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Abstract 
 

The classically damped driven Morse oscillator is considered. The method of multiple 

scales MMS is used to obtain the equilibrium solutions, then the nature of the 

equilibrium solutions are analyzed from the eigenvalues of the autonomous set of 

equations obtained from the MMS. The frequency response curve for detuning 

parameter value ranging from [-4, 9] is also shown, showing the behavior of principal 

resonance of the system. The stability region for the system is explored through 

characteristic properties eigenvalues of the perturbed linear system and results were 

compared with the nature of the equilibrium solutions found. The peculiarity of the 

forced damped driven oscillator turn out to be for a particular energy level the stability 

region is approximately simple harmonic(SH) for small values of the oscillating 

frequency. As the oscillating frequency approaches the dissociation limit the system 

loses stability till the oscillating frequency reaches the stability region of the next 

energy level where it again becomes approximately SH.   

 
1.0 Introduction 

The Morse oscillator is frequently used in the description of the motion of diatomic molecules in an external electromagnetic 

field.  A lot of investigation on the Morse oscillator has been done with the classical, semi classical and quantum mechanical 

methods for the description of the diatomic molecule [1-11]. Some areas where Morse oscillator is used include the modeling 

of multi photon excitation of diatomic molecule in a dense medium or in a gaseous cell under a high pressure and the 

modeling of the pumping of a local mode of a poly atomic molecule by an infra red laser where the energy flow out of the 

molecule decay with a constant rate. Not much has been done on the Morse oscillator in the area of nonlinear dynamics. The 

dynamics of the damped driven Morse oscillator has not received much attention in comparison with the Duffing and the 

van-der Pol oscillators with has been looked into by many.  The bifurcation structure of the classically damped driven 

oscillator has been looked into where the driving frequency was considered as the bifurcation parameter [12, 13]. Where the 

authors considered the driving frequency in the range of 0.0 to 3.0 and presented their results, a very rich dynamical behavior 

was presented; in particular they showed from a bifurcation diagram that a chaotic orbit is found for a driving frequency 

value of 0.5. The dynamical behavior of the damped driven Morse oscillator with varying forcing amplitude for the driving 

frequency fixed at 0.5 was looked into in [15] where different types of dynamical behavior were obtained. This paper tries to 

look into the dynamics and the bifurcations structures of the damped driven Morse oscillator using the method of multiple 

scales MMS perturbation theory. The equation of motion under consideration here is given by 

0 ( )dV
dx

x x f cos t + + =         (1) 

Where α, v, f0 and ω are the damping, the Morse potential function, the forcing amplitude and the driving frequency 

respectively for Morse oscillator given by (1). 

The Morse potential is given by  
2( ) (1 )xV x e −= −          (2) 

The potential function given in (2) is expanded using the Taylors series to obtain 

 
2 3 43 7 5

2 6 8
dV
dx

x x x x= − + − +        (3) 

To facilitate the use of MMS 
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2.0 Approximate Solution  

The approximate solution of equation (1) can be found by employing MMS as given in [16, 17]. For a small but finite value 

of x the power series solution of the form can be assumed for (1) 

0 0 1 1 0( , ) ( , ) ( , )x t x T T x T T = +        (4) 

Where T0 = t is a fast time scale and T1 = εt is a slow time scale. The slow time scale T1 characterizes the modulation in the 

amplitude and phase caused by the nonlinearity and damping, while the fast scale T0 is associated with the relatively fast 

changes in the response of the system. 

The first and the second derivatives with respect to the time t are given by 
2

2

2

0 1 0 0 1, 2 ,d d
dt dt

D D D D D = + + = + +       (5) 

Where  Dn = ∂/∂t. Substituting equations (4) and (5) in (1) and equating coefficients of equal powers of ε. Results in 

О(ε0): 2 2

0 0 0( ) 0D x+ =         (6) 

О(ε1): 2 2 2 2 2 33 7
0 0 1 0 1 0 0 0 0 0 0 0 02 6

( ) 2 cos( )D x D D x D x x x f t    + = − − + − +   (7) 

