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Abstract 

In this paper, the maxima and minima of convex functions in infinite dimensional 

spaces were considered. The necessary and sufficient conditions for maxima and 

minima were stated. Some examples were used to illustrate when a function attains its 

extreme values.  Then the relevant theorems were reviewed and proofs of the results 

given, which extends some results in literature. 
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1. Introduction 

Consider the minimization or maximization of a convex  function  

𝑓(𝑣)𝑣∈𝑉
𝑀𝑎𝑥 = 𝑓(𝑣) or 𝑓(𝑥) = 𝑓(�̅�)𝑥∈𝐾

𝑀𝑖𝑛     

Where 𝑉 is a normed linear space and  𝑓 ∶ 𝑉 → ℝ ∪ {+∞} be an extended real valued function 𝑓 ∶ 𝑋 → ℝ ∪ {+∞}. 

Many researchers have worked on the constructions of maximizations and minimizations of convex functions in infinite 

dimensional spaces with resounding results see for instance,[1-8]. 

 

Taha[1] discussed that an extreme point of a function 𝑓(𝑥) defines either a maximum or a minimum of the function.He said 

that mathematically a point    𝑥0  = (𝑥1, … , 𝑥𝑗 , … , 𝑥𝑛) 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑓  

𝑓(𝑥0 + ℎ) ≤ 𝑓(𝑥0) for all 

 h =  (ℎ1, … , ℎ𝑗 , … , ℎ𝑛) such that  ∣ℎ𝑗∣ is sufficiently  small for all  j. In other words  𝑥0  is a maximum if the value of 𝑓 at 

every point in the neighborhood of 𝑥0  does not exceed 𝑓(𝑥0) .In a similar manner 𝑥0 is a minimum if for ℎ as defined     

𝑓( 𝑥0 + ℎ)  ≥ 𝑓(𝑥0) 

When a point is maximum of all the maximum points of a function, it is called a global maximum while others are local 

maximum and verse versa in minimum values. 

Theorem 1.1 The necessary condition for 𝑥0 to be an extreme point of 𝑓(𝑥)  is that  

∇ 𝑓(𝑥0) = 0 

This means that at extreme points,  ∇ 𝑓(𝑥0) = 0  must vanish or that the gradient vector must be null. 

Theorem 1.2 A sufficient condition for a stationary point 𝑥0 to be extremum is that the Hessian matrix H evaluated at 𝑥0 is   

(i) Positive definite when 𝑥0 is a minimum point. 

(ii) Negative definite when 𝑥0 is a maximum  point. 

Luenberger [2] stated the three classic results concerning minimization or maximization of convex functions. 

Theorem 1.3 Let 𝑓 be a convex function defined on the convex set Ω. Then the set Γ where 𝑓  achieves its minimum is 

convex and any relative minimum is a global minimum. 

Theorem 1.4 (Eberlien Sm𝑢′lyan) states that " A Banach Space E is reflexive if and only if every norm bounded sequence in 

E has a subsequence which converges weakly to an element of E".  

Awunganyi [3] states that, let  𝑥 be a vector in a Hilbert space H and let M be a closed   convex subset of H. Then there is a 

unique vector   𝑚0  ∈ 𝑀 such that   
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   ⃦  𝑥 − 𝑚0    ⃦ ≤     ⃦ 𝑥 − 𝑚   ⃦ for all 𝑚 ∈ 𝑀. 
Furthermore a necessary and sufficient condition that 𝑚0    to be a unique mini mizing vector is that (𝑥 − 𝑚0, 𝑚 − 𝑚0) ≥
0,for all 𝑚 ∈ 𝑀. 
Chidume [4] stated the Weierstrass theorem  as: Let 𝐷 ⊆ ℝ𝑛 be a compact set (closed and bounded ) and 𝑓 ∶ 𝐷 → ℝ  be a 

continuous function. Then 𝑓 attains a global maximum or a global minimum on 𝐷  i.e ∃ 𝑥1 and 𝑥2 such that  

𝑓(𝑥1)  ≥ 𝑓(𝑥)  ≥ 𝑓(𝑥2) ∀  𝑥 ∈ 𝐷 

Observe that from these theorems, the function achieves its maximum and minimum on the given domain. To solve an 

optimization problem is to find a global minimizer of 𝑓 in a normed space. 

