NOTE ON 'AN EXTENSION OF THE PROPERTIES OF INVERSE α-CUTS TO FUZZY MULTISETS'

I. F. Mukaila and A. Abubakar
Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria.

Abstract

In this paper, we showed that an alleged proposition in the literature does not hold in general by providing an example.

1.0 Introduction

The notion of α-cut (or α-level set) of a fuzzy set [1], and inverse α-cut of a fuzzy set and its properties as an extension of alpha-cut [2], were introduced to establish a bridge between fuzzy set theory and classical set theory. Proposition 3.2, items (iii) and (iv), parts (a) and (b) in [3], states that;
${ }^{\alpha}(A \cap B)^{-1}={ }^{\alpha} A^{-1} \cup{ }^{\alpha} B^{-1},{ }^{\alpha}(A \cup B)^{-1}={ }^{\alpha} A^{-1} \cap{ }^{\alpha} B^{-1}$
and
${ }^{\alpha^{-}}(A \cap B)^{-1}={ }^{\alpha^{-}} A^{-1} \cup{ }^{\alpha^{-}} B^{-1}, \alpha^{\alpha^{-}}(A \cup B)^{-1}={ }^{\alpha^{-}} A^{-1} \cap^{\alpha^{-}} B^{-1}$.
respectively. However, these do not hold in general and we provide an example to show that the propositions indeed fails.

2.0 Preliminaries

Definition 2.1: (Inverse α-Cut [2])
Let $A \in F(X)$, and $\alpha \in[0,1]$. Then, the non-fuzzy set;
${ }^{\alpha} A^{-1}=\left\{x \in X \mid \mu_{A}(x)<\alpha\right\}$.
is called an inverse α-cut (or inverse α-level set) of A. If the strict inequality is replaced by the weak inequality \leq, then it is called a weak inverse α-cut of A, denoted by ${ }^{\alpha^{-}} A^{-1}$. That is;
${ }^{\alpha^{-}} A^{-1}=\left\{x \in X \mid \mu_{A}(x) \leq \alpha\right\}$.
3.0 Example

The example below shows that the alleged proposition 3.2, items (iii) and (iv), parts (a) and (b) in [3], do not hold in general.
Let $\boldsymbol{X}=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}, \boldsymbol{t}\}, \boldsymbol{A}=\{(\boldsymbol{x}, \boldsymbol{o} .4),(\boldsymbol{y}, \mathbf{0} . \mathbf{8}),(\boldsymbol{z}, \mathbf{0} . \mathbf{5}),(\boldsymbol{w}, \mathbf{0} .9)\}$,
$X=\{x, y, z, w, t\}, A=\{(x, o .4),(y, 0.8),(z, 0.5),(w, 0.9)\}$,
and $B=\{(x, 0.7),(y, 1),(w, 0.5),(t, 0.3)\}$.
Then, $(A \cup B)=\{(x, 0.7),(y, 1),(z, 0.5),(w, 0.9),(t, 0.3)\}$
and $(A \cap B)=\{(x, o .4),(y, 0.8),(w, 0.5)\}$.
Now, for $\alpha=0.7$, we have the following;
${ }^{\alpha} A^{-1}=\{x, z\},{ }^{\alpha} B^{-1}=\{w, t\},{ }^{\alpha}(A \cup B)^{-1}=\{z, t\}$,
${ }^{\alpha}(A \cap B)^{-1}=\{x, w\},{ }^{\alpha} A^{-1} \cap{ }^{\alpha} B^{-1}=\varnothing$, and
${ }^{\alpha} A^{-1} \cup^{\alpha} B^{-1}=\{x, z, w, t\}$.
Therefore, ${ }^{\alpha}(A \cap B)^{-1} \not \neq^{\alpha} A^{-1} \cup^{\alpha} B^{-1}$,
and ${ }^{\alpha}(A \cup B)^{-1} \not \neq^{\alpha} A^{-1} \cap^{\alpha} B^{-1}$.
Also, for the weak inverse α-cut, we have;
${ }^{\alpha^{-}} A^{-1}=\{x, z\},,^{-} B^{-1}=\{x, w, t\}, \alpha^{-}(\mathrm{A} \cup \mathrm{B})^{-1}=\{x, z, t\}, \alpha^{-}(\mathrm{A} \cap \mathrm{B})^{-1}=\{x, w\}$,
${ }^{\alpha^{-}} A^{-1} \cap{ }^{\alpha^{-}} B^{-1}=\{x\}$, and ${ }^{\alpha^{-}} A^{-1} \cup{ }^{\alpha^{-}} B^{-1}=\{x, z, w, t\}$.
Then, it follows that;
${ }^{\alpha^{-}}(A \cap B)^{-1} \neq{ }^{\alpha^{-}} A^{-1} \cup{ }^{\alpha^{-}} B^{-1}$.

