〉, 〈𝑎5, 0.4, 0.1〉}. 

and the bottom-bottom-level soft set of 〈�̂�, 𝐴〉 is a soft set 𝐿(〈�̂�, 𝐴〉; 𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚) with its tabular representation given by 

Table 6. 

Table 4: Tabular representation of the top-bottom-level soft set 𝑳(Ƹ; 𝒕𝒐𝒑𝒃𝒐𝒕𝒕𝒐𝒎) with choice value 

𝑈 𝐴⁄                       𝑎1                     𝑎2                      𝑎3                     𝑎4                𝑎5                    𝐶ℎ𝑜𝑖𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑆𝟏                            0                       0                        0                       0                   0                                  0. 

𝑆𝟐                            0                       1                        0                       0                   0                                  1. 

𝑆𝟑                            0                       0                        0                       1                   1                                  𝟐. 

𝑆𝟒                            0                       0                        0                       0                   0                                  0. 

𝑆𝟓                            1                       0                        1                       0                   0                                  𝟐. 

𝑆𝟔                            0                       0                        0                       0                   0                                  0. 
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From Table 4, it follows that the maximum choice value is 𝑐3 = 𝑐5 = 𝟐. The optimum decision is to select either state 𝑆𝟑 or 

state 𝑆𝟓. 

Table 5: Tabular representation of the top-top-level soft set 𝑳(Ƹ; 𝒕𝒐𝒑𝒕𝒐𝒑) with choice value 

𝑈 𝐴⁄                       𝑎1                     𝑎2                      𝑎3                     𝑎4                𝑎5                    𝐶ℎ𝑜𝑖𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑆𝟏                            0                       0                        0                       0                   0                                  0. 

𝑆𝟐                            0                       1                        0                       0                   0                                  1. 

𝑆𝟑                            0                       0                        0                       1                   1                                  𝟐. 

𝑆𝟒                            0                       0                        0                       0                   0                                  0. 

𝑆𝟓                            1                       1                        1                       0                   0                                  𝟑. 

𝑆𝟔                            0                       0                        0                       0                   0                                  0. 

 

From Table 5, it follows that the maximum choice value is 𝑐5 = 𝟑. The optimum decision is to select state 𝑆𝟓. 

 

Table 6: Tabular representation of the bottom-bottom-level soft set 𝑳(Ƹ; 𝒃𝒐𝒕𝒕𝒐𝒎𝒃𝒐𝒕𝒕𝒐𝒎) with choice value 

𝑈 𝐴⁄                       𝑎1                     𝑎2                      𝑎3                     𝑎4                𝑎5                    𝐶ℎ𝑜𝑖𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑆𝟏                            0                       0                        1                       0                   0                                  1. 

𝑆𝟐                            0                       1                        0                       1                   0                                  2. 

𝑆𝟑                            0                       0                        0                       1                   1                                  2. 

𝑆𝟒                            0                       0                        1                       0                   1                                  2. 

𝑆𝟓                            1                       0                        1                       1                   0                                  𝟑. 

𝑆𝟔                            0                       0                        0                       0                   0                                  0. 

 

From Table 6, it follows that the maximum choice value is 𝑐5 = 𝟑. The optimum decision is to select state 𝑆𝟓. 

Remark: It has been observed that when we constructed the Table of Bottom-top-level soft set of an intuitionistic fuzzy soft 

set in Example 6.1, we noticed that all the possible choice options have the same maximum choice value and hence no unique 

choice can be made. 

Also, after employing all decision rules on Example 6.1, we observed that the choice of the states differs and this is due to the 

decision maker’s preference (or the choice of the decision rules). 
 

7. Conclusion 

In this paper, we investigated some basic results on intuitionistic fuzzy soft set. We stated De Morgan’s laws and proved 

them in details. We also presented some detailed results on restricted union, union, restricted intersection, extended 

intersection, AND and OR products and absorption laws with respect to the various operations. Finally, an adjustable 

approach to decision making problem using level soft set of an intuitionistic fuzzy soft set was presented with illustrative 

example. 
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