Luenberger [5], Studied the extended familiar technique of minimizing a function of a single variable by ordinary calculus to 

a similar technique based on more general differentials. In this way we obtained analogues of the classical necessary 

condition for local extremas and in a later section, the lagrange technique for constrained extrema. Let 𝑓 be a real-valued 

functional defined on a subset Ω  of a normed space X. A point 𝑥0  ∈ Ω is said to be a relative minimum of 𝑓 on Ω  if there is 

an open sphere N containing  𝑥0 such that 𝑓(𝑥0) ≤   𝑓(𝑥) for all 𝑥 ∈ Ω ∩ 𝑁. The point 𝑥0 is said to be strict relative 

minimum of 𝑓  on Ω if  𝑓(𝑥0)  < 𝑓(𝑥) for all 𝑥 ≠ 𝑥0,  𝑥 ∈  Ω ∩ 𝑁.  Relative maxima are defined similarly.  

Peypouquet [6] discussed minimizers of convex functions and said that an extended real valued function 𝑓: 𝑋 → ℝ ∪ {+∞} 

defined on a vector space X is convex if 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦)  ≤  𝜆𝑓(𝑥 ) + (1 − 𝜆)𝑓(𝑦) for each 𝑥, 𝑦 ∈ dom(f) and 𝜆 ∈ (0,1). The inequality above holds trivially if 

𝜆 ∈ (0,1) or if either 𝑥 𝑜𝑟 𝑦 are not in dom(f) .If the inequality is strict whenever 𝑥 ≠ 𝑦 and 𝜆 ∈ (0,1),we  say 𝑓is strictly 

convex. 

Blume [7] Firms maximize profit and consumers maximize preferences. Also, firms minimize losses and risks which is the 

core of micro economics. Since the study of maxima and minima form the bases of optimization, when extended to convex 

functions in infinite dimensional spaces, the solution will lead to a long term solution to the cost incurred by business 

enterprises during the course of their production to the time of consumption. The mathematical solution of risks and losses 

will be the lowest minimum and that of profit will be the highest. Therefore, the maxima and minima of convex functions in 

infinite dimensional spaces will be beneficial to firms whose aim is to make profit and minimize cost. 

The study of minimization of convex functions in infinite dimensional spaces is significant to a scientist for instance, a 

pharmacist whose mixture of drugs gave the best and long term solution to certain ailments. To a structural engineer whose 

mixture of materials brought about solid buildings, roads, bridges ,etc will be to his credit. In all aspect of life, maxima and 

minima of convex functions in infinite dimensional spaces will give a long term solution to problems of life. 

This paper is motivated by studying [4, 6, 7] and the references therein. To   study   optimization we need to maximize or 

minimize functions. This  is  easy  in  finite  dimensional  spaces, since  in  finite  dimensional  spaces  convex  continuous  

functions  defined  on  a compact  domain  attain  their  maximum  or  minimum  on the  given  domain. The  prove  of  this  

relies on  the  properties  of  the domain  i.e  the  set  is  compact. But  attempt to  move  this  to  infinite  dimensional  space  

proved  abortive because  compact  sets  are  rare  to  be  found  in  infinite  dimensional spaces, 4,[8-10].  Also  the  topology 

of  infinite  dimensional  spaces  is  ‟too  big ” to  give  us  compactness. Therefore  to obtain  some  form  of  compactness, 

we  need  to  cut  down  a  number  of  open  sets  under  consideration i.e  to reduce the  size of  the  topology  of  infinite  

dimensional  spaces  E. This leads us to weak compactness. 