Where ω0
2 = β. The general solution of equation (6) can be written in the form 

0 1 0 0 1( )cos( ( ))x A T T T = +         (8) 

Where A(T1) and φ(T1) are the amplitude and phase of the response which are determined by imposing the solvability 

condition in the next level of approximation. Substituting equation (8) into (7) results in 

 
2 2 23
0 0 1 0 0 0 04

2 37
0 0 024

( ) 2 ( sin cos ) sin (1 cos 2 )

(3cos cos3 ) cos( )

D x A A A x

A f T

       

   

 + = + + + +

− + +

   (9) 

Where θ = ω0T0 + φ  

The solvability condition demands that 

0 0 0

2 37
0 0 08

2 sin

cos

A A f

A A f

  

   

 + = −

 − = −
         (10) 

Where ѱ = φ – σT1  which can be rewritten as 
0

0

0

0

2 2

27
08

sin

cos

f

f

A

A A

A








   

 = − −

 = + −

         (11) 

Where σ is the detuning parameter 

2.1. Systems equilibrium solutions and their nature 

The equilibrium solutions can be obtained from (11) by setting ѱ' = A' = 0, which results in the equation 

0 0

2 37
0 0 08

sin

cos

A f

A A f

 

   

= −

− = −
         (12) 

The nature of the fixed points can analyzed from the eigenvalues of the Jacobian matrix of the system given by equation (11) 

which can be written in the form 
0

0

0 0

2
00

2 2

14
08

cos

cos sin

f

f f

AA

J
A








  

 − −
 =
 +
 

       (13) 

2.2 Principal Resonance 

The principal resonance solution can be found by setting ω = ω0 + εσ where σ is a detuning parameter. From (12) by 

squarering and adding it results in 
2 2 3 2 27

0 0 0 08
( ) ( )A A A f   + − =         (14) 

Resulting in the so called the frequency response curve FRC 

2.3 Systems regions of stability  

The stability of the equilibrium solution can be studied by introducing a small perturbation to the solution obtained 

in (10) and allow the system to run for some time and see what happens to the small perturbation. For stable solution the 

perturbation dies down with time while for unstable solution the perturbation grows with time. 

The small perturbation can be introduced in the form : 

0 1

0 1

A A A

  

= +

= +
         (15) 

Where A0 and ѱ0 satisfy equation (11). Substituting (15) into (11) and keeping only linear terms in A1 and ѱ1 results in 
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0

0

0 0 1

0 1 0 1 0 12 2

31
0 1 0 1 0 0 1( )

( ) ( ) sin( )

( ) [7( ) cos( ]

f

A A

A A A A

A A f






 

    
+

+ = − + − +

+ = + − + −

     (16) 

Simplifying (16) and keeping only the linear terms A1 and ѱ1 results in 

0

0

0

0 0

1 1 0 12 2

21
1 0 0 0 1 0 0 1

( cos )

[(21 7 cos ) ( sin ) ]

f

f

A A

A A

A A A f




 

   

 = − −

 = − + +

     (17) 

Whose Jacobian matrix is given by 

0

0

0

0 0

02 2

21
0 0 0 0 0

cos

(21 7 cos ) sin

f

f

A A

J
A A f






 

 − −
 =
 − + 

     (18) 

The eigenvalues of this Jacobian can be obtained from 

0

0

31
0 0 02 2

1
0 0 0 0

(7 )
0

(21 )
A

A A

A A




 

  

− − − −
=

− −
      (19) 

Expanding this determinant gives the characteristic equation   

0

2 2 21 1 1
0 0 0 0 0 0 0 02 2 2

( ) (7 )(21 ) 0A A A A


       + + + + − − =    (20) 

Leading to the stability condition for the equilibrium solution given by 

0

2 21 1
0 0 0 0 0 02 2

(7 )(21 ) 0A A A


   + − −        (21) 

                                                                                                                         

 

3.0 Results and discussion. 

3.1 Equilibrium solutions  

The equilibrium solutions for the system is obtained from equation (12) the forcing amplitude value of f0 = 4.0, damping 

coefficient α= 0.8 and natural frequency ω0 = √8, for detuning parameter values σ ranging from -4 to 9.0 and results are 

presented in Table 1 
 

Table 1: 

