NOTE ON 'AN EXTENSION OF THE PROPERTIES OF INVERSE α -CUTS TO FUZZY MULTISETS'

I. F. Mukaila and A. Abubakar

Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria.

Abstract

In this paper, we showed that an alleged proposition in the literature does not hold in general by providing an example.

1.0 Introduction

The notion of α -cut (or α -level set) of a fuzzy set [1], and inverse α -cut of a fuzzy set and its properties as an extension of alpha-cut [2], were introduced to establish a bridge between fuzzy set theory and classical set theory. Proposition 3.2, items (iii) and (iv), parts (a) and (b) in [3], states that;

 ${}^{\alpha}(A \cap B)^{-1} = {}^{\alpha}A^{-1} \cup {}^{\alpha}B^{-1}, \ {}^{\alpha}(A \cup B)^{-1} = {}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1}$ and ${}^{\alpha}(A \cap B)^{-1} = {}^{\alpha}A^{-1} \cup {}^{\alpha}B^{-1}, \ {}^{\alpha}(A \cup B)^{-1} = {}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1}$

 ${}^{\alpha^{-}}(A \cap B)^{-1} = {}^{\alpha^{-}}A^{-1} \cup {}^{\alpha^{-}}B^{-1}, \; {}^{\alpha^{-}}(A \cup B)^{-1} = {}^{\alpha^{-}}A^{-1} \cap {}^{\alpha^{-}}B^{-1}.$

respectively. However, these do not hold in general and we provide an example to show that the propositions indeed fails. **2.0 Preliminaries**

Definition 2.1: (Inverse α -Cut [2])

Let $A \in F(X)$, and $\alpha \in [0,1]$. Then, the non-fuzzy set;

 ${}^{\alpha}A^{-1} = \{x \in X | \mu_A(x) < \alpha\}.$

is called an *inverse* α -*cut* (or *inverse* α -*level set*) of A. If the strict inequality is replaced by the weak inequality \leq , then it is called a weak *inverse* α -*cut* of A, denoted by $\alpha^{-}A^{-1}$. That is;

 $\alpha^{-}A^{-1} = \{x \in X | \mu_A(x) \le \alpha\}.$

3.0 Example

The example below shows that the alleged proposition 3.2, items (iii) and (iv), parts (a) and (b) in [3], do not hold in general. Let $X = \{x, y, z, w, t\}, A = \{(x, 0, 4), (y, 0, 8), (z, 0, 5), (w, 0, 9)\},\$ $X = \{x, y, z, w, t\}, A = \{(x, o. 4), (y, 0.8), (z, 0.5), (w, 0.9)\},\$ and $B = \{(x, 0.7), (y, 1), (w, 0.5), (t, 0.3)\}.$ Then, $(A \cup B) = \{(x, 0.7), (y, 1), (z, 0.5), (w, 0.9), (t, 0.3)\}$ and $(A \cap B) = \{(x, o, 4), (y, 0.8), (w, 0.5)\}.$ Now, for $\alpha = 0.7$, we have the following; ${}^{\alpha}A^{-1} = \{x, z\}, \; {}^{\alpha}B^{-1} = \{w, t\}, \; \; {}^{\alpha}(A \cup B)^{-1} = \{z, t\},$ ${}^{\alpha}(A \cap B)^{-1} = \{x, w\}, \; {}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1} = \emptyset, \text{ and }$ ${}^{\alpha}A^{-1} \cup {}^{\alpha}B^{-1} = \{x, z, w, t\}.$ Therefore, ${}^{\alpha}(A \cap B)^{-1} \neq {}^{\alpha}A^{-1} \cup {}^{\alpha}B^{-1}$, and ${}^{\alpha}(A \cup B)^{-1} \neq^{\alpha} A^{-1} \cap^{\alpha} B^{-1}$. Also, for the weak *inverse* α -*cut*, we have; $a^{-}A^{-1} = \{x, z\}, a^{-}B^{-1} = \{x, w, t\}, a^{-}(A \cup B)^{-1} = \{x, z, t\}, a^{-}(A \cap B)^{-1} = \{x, w\}, a^{-}($ $a^{-}A^{-1} \cap a^{-}B^{-1} = \{x\}, \text{ and } a^{-}A^{-1} \cup a^{-}B^{-1} = \{x, z, w, t\}.$ Then, it follows that; ${}^{\alpha^-}(A\cap B)^{-1}\neq {}^{\alpha^-}A^{-1}\cup {}^{\alpha^-}B^{-1}.$