 

2. PRELIMINARIES 

 Definition 1.1(Convex set) Let  𝑋 be  a  real linear  space and  C ⊂  𝑋. The  set C  is  called  convex if  for  each  x1,x2 𝜖 𝐶  
and  for  each  t𝜖 [0,1].we  have  

tx1 +(1-t)x2 𝜖 𝐶. 
 Definition1.2  Let D  be  a  subset  of  real vector space  and  f : D → ℝ 𝙐 {+∞}; then  f is  said  to  be  convex  if  (a) D  is  

convex and (b) for each t 𝜖 [0.1] and  for  each  x1,x2 𝜖 𝐷 we  have 

𝑓(tx1 + (1-t) x2)  ≤  𝑡𝑓(𝑥1) + (1-t) 𝑓(𝑥2).                                                                                                             

Definition 1.3   Let   f  : X → ℝ 𝙐 {+∞}  be  a  map. The   effective domain of  𝑓  is the set defined by 

D(𝑓) :={x 𝜖 𝑋 ∶ 𝑓(x) <  +∞}                                                                                                               

Definition  1.4  A  map  f : X → ℝ 𝙐 {+∞}  is  called  proper  if D(𝑓) ≠ ∅. 

Definition 1.5 (Epigraph) The  epigraph  of  f   is  the  set  defined  by 

epi(𝑓) ;= {(x,𝛼) 𝜖 𝑋 𝑥 𝑅 ∶   𝑥 𝜖 𝐷(𝑓)  𝑎𝑛𝑑  𝑓(𝑥)  ≤ 𝛼}                                                                           
Definition1.6 (Section of f), Let ∝ 𝜖 ℝ, we  have  the  following definition; 

S𝑓∝:={x 𝜖 𝑋: 𝑓(𝑥)  ≤ ∝}  =  {𝑥 𝜖 𝐷(𝑓): 𝑓(𝑥) ≤ ∝}                                                                         

Proposition 1.7  A  mapping  f  : X → ℝ 𝙐 {+∞}  is   convex  if   and  only  if  the epi(𝑓)  is  convex.  

Definition 1,8 A  function  𝑓 : X → ℝ𝙐{+∞} is  called  lower  semi –continuous  at  �̅�  if     𝑙𝑖𝑚𝑖𝑛𝑓𝑓(𝑥) ≥ 𝑓(�̅�) 𝑥→�̅�           
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 Definition  1.9  Let  E  be  a normed  linear  space  and  let  J be  the  canonical  embedding  of  E  into E** i.e double dual 

space.  If   J is onto,  then E  is  called  reflexive. Thus   a   reflexive Banach  space   is one  in which  the  canonical   

embedding  is  onto. 

Definition 2.0   Let 𝑋  be  a reflexive space. A   function 𝑓  : 𝑋 → ℝ 𝙐 {+∞}  is called coercive if lim
║𝑥║→+∞

𝑓(𝑥) = +∞. 

 

3. RESULTS 

Theorem1.5: Let  X  be a reflexive  Banach  space  and  let  K  be  a closed,   convex,  bounded and  non-empty  subset  of  

X. Let  f : X → ℝ 𝙐 {+∞}  be  lower  semi-continuous and  convex. Then  there  exist  �̅� 𝜖 𝐾 such  that     f( �̅�)  ≤   f (x) 

 ∀ 𝑥 𝜖 𝐾 i.e   f(�̅�) =  inf  f(x)  = min f(x)                                                                        

Proof: 𝑓 is lower semi continuous and convex implies  𝑓 is weakly lower semi continuous. 

