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Abstract 
 

In this paper, the proof of the existence of fixed point for contraction type and 

Zamfirescu’s type operator are established and proved. The results generalized several 

known results in literature among others. 
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1.  Introduction and Preliminaries 

The importance of fixed point theorems cannot be overemphasized. The study of metric fixed point theory has been 

researched broadly in the past decades since fixed point theory plays a vital role in mathematics and applied sciences such as 

optimization, mathematical models and economic theories. In light of this, many authors had been trying to generalized the usual 

metric space to a more general one. Gahler introduced 2-metric [1], Dhage in 1992 recommended the notion of a D-metric space in 

a bid to attain analogous results to those for metric spaces [2]. In 2006, Mustafa and Sims proved that these attempts were invalid 

[3]. They later introduced a new structure of generalised metric spaces called the G-metric spaces, the generalisation of the usual 

metric space (X; d) [4]. Bakhtin introduced b-metric space as a generalization of the usual metric space and proved analogue of 

Banach contraction principle in a b - metric space [5]. Akbar, Brian and Khan introduced the notion of complex valued metric space 

[6]. Sedghi, Shobe and Aliouche gave the notion of S-metric space and proved some fixed point theorems for a self-mapping on a 

complete S-metric space [7]. Aghajani, Abbas and Roshan presented a new type of metric which is called Gb - metric and studied 

some properties of this metric [8]. Recently Sedghi et al. defined Sb-metric spaces using the concept of S - metric spaces [9]. 

Adewale and Akinremi proved the analogous of the Zamfirescu’s type fixed point theorem in generalized cone metric spaces [10]. 

In this paper, analogous of the Zamfirescu’s type fixed point theorem in a complex valued Gb–metric space are proved. Some 

examples are included which shows that these generalizations are genuine. 

Mustafa and Sims extended the notion of usual metric space from distance between two points  to perimeter of a triangle 

as shown below: 

Definition 1.1 [4]. Let X be a non-empty set and G ∶  X × X × X → [0;  1) be a function satisfying the following properties: 

(i) G(x; y; z) = 0 if and only if x = y = z 

(ii) G(x; x; y) > 0, for all x, y ∈ X , with x ≠ y  

(iii) G(x; x; y) ≤ G(x; y; z), x, y, z ∈ X, with z ≠ y 

(iv) G(x; y; z) = G(x; z; y) = G(y; x; z) =… (symmetry). 

(v) G(x; y; z) ≤ G(x; a; a) + G(a; y; z) a, x, y, z ∈ X (rectangle inequality) 

The function G is called a G-metric on X and (X, G), a G-metric space. 

 

Example 1.2 [10].  Let X = [0;  1), T(x) =
x

4
 and 

G (x, y, z) = max {/x − y/,/y − z/,/z − x/} 

Then (X; G) is a G-metric space but not G-complete, since the sequence 

xn = 1 −
1

n
 is G-Cauchy in (X, G) and not G-convergent in (X; G), that is  

lim
n→∞

1 −
1

n
= 1 ∉ [0;  1). 

If X = [0; 1], then it is G-complete. 

Definition 1.3 [11]. In a G-metric space X, G is said to be symmetric if G(x, y, y) = G(x, x, y) for all x, y ∈ X. 

Bakhtin presented b - metric space as a generalization of the usual metric space by introducing Constant s ≥ 1 in the triangle 

inequality as seen in the definition below: 

Definition 1.4 [5]. Let X be a non-empty set and d ∶  X × X → [0;  1) be a function satisfying the following properties: 

(i) d(x, y) = 0 if and only if x = y. 
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(ii) d(x, y) ≥ 0, for all x, y ∈ X. 

(iii) d(x, y) = d(y, x) (symmetry). 

(iv) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X and s ≥ 1 (triangle inequality) 

The function d is called a b-metric on X and (X, d), a b-metric space. Examples had been given to show that a b-metric is not 

necessarily a metric. 