σ      Equilibrium solutions 

-4       A→-0.326043,→2.95609 

A→-0.203985-1.30805 ,→0.09275 +0.687651  

A→-0.203985+1.30805 ,→0.09275 -0.687651  

A→0.203985 -1.30805 ,→-3.04884-0.687651  

A→0.203985 +1.30805 ,→-3.04884+0.687651  

A→0.326043,→-0.1855 
  

 -3       A→-0.404363,→2.91081 

A→-0.244153-1.16342 ,→0.115393 +0.621705  

A→-0.244153+1.16342 ,→0.115393 -0.621705  

A→0.244153 -1.16342 ,→-3.0262-0.621705  

A→0.244153 +1.16342 ,→-3.0262+0.621705  

A→0.404363,→-0.230785 
  

 -2       A→-0.511385,→2.84811 

A→-0.298776-1.01398 ,→0.146739 +0.551446  

A→-0.298776+1.01398 ,→0.146739 -0.551446  

A→0.298776 -1.01398 ,→-2.99485-0.551446  

A→0.298776 +1.01398 ,→-2.99485+0.551446  

A→0.511385,→-0.293478 
 

-1       A→-0.646727,→2.76705 

A→-0.367682-0.865089 ,→0.18727 +0.479491  

A→-0.367682+0.865089 ,→0.18727 -0.479491  
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A→0.367682 -0.865089 ,→-2.95432-0.479491  

A→0.367682 +0.865089 ,→-2.95432+0.479491  

A→0.646727,→-0.37454 
 

 0       A→-0.79883,→2.67271 

A→-0.445122-0.719165 ,→0.23444 +0.406938  

A→-0.445122+0.719165 ,→0.23444 -0.406938  

A→0.445122 -0.719165 ,→-2.90715-0.406938  

A→0.445122 +0.719165 ,→-2.90715+0.406938  

A→0.79883,→-0.468879 
 

 1       A→-0.953328,→2.57201 

A→-0.523951-0.569982 ,→0.284793 +0.329944  

A→-0.523951+0.569982 ,→0.284793 -0.329944  

A→0.523951 -0.569982 ,→-2.8568-0.329944  

A→0.523951 +0.569982 ,→-2.8568+0.329944  

A→0.953328,→-0.569586 
 

 2       A→-1.1017,→2.46874 

A→-0.599968-0.398391 ,→0.336425 +0.236536  

A→-0.599968+0.398391 ,→0.336425 -0.236536  

A→0.599968 -0.398391 ,→-2.80517-0.236536  

A→0.599968 +0.398391 ,→-2.80517+0.236536  

A→1.1017,→-0.672851 
 

 3       A→-1.24101,→2.36336 

A→-0.671784-0.0957135 ,→0.389115 +0.0584849  

A→-0.671784+0.0957135 ,→0.389115 -0.0584849  

A→0.671784 -0.0957135 ,→-2.75248-0.0584849  

A→0.671784 +0.0957135 ,→-2.75248+0.0584849  

A→1.24101,→-0.77823 
 

 4       A→-1.37091,→2.25408 

A→-1.09974,→0.671432 

A→-0.37902,→0.216084 

A→0.37902,→-2.92551 

A→1.09974,→-2.47016 

A→1.37091,→-0.887515 
 

 5       A→-1.4919,→2.13699 

A→-1.31531,→0.839116 

A→-0.291201,→0.165483 

A→0.291201,→-2.97611 

A→1.31531,→-2.30248 

A→1.4919,→-1.0046 
 

 6       A→-1.60435,→2.00416 

A→-1.48916,→1.00171 

A→-0.239179,→0.135716 

A→0.239179,→-3.00588 

A→1.48916,→-2.13988 

A→1.60435,→-1.13743 
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 7       A→-1.70738,→1.83292 