Let          b   = 𝑓(𝑥)𝑥∈𝐾
𝑖𝑛𝑓

 

First suppose   b = −∞.  Then for 𝑛 ⊂ ℕ, ∋ 𝑥𝑚 ∈ 𝐾 

Such that  𝑓(𝑥𝑚) < −𝑛  ∀ 𝑛 ∈ ℕ 

Since 𝐾 is bounded it implies {𝑥𝑚} is bounded and 𝑥𝑚 ∈ 𝐾, since 𝑋 is a  

reflexive  Banach space, by theorem[1.4] implies  there exist  

{𝑥𝑚𝑘}, such that  𝑥𝑚𝑘converges weakly to 𝑥 ∈ 𝑋.But  𝐾 is convex and closed  

implies 𝐾 is weakly closed. Hence 𝑥 ∈ 𝐾. By weak lower semi-continuity of  

𝑓, we have,  

𝑓(𝑥) ≤ inf 𝑓(𝑥𝑚𝑘)𝑘→∞
𝑙𝑖𝑚  

𝑓(𝑥) ≤ inf 𝑓(𝑥𝑚𝑘) < −∞𝑘→∞
𝑙𝑖𝑚  

This is a contradiction since 𝑓(𝑥) ∈ ℝ ∪ {+∞}.Hence 𝑚 ∈ ℝ. 

Let 𝑚 ∈ ℕ and take 휀𝑚 =
1

𝑚
, then there exist 𝑥𝑚 ∈ 𝐾 such that 

𝑚 ≤ 𝑓(𝑥𝑚) < 𝑏 +
1

𝑚
. 

The sequence {𝑥𝑚} in 𝐾 implies {𝑥𝑚} is bounded and so  

∃ {𝑥𝑚𝑘}𝑘∈ℕ  subsequence of {𝑥𝑚}and �̅� ∈ 𝐾 such that 𝑥𝑚𝑘 → �̅�. Since 𝑓 is  

weakly lower semi-continuous we have  

𝑓(�̅�) ≤ 𝑓(𝑥𝑚𝑘) ≤  (𝑏 +
1

𝑚𝑘𝑘→∞
𝑙𝑖𝑚𝑖𝑛𝑓

 )𝑘→∞
lim 𝑖𝑛𝑓

 

=  (𝑏 + 1

𝑚𝑘𝑘→∞
𝑙𝑖𝑚  ) = 𝑏 

But 𝑓(�̅�) ≤ 𝑏 = 𝑓(𝑥)𝑥∈𝑘
𝑖𝑛𝑓

 and b ≤ 𝑓(�̅�)𝑠𝑖𝑛𝑐𝑒 𝑏 = 𝑓(𝑥)𝑥∈𝑘
𝑖𝑛𝑓

        

Therefore,             

𝑓(�̅�) = 𝑏 = 𝑓(𝑥)𝑥∈𝑘
𝑖𝑛𝑓

. 
Also, we present the second result of this study. 

Suppose 𝐾  lost boundedness and 𝑓 is proper, lower semi-continuous,convex  

and coercive function, we prove that there exist �̅� ∈ 𝑋.   
Theorem 1.6 

Let 𝑋   be a reflexive real Banach space and 𝑓: 𝑋 → ℝ ∪ {+∞} be a  

convex, proper, lower semi-continuous function. Suppose 

𝑓(𝑥)⃦𝑥   ⃦ →∞
𝑙𝑖𝑚  = +∞. 

Then, there exit 𝑥 ̅ ∈ 𝑋  a minimizer of  𝑓  such that  

𝑓(�̅�) ≤ 𝑓(𝑥), 𝑥 ∈ 𝑋 i.e 

𝑓(�̅�) = 𝑓(𝑥)𝑥∈𝑋
𝑖𝑛𝑓

 

Proof : Since  𝑓 is proper, then there exist 𝑥0 ∈ 𝑋  such that 𝑓(𝑥0) ≠ +∞ 

i.e  𝑓(𝑥0) ∈ ℝ.  Now we construct a set 𝐾 and show that it is non-empty closed  

convex and bounded subset of 𝑋  and apply theorem 2.1.                              

Consider  𝑓: 𝑋 → ℝ ∪ {+∞} with   𝐾 = {𝑥 ∈ 𝑋: 𝑓(𝑥) ≤ 𝑓(𝑥0)} 

To show that, we know that 𝐾 is a section with 𝛼 = 𝑓(𝑥0) 

Since   𝑓 is convex and lower semi-continuous, by proposition 4.1 and 4.2, 𝐾 is  

convex and closed. Then we assume 𝐾 is bounded.   