Correspondence Author: Mukaila I.F., Email: ibro4mk@gmail.com, Tel: +2348032902211

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 65–66

and $\alpha^{-}(A \cup B)^{-1} \neq \alpha^{-}A^{-1} \cap \alpha^{-}B^{-1}$. **Lemma 3.1.** Let $A \in F(X)$, if $\alpha = 0$, then ${}^{\alpha}A^{-1} = \emptyset$ and ${}^{\alpha^{-}}A^{-1} = \emptyset$. **Lemma 3.2.** Let $A \in F(X)$, and let S(A) be the support for $A, \forall \alpha \in [0,1]$, then ${}^{\alpha}A^{-1} \subseteq S(A)$ and ${}^{\alpha}A^{-1} \subseteq S(A)$. **Proposition 1.** Let $A, B \in F(X)$ such that $S(A) \neq S(B)$, then (i). ${}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1} \subseteq {}^{\alpha}(A \cup B)^{-1}$ \and (ii). ${}^{\alpha}(A \cap B)^{-1} \subseteq {}^{\alpha}A^{-1} \cup {}^{\alpha}B^{-1}$. Proof (i). Suppose $S(A) \neq S(B)$, then $\exists x \in X$ such that $x \in S(A)$ and $x \notin S(B)$. It has already been shown in [3] that ${}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1} \subseteq {}^{\alpha}(A \cup B)^{-1}$, we only need to show that ${}^{\alpha}(A \cup B)^{-1} \not\subseteq {}^{\alpha} A^{-1} \cap {}^{\alpha} B^{-1}.$ Suppose on the contrary that ${}^{\alpha}(A \cup B)^{-1} \subseteq {}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1}$, now let $x \in {}^{\alpha}(A \cup B)^{-1}$, then $\mu_{(A \cup B)}(x) < \alpha$, $\Rightarrow max\{\mu_A(x),\mu_B(x)\} < \alpha;$ $\Rightarrow \mu_A(x) < \alpha \text{ and } \mu_B(x) < \alpha$, $\Rightarrow x \in {}^{\alpha}A^{-1}$ and $x \in {}^{\alpha}B^{-1}$. But by **Lemma 3.2.**, ${}^{\alpha}B^{-1} \subseteq S(B)$, hence its a contradiction since $x \notin S(B)$. Therefore, ${}^{\alpha}(A \cup B)^{-1} \not\subseteq {}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1}$. (ii). This is similar to (I). **Remark 1.** In the case of strong inverse α -*Cut*, the result is also similar. **Proposition 2.** Let $A, B \in F(X)$, if S(A) = S(B), then ${}^{\alpha}A^{-1} \cap {}^{\alpha}B^{-1} = {}^{\alpha}(A \cup B)^{-1}$ i. $^{\alpha}(A \cap B)^{-1} = ^{\alpha} A^{-1} \cup ^{\alpha} B^{-1}$ ii. $\overset{(A \cap B)}{=} \overset{=}{=} \overset{A}{=} \overset{(A \cap B)^{-1}}{=} \overset{=}{=} \overset{a^{-1}}{A^{-1}} \overset{\cup}{\cup} \overset{a^{-1}}{=} \overset{B^{-1}}{B^{-1}} \\ \overset{a^{-}}{=} (A \cup B)^{-1} \overset{=}{=} \overset{a^{-1}}{=} \overset{A^{-1}}{\cap} \overset{\cap}{=} \overset{B^{-1}}{B^{-1}} .$ iii. iv.

Proof. See [3].

4.0 Conclusion

In this paper, we showed that parts (a) and (b) of items (iii) and (iv) of proposition 3.2 in [3] which states that the inverse α -*cut* of the union of two fuzzy sets is equivalent to the intersection of their inverse α -*cuts* and the inverse α -*cut* of the intersection of two fuzzy sets equivalent to the union of their inverse α -*cuts* respectively, does not hold in general and we provided an example to show this. We have also provided a modification to the said proposition by including a condition for it to hold.

5.0 References

- [1] L. A. Zadeh, *Fuzzy sets*, Information and Control 8,(1965) 338-353.
- [2] Z. Sun and J. Han, *Inverse alpha-Cuts and Interval [a, b)-cuts*, Proceedings of the International Conference on Innovative Computing, Information and Control Beijing, (2006), IEEE Press. 441-444.
- [3] D. Singh, A. J Alkali, and A. I. Isah, An extension of the properties of inverse α-cuts to fuzzy multisets, Annals of Fuzzy Mathematics and Informatics 9,(2015), 917-923.

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 65-66