A→-1.64323,→1.1932 

A→-0.203672,→0.115471 

A→0.203672,→-3.02612 

A→1.64323,→-1.94839 

A→1.70738,→-1.30867 
 

 8       A→-1.79359-0.0159167 ,→1.52047 +0.178058  

A→-1.79359+0.0159167 ,→1.52047 -0.178058  

A→-0.177616,→0.100644 

A→0.177616,→-3.04095 

A→1.79359 -0.0159167 ,→-1.62112-0.178058  

A→1.79359 +0.0159167 ,→-1.62112+0.178058  
 

 9       A→-1.90398-0.0317803 ,→1.52617 +0.392762  

A→-1.90398+0.0317803 ,→1.52617 -0.392762  

A→-0.157585,→0.0892622 

A→0.157585,→-3.05233 

A→1.90398 -0.0317803 ,→-1.61543-0.392762  

A→1.90398 +0.0317803 ,→-1.61543+0.392762  

 

 

The equilibrium solutions of the dynamical system (1) as approximated to the first order using equation (4), for detuning 

parameter range [-4, 9] for the forcing amplitude f0 = 4.0. Where A is the response amplitude and ѱ is the phase of the 

response. 
 

 It is seen that the equilibrium solutions obtained from equation (12) presented in table 1 has some of the solutions with no 

physical meaning. The response amplitude must be real and positive, as a result the physically realizable solutions are 

separated in bold form and is underlined in the table; which are selected and subjected for further investigation as given in 

Table 2. 
 

Table 2 

  σ      Equilibrium points EP  Eigenvalues 

-4       A→0.326043,→-0.1855    -0.6+3.07303 ,-0.6-3.07303  

-3         A→0.404363,→-0.230785   -0.6+2.49859 ,-0.6-2.49859  

-2       A→0.511385,→-0.293478   -0.6+2.01733 ,-0.6-2.01733  

-1       A→0.646727,→-0.37454   -0.6+1.66604 ,-0.6-1.66604  

0       A→0.79883,→-0.468879   -0.6+1.4453 ,-0.6-1.4453  

1       A→0.953328,→-0.569586   -0.6+1.31672 ,-0.6-1.31672  

2       A→1.1017,→-0.672851      -0.600002+1.23695 ,-0.600002-1.23695  

3       A→1.24101,→-0.77823       -0.599999+1.17599 ,-0.599999-1.17599  

3.4       A→0.481457,→ -2.86575  -0.600007+1.83869 ,-0.600007-1.83869  

A→0.917159,→ -2.59612   -0.976059,-0.223939 

A→1.29408,→ -0.821312   -0.599999+1.15242 ,-0.599999-1.15242  
 

3.5        A→0.45832,→ -2.87933  -0.600002+1.96287 ,-0.600002-1.96287  

A→0.953851,→ -2.57166   -1.10463,-0.0953647 

A→1.30711,→ -0.832199  -0.6+1.14641 ,-0.6-1.14641  
 

3.6        A→0.438536,→ -2.8909  -0.600003+2.07705 ,-0.600003-2.07705  

A→0.98711,→ -2.54914   -1.1891,-0.0109094 

A→1.32005,→ -0.843139   -0.600001+1.14032 ,-0.600001-1.14032  
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 4         A→0.37902,→-2.92551  -0.599998+2.4785 ,-0.599998-2.4785  

A→1.09974,→-2.47016   -1.37371,0.173707 

A→1.37091,→-0.887515   -0.600001+1.11494 ,-0.600001-1.11494  
 

 5       A→0.291201,→-2.97611  -0.600001+3.32826 ,-0.600001-3.32826  

A→1.31531,→-2.30248   -1.53243,0.33243 

A→1.4919,→-1.0046   -0.600001+1.03904 ,-0.600001-1.03904  

 6         A→0.239179,→-3.00588  -0.599989+4.10211 ,-0.599989-4.10211  

A→1.48916,→-2.13988  -1.54976,0.349759 

A→1.60435,→-1.13743   -0.6+0.92854 ,-0.6-0.92854  

 7       A→0.203672,→-3.02612   -0.600007+4.8473 ,-0.600007-4.8473  

A→1.64323,→-1.94839   -1.45985,0.259848 

A→1.70738,→-1.30867   -0.6+0.728374 ,-0.6-0.728374  

 8       A→0.177616,→-3.04095  -0.599992+5.5785 ,-0.599992-5.5785  

 9       A→0.157585,→-3.05233   -0.600003+6.30196 ,-0.600003-6.30196  

 

The equilibrium solutions of the dynamical system (1) as approximated to the first order using equation (4), for detuning 

parameter range [-4, 9] for the forcing amplitude f0 = 4.0. For A and ѱ physically realizable solutions.  