Suppose 𝐾 is not bounded, then there exist a sequence  𝑥𝑚 ∈ 𝐾 such that  

  ⃦ 𝑋𝑚   ⃦ > 𝑚 ∀ 𝑚 ∈ ℕ 

Since  𝑋𝑚 ∈ 𝐾  we obtain 
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𝑓(𝑋𝑚) ≤ 𝑓(𝑥0)  ,⃦𝑥 𝑚     ⃦  > 𝑚   =>    ⃦𝑋𝑚   ⃦𝑚→∞
𝑙𝑖𝑚  = +∞ 

 By hypothesis lim
𝑚→∞

𝑓(𝑥𝑚) = +∞ 

Contradicting the inequality above, and so K is bounded. 

By  theorem 2.1. there exist �̅� ∈ 𝐾 ⊂  𝑋 such that 

∀ 𝑥 ∈ 𝐾, 𝑓(�̅�) ≤ 𝑓(𝑥). 
 Suppose 𝑥 ∈ 𝑋 ∖ 𝐾  𝑖𝑒  𝑘𝑐 i.e complement of k, then  

𝑓(𝑥) > 𝑓(𝑥0)  ∀ 𝑥0 ∈ 𝐾 

Since �̅� ∈ 𝐾.   𝑓(�̅�) ≤ 𝑓(𝑥0) 

Thus  𝑓(�̅�) ≤ 𝑓(𝑥)  ∀𝑥 ∈ 𝑋 

⇒ 𝑓(�̅�) = 𝑓(𝑥)𝑥∈𝑘
𝑖𝑛𝑓

 

Theorem1.7 Suppose 𝐾 ⊆ 𝐻 is a weakly sequentially closed and bounded set. Suppose  𝑓: 𝐾 → ℝ  is weakly sequentially 

lower semi-continuous.Then 𝑓 is bounded from below and has a minimizer on 𝐾. 
Proof: First we show that 𝑓 is bounded from below.Suppose to the contrary that 𝑓 is not bounded from below. Then there 

exist a sequence {𝑋𝑛}∈ 𝐾 such that      𝑓(𝑋𝑛) < −𝑛  for all n. Now since 𝐾 is bounded {𝑋𝑛} has a weakly convergent 

subsequence {𝑋𝑛𝑘}, 

𝑋𝑛𝑘 → 𝑥∗.Moreover, 𝐾 is weakly sequentially lower semi-continuous. We have 𝑓(𝑥∗) ≤ lim 𝑖𝑛𝑓𝑓(𝑋𝑛𝑘) = −∞, which a 

contradiction.      Hence,  𝑓 is bounded from below. Next. we show the existence of a minimizer.    Let {𝑋𝑛}∈ 𝐾 be a 

minimizing sequence for 𝑓, that is 𝑓(𝑋𝑛) → 𝑖𝑛𝑓𝑓(𝑥). Let  ∝ = inf 𝑓(𝑥. ) Since  𝐾 is bounded and 𝐾 is weakly sequentially 

closed, it follows that {𝑋𝑛} has a weakly convergent subsequence 𝑋𝑛𝑘 → 𝑥∗ ∈ 𝐾.Since 𝑓 is weakly sequentially lower semi-

continuous, we have 

∝  ≤   𝑓(𝑥∗)  ≤ lim 𝑖𝑛𝑓𝑓(𝑥𝑛𝑘) = 𝑙𝑖𝑚𝑓(𝑥𝑛𝑘) = ∝.  Hence  𝑓(𝑥∗)  =  ∝.            