Correspondence Author: Mukaila I.F., Email: ibro4mk@gmail.com, Tel: +2348032902211
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 65-66
and ${ }^{\alpha^{-}}(A \cup B)^{-1} \neq{ }^{\alpha^{-}} A^{-1} \cap \alpha^{-} B^{-1}$.
Lemma 3.1. Let $A \in F(X)$, if $\alpha=0$, then ${ }^{\alpha} A^{-1}=\emptyset$ and ${ }^{\alpha^{-}} A^{-1}=\emptyset$.
Lemma 3.2. Let $A \in F(X)$, and let $S(A)$ be the support for $A, \forall \alpha \in[0,1]$, then ${ }^{\alpha} A^{-1} \subseteq S(A)$ and ${ }^{\alpha^{-}} A^{-1} \subseteq S(A)$.
Proposition 1. Let $A, B \in F(X)$ such that $S(A) \neq S(B)$, then
(i). ${ }^{\alpha} A^{-1} \cap{ }^{\alpha} B^{-1} \subseteq{ }^{\alpha}(A \cup B)^{-1}$ land
(ii). ${ }^{\alpha}(A \cap B)^{-1} \subseteq{ }^{\alpha} A^{-1} \cup^{\alpha} B^{-1}$.

Proof

(i). Suppose $S(A) \neq S(B)$, then $\exists x \in X$ such that $x \in S(A)$ and $x \notin S(B)$.

It has already been shown in [3] that ${ }^{\alpha} A^{-1} \cap^{\alpha} B^{-1} \subseteq{ }^{\alpha}(A \cup B)^{-1}$, we only need to show that ${ }^{\alpha}(A \cup B)^{-1} \not \Phi^{\alpha} A^{-1} \cap^{\alpha} B^{-1}$.
Suppose on the contrary that ${ }^{\alpha}(A \cup B)^{-1} \subseteq{ }^{\alpha} A^{-1} \cap^{\alpha} B^{-1}$,
now let $x \in^{\alpha}(A \cup B)^{-1}$, then $\mu_{(A \cup B)}(x)<\alpha$,
$\Rightarrow \max \left\{\mu_{A}(x), \mu_{B}(x)\right\}<\alpha$;
$\Rightarrow \mu_{A}(x)<\alpha$ and $\mu_{B}(x)<\alpha$,
$\Rightarrow x \in{ }^{\alpha} A^{-1}$ and $x \in{ }^{\alpha} B^{-1}$.
But by Lemma 3.2., ${ }^{\alpha} B^{-1} \subseteq S(B)$, hence its a contradiction since $x \notin S(B)$.
Therefore, ${ }^{\alpha}(A \cup B)^{-1} \nsubseteq{ }^{\alpha} A^{-1} \cap^{\alpha} B^{-1}$.
(ii). This is similar to (I).

Remark 1. In the case of strong inverse α-Cut, the result is also similar.
Proposition 2. Let $A, B \in F(X)$, if $S(A)=S(B)$, then
i. $\quad{ }^{\alpha} A^{-1} \cap^{\alpha} B^{-1}={ }^{\alpha}(A \cup B)^{-1}$
ii. $\quad{ }^{\alpha}(A \cap B)^{-1}={ }^{\alpha} A^{-1} U^{\alpha} B^{-1}$
iii. $\quad \alpha^{-}(A \cap B)^{-1}={ }^{\alpha^{-}} A^{-1} \cup^{\alpha^{-}} B^{-1}$
iv. $\quad \alpha^{-}(A \cup B)^{-1}={ }^{\alpha^{-}} A^{-1} \cap^{\alpha^{-}} B^{-1}$.

Proof. See [3].
4.0 Conclusion

In this paper, we showed that parts (a) and (b) of items (iii) and (iv) of proposition 3.2 in [3] which states that the inverse $\boldsymbol{\alpha}$ cut of the union of two fuzzy sets is equivalent to the intersection of their inverse $\boldsymbol{\alpha}$-cuts and the inverse $\boldsymbol{\alpha}$-cut of the intersection of two fuzzy sets equivalent to the union of their inverse $\boldsymbol{\alpha}$-cuts respectively, does not hold in general and we provided an example to show this. We have also provided a modification to the said proposition by including a condition for it to hold.
5.0 References
[1] L. A. Zadeh,, Fuzzy sets, Information and Control 8,(1965) 338-353.
[2] Z. Sun and J. Han, Inverse alpha-Cuts and Interval $[a, b)$-cuts, Proceedings of the International Conference on Innovative Computing, Information and Control Beijing, (2006), IEEE Press. 441-444.
[3] D. Singh, A. J Alkali, and A. I. Isah, An extension of the properties of inverse α-cuts to fuzzy multisets, Annals of Fuzzy Mathematics and Informatics 9,(2015), 917-923.

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 65-66