From the eigenvalues of the equilibrium solutions found in the Table 2 it is seen that the equilibrium points are two types. For 

detuning parameter σ from [0-3] the eigenvalues are complex conjugate pairs with a negative real part indicating that the 

fixed points are stable in the form of incoming spirals. For σ between 3.4 and 3.8 the EQS split into three with two incoming 

spirals and a stable node while for σ between 4 and 7 (i) The stable node losses its stability through a pitchfork bifurcation 

into a saddle EQS, 2 real eigenvalues with opposite signs and  the two incoming spirals continue to remain stable. For σ > 7.0 

the saddle EQS disappear through a reverse pitchfork bifurcation and only one EQS continues whose eigenvalues are 

complex conjugate pairs with a negative real part i.e. stable incoming spirals continue to exist. 

  

3.2 Principal Resonance 

Equation (13) is used to plot the FRC for the detuning parameter σ values ranging [-4, 9] for three forcing amplitude values f0 

= 3.2, 4.0 and 6.0 

 

 
Fig 1 FRC for the detuning parameter σ values ranging [-5, 9] for three forcing amplitude values  
 

Figure 1 is showing a clear nonlinearity for large values of the detuning parameter, from the figure it can also be seen that for 

detuning parameter values less than 2.25 only one equilibrium solution are found for all the 3 forcing amplitudes considered, 

for detuning parameter σ values in the range [3.0-7.0] three equilibrium solutions are found for the case of f0 = 4.0, in 

agreement with the EQS found in Table 2, while for detuning parameter σ > 7.0 another region of one equilibrium reappears 

as also found in Table 2.  

 

3.3  Stability analysis 

From equations (13) and (21) superposed on the same frame to show the regions where the equilibrium solutions are stable 

and where they are unstable.  

 

 

 

 

 
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 53 –60 

 0

 0.5

 1

 1.5

 2

 2.5

-4 -2  0  2  4  6  8  10

re
s
p
o
n
s
e
 a

m
p
li
tu

d
e

detuning

f0 = 3.2
f0 = 4.0
f0 = 6.0



59 
 

Nature of Equilibrium Solutions…            Usman, Usman, and Abdulahi          Trans. Of NAMP 

 

 

 
 

Fig 2.0 The FRC for f0 = 4.0 and the stability boundary curve. 

 

4.0  Concluding Remarks 

In this paper the dynamical behavior of the damped driven Morse oscillator was considered. The method of multiple scales 

was used to obtain the approximate analytic solution, showing regions of incoming spiral solutions which are stable for small  

detuning parameter values up to 3.0 for the forcing amplitude of 4.0 at the detuning parameter value of [3.4 -3.8] a pitchfork 

bifurcation occurs, solutions splitting into three with two stable spirals and a stable node in the middle and detuning 

parameter value of 4.0 the stable node loses its stability and turns into a saddle equilibrium point up to a detuning parameter 

value of 7.0. For detuning parameter values greater than 7.0 a reverse pitchfork bifurcation occur where the response 

amplitude suddenly drops down to again another stable spiral, these results show that the dynamical behavior of the system 

subjected to the Morse potential type has only some allowed values of position and energy levels where system response 

amplitudes are stable.  

Indicating that for the forced damped driven oscillator at every energy level the stability region is approximately simple 

harmonic (SH) for small values of the oscillating frequency. As the oscillating frequency approaches the dissociation limit 

the system loses stability till the oscillating frequency reaches the stability region of the next energy level where it again 

becomes approximately SH. Showing alternate switching of regions of stability and instability.   
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