Theorem1.8 Let  𝐾 be a convex, strongly closed and bounded subset of 𝐻.Suppose𝑓 ∶ 𝐾 → ℝ is a strongly lower semi-

continuous and convex function.  Then 𝑓 is bounded from below and attains a minimizer on 𝐾. 
Proof :𝐾 is strongly closed and convex and by lemma 4.1 is also weakly sequentially closed. But, since 𝑓 is strongly lower 

semi-continuous, and convex, it is also weakly lower semi-continuous by corollary 4.2.Then, 𝑓 ∶ 𝐾 → ℝ  a weakly lower 

semi-continuous and 𝐾 a weakly closed and bounded set in  𝐻 which allows us to apply the generalized Weierstrass theorem 

to conclude that 𝑓  is bounded from below and attain a minimizer on 𝐾. If  𝑓  is strictly convex, the minimizer  will be unique 

i.e if we have two distinct minimizers  𝑢1and𝑢2in 𝐾. 𝑓(𝑢1) = 𝑓(𝑢2) = 𝑖𝑛𝑓𝑓(𝑢). Then by strict convexity of 𝑓 we have 

𝑓(𝑢1 + 𝑢2) 2⁄ ≤ 𝑓(𝑢1) which is a contradiction[8] 

Corollary 1.9 Let  𝑓 ∶ 𝐻 → ℝ be a strongly lower semi-continuous,convex and coercive function. Then, 𝑓 is bounded from 

below and attains a minimizer.  

Proof: 

Under the assumptions of the corollary, it is straight forward to note that 𝑓 is bounded from below. Next, fix a 𝛿 > 0, since𝑓 

is coercive, there exists 𝑀 ∈ ℝ.    such that  

𝑓(𝑥) ≥ inf 𝑓(𝑦) + 𝛿 for all 𝑥 ∈ { 𝑥:   ⃦𝑥   ⃦ > 𝑀 .  }Then consider 𝑓: 𝐶 → ℝ  with   

𝐶 = { 𝑥 ∶  ∥ 𝑥 ∥≤ 𝑀} and apply the previous theorem. 

 

4. APPLICATION   

Let us take a look at a real life problem of a situation where a man wants to divide his savings between three mutual funds 

with expected returns so as to minimize risk of the return on the investment. How should he divide his savings between three 

mutual funds with expected returns 10%,10% and 15% respectively, so as to minimize risk while achieving an expected 

return of 12%.  We measure risk as the variance of the return on the investment. What fraction of 𝑥 of the savings is invested 

in fund 1,𝑦 in fund 2 and 𝑧 in fund 3 where 𝑥 + 𝑦 + 𝑧 = 1, the variance of the return has been calculated to be   400𝑥2 +
800𝑦2 + 200𝑥𝑦 + 1600𝑧2 + 400𝑦𝑧.  
The problem is modeled as 

Min 𝑓(𝑥, 𝑦, 𝑧) =  400𝑥2 + 800𝑦2 + 200𝑥𝑦 + 1600𝑧2 + 400𝑦𝑧.  
Subject to                              

𝑥 + 𝑦 + 1.5𝑧 = 1.2 

𝑥 + 𝑦 + 𝑧 =  1 

Using Lagrange multiplier, 

Min 𝑓(𝑥, 𝑦, 𝑧) =  400𝑥2 + 800𝑦2 + 200𝑥𝑦 + 1600𝑧2 + 400𝑦𝑧.           (1) 

Subject to           𝑥 + 𝑦 + 1.5𝑧 = 1.2                                              (2) 

𝑥 + 𝑦 + 𝑧 =  1                                                       (3)   
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From (2)                 𝑥 + 𝑦 + 1.5𝑧 − 1.2 = 0 

Also from (3) 𝑥 + 𝑦 + 𝑧 −  1 = 0 

L(𝑥𝑖 , 𝜆𝑖)  =  400 𝑥2 + 800𝑦2 + 200𝑥𝑦 + 1600𝑧2 + 400𝑦𝑧 + 𝜆1(𝑥 + 𝑦 +  1.5𝑧 − 1.2) + 𝜆2(𝑥 + 𝑦 + 𝑧 − 1) 

The necessary conditions for L(𝑥𝑖 , 𝜆𝑖) to have an extreme point can be written as  
𝜕𝐿

𝜕𝑥
= 800𝑥 + 200𝑦 + 𝜆1 + 𝜆2 = 0                                                            (4)  

𝜕𝐿

𝜕𝑦
 = 1600𝑦 + 200𝑥 + 400𝑧 +   𝜆1 + 𝜆2  = 0                                         (5) 

∂L  

∂z
  = 3200𝑧 + 400𝑦 + 1.5𝜆1 + 𝜆2  = 0                                                   (6) 

∂L  

∂𝜆1
   = x + y + 1.5z − 1.2 = 0                                                                 (7) 

∂L  

∂𝜆2
= x + y + z − 1 = 0                                                                             (8) 

Since  x + y + z = 1 from (8) 

𝑧 = 1 − 𝑥 − 𝑦                                                                                            (9) 

Subtract  equation (4)  from  equation (5)  

1600𝑦 + 200𝑥 + 400𝑧 + 𝜆1 + 𝜆2 − 800𝑥 − 200𝑦 − 𝜆1 − 𝜆2 

= − 600𝑥 + 1400𝑦 + 400𝑧 = 0                                                              (10) 

Recall that  𝑧 = 1 − 𝑥 − 𝑦    
 Substituting z in equation (10) we have 

−600x + 1400y + 400(1 − x − y) = −1000x + 1000y + 400 = 0 

Therefore,   𝑦 = −0.4 + 𝑥                                                                         (11) 

Substituting for y into equation (7)  we have, 

𝑥 − 0.4 + 𝑥 + 1.5(1 − 𝑥 − (−0.4 + 𝑥) − 1.2 = 0    = 2𝑥 − 3𝑥 + 0.5 = 0 

= −x + 0.5 = 0                                  
∴     x = 0.5 

Substitute for 𝑥 into (11) we have   𝑦 = −0.4 + 0.5 = 0.1 =>   𝑦 = 0.1. 
Substitute for 𝑥 = 0.5 𝑎𝑛𝑑 𝑦 = 0.1 𝑖𝑛 𝑒𝑞𝑠 (9 ) we have       

𝑧 = 1 − 0.5 − 0.1 = 1 − 0.6 = 0.4,                     ∴ 𝑧 = 0.4.   
Hence,  𝑓𝑚𝑖𝑛

∗ = 400(0.5)2 + 800(0.1)2 + 200(0.5)(0.1) + 1600(0.4)2 + 400(0.1)(0.4) = 100 + 8 + 10 + 256 + 16 =
390   
Substitute for 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 𝑖𝑛 (5)and (6) we have that 

1600𝑦 + 200𝑥 + 400𝑧 + 𝜆1 + 𝜆2 = 0                                                             (5) 

3200𝑧 + 400𝑦 + 1.5𝜆1 + 𝜆2   =   0                                                                    (6) 

= 1600(0.1) + 200(0.5) + 400(0.4) + λ1 + λ2 = 0                               
= 160 + 100 + 160 + 𝜆1 + 𝜆2 = 0                                                                              
=  420 + λ1 + λ2 = 0 

3200(0.4) + 400(0.1) + 1.5λ1 + λ2  = 0                                                                     
1280 + 40 + 1.5λ1 + λ2 = 0                                                                                            
1320 + 1.5λ1 + λ2 = 0                                                                                            (2) 

420 +  λ1 + λ2  =   0                                                                                                  (1) 

Rearrange to    1.5𝜆1 +  𝜆2 =  −1320                                                                 (1) 

                                 𝜆1  +   𝜆2  = −420                                                                    (2) 

                      ------------------------------ 

                              
0.5𝜆1

0.5
               =       

900

0.5
 

𝜆1                      =       1800       
∴ 1800 + 𝜆2          =  −420 

  λ2    = −420 − 1800 =  −1320  or − 2220     
 

Reflexive Space: A space 𝑋 is said to be reflexive if the canonical embedding 𝐽 of 𝑋 𝑖𝑛𝑡𝑜 𝑋∗∗ 𝑖. 𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑑𝑢𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 is onto 

i,e surjective. This means that every element of 𝑋 is uniquely represented in 𝑋∗∗.The function above is not reflexive because 

reflexivity occurs in spaces but not in functions. 

Convexity: Let 𝐾 be a non-empty convex set. A function 𝑓 ∶ 𝐾 → ℝ is said to be convex if the following inequality holds 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦)  ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)   ∀𝑥, 𝑦 ∈ 𝐾and𝜆 ∈ (0,1) 
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The expression  𝜆𝑥 + (1 − 𝜆)𝑦 is a convex combination and it is a special linear combination where the coefficients are non-

negative and sum to one. Since our 𝜆1 and 𝜆2 ∈ ℝ does not fall within this domain, we cannot have a convex combination 

and therefore the function cannot be convex as stated by the inequality above. 

Continuity: Let 𝑓 ∶ 𝐷(𝑓) ⊂ ℝ → ℝ, 𝑓 is said to be continuous at 𝑥0 ∈ 𝐷(𝑓)if and only if ∀ 휀 > 0 there is a 𝛿 = 𝛿(휀, 𝑥0) >
0 such that ∣𝑥 − 𝑥0∣ <𝛿  =>∣𝑓(𝑥) − 𝑓(𝑥0)∣ <휀. 
Theorem: If a linear functional on a normed linear space X is continuous at a  single point, then it is continuous throughout 

X. 

To prove that the function 𝑓(𝑥, 𝑦, 𝑧) = 400𝑥2 + 800𝑦2 + 200𝑥𝑦 + 1600𝑧2 + 400𝑦𝑧 

is continuous at  𝑥 = 0.5, 𝑦 = 0.1, 𝑧 = 0.4 

Let 휀 > 0 be given, we want to find a  𝛿 = 𝛿(휀, 𝑥0) > 0  such that if ∣ 𝑥 − 0.5 ∣ < 𝛿 then 

∣𝑓(𝑥) − 𝑓(0.5)∣ < 휀.If it is continuous at 𝑥 = 0.5, then it is continuous at 𝑦 = 0.1, 𝑧 = 0.4 

∣𝑓(𝑥) − 𝑓(0.5)∣ =∣400𝑥2 + 200𝑥𝑦∣=∣400(𝑥2 − 0.52) + 200(𝑥𝑦 − (0.5)(0.1)∣ 
=∣400(𝑥 − 0.5)(𝑥 + 0.5) + 200(𝑥 − 0.5)(𝑦 − 0.1)∣=400𝛿 ∣ 𝑥 + 0.5 ∣  +200𝛿 ∣ 𝑦 − 0.1 ∣ 
=200(2∣𝑥 + 0.5∣+∣𝑦 − 0.1∣𝛿.    ∣𝑥 − 0.5∣ < 𝛿  we have   
∣𝑥∣  =  ∣𝑥 − 0.5 + 0.5∣  ≤  ∣ 𝑥 − 0.5 ∣ +0.5<  𝛿 + 0.5. 
Here we can assume  𝛿 < 1, so that  ∣𝑥∣  <  1+ 0.5 =  1.5 
Therefore, 𝑥 is continuous at 𝑥 = 0.5, and if it is continuous there it is continuous throughout 𝑋  i.e at 𝑦 = 0.1, 𝑧 = 0.4. 
Coercivity: Let 𝑋 be a reflexive real Banach space.A function 𝑓 ∶ 𝑋 → ℝ ∪ {+∞} is said to be coercive if  

𝑓(𝑥)  =∥𝑥∥→∞
𝑙𝑖𝑚  + ∞ 

                             

 But these values 𝑥, 𝑦, 𝑧 = 0.5,0.1,0.4 ∈ ℝ and ≠ +∞, therefore their functions cannot be coercive. 
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