Aghajani et al. extended this concept to Gb-metric spaces and defined the following: 

Definition 1.5 [8]. Let X be a non-empty set and G ∶  X × X × X → [0;  1) be a function satisfying the following properties: 

(i) G(x, y, z) = 0 if and only if x = y = z 

(ii) G(x, x, y) > 0, for all x, y ∈ X with x ≠ y 

(iii) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z ≠ y 

(iv) G(x, y, z) = G(y, z, x) = G(x, z, y) = … (symmetry). 

(v) There exists a real number s ≥ 1 such that G(x, y, z) ≤ s[G(x, a, a)+G(a, y, z)] for all a, x, y, z ∈ X. Then (X, Gb) is a Gb-metric 

space. 

 In 2015, Ozgur Ege introduced the following definition as a generalization of both G-metric space and b-metric space. 

Let C be the set of complex numbers and z1, z2 ∈ C. Like other authors working in this area, we define a partial order ≼ on C as 

follows: 

z1 ≼ z2 if and only if Re(z1) ≤ R(z2) and Im(z1) ≤ Im(z2). It follows that z1 ≼ z2 if one of the following properties is satisfied: 

(i) Re(z1) = R(z2), Im(z1) < Im(z2) 

(ii) Re(z1) < R(z2), Im(z1) = Im(z2) 

(iii) Re(z1) < R(z2), Im(z1) < Im(z2) 

(iv) Re(z1) = R(z2), Im(z1) = Im(z2) 

Notably, we will write z1 ⋨ z2  if z1 ≠ z2  and one of (i), (ii), and (iii) is satisfied and we will write z1 ≺ z2 if only (iii) is satisfied. 

Note that 

0 ≼ z1 ⋨ z2 ⟹ |z1| < |z2| 
z1 ≼ z2, z2 ≺ z3 ⟹ z1 ≺ z3 

Definition 1.6 [12].  Let X be a non-empty set, C, a set of complex numbers and Gb ∶  X × X × X → C be a function satisfying the 

following properties: 

(i) Gb (x, y, z) = 0 if and only if x = y = z 

(ii) Gb (x, x, y) ≻ 0, for all x, y ∈ X with x ≠ y 

(iii) Gb (x, x, y) ≼ Gb (x, y, z), for all x, y, z ∈ X, with z ≠ y 

(iv) Gb(x, y, z) = Gb(y, z, x) = Gb(x, z, y) = … (symmetry). 

(v) There exists a real number s ≥ 1 such that Gb(x, y, z) ≼ s[Gb (x, a, a)+ Gb(a, y, z)] for all a, x, y, z ∈ X. 

Then the function Gb is called a complex valued Gb-metric and (X, Gb) is the complex valued Gb-metric space. A complex valued 

Gb - metric space is complete if every Cauchy sequence in it is Gb - convergent in it. 

 

2. Main Results 

The following lemmas will be needed in our work. 

Lemma 2.1. Let (X, Gb) be a complex valued Gb-metric space and {xn}  a sequence in X. {xn} converges to  x ∈ X if and only if  

|Gb(xn, x, x)| → 0 j  as n → ∞. 

Lemma 2.2. Let (X; Gb) be a complex valued Gb-metric space and {xn},  a sequence in X. {xn}  is a Cauchy sequence if and only if 

|Gb(xn, xm, xl)| → 0 as n, m, l → ∞. 

Example 2.3. Let  𝑋 = 𝑅. If x, y, z ∈ X with  𝑘 ∈ 𝑁, then Gb ∶  X × X × X → C defined by: 

Gb(x, y, z) = {

0                                                                          if x =  y =  z; 

𝑘 + √−𝑘2  if x, y, z ∈  R+ and  x =  y, y =  z or x =  z;

𝑘 + 2√−𝑘2                  if x;  y;  z ∈  R+ and x ≠  y ≠  z.

 

is a complex valued Gb - metric on X but not Gb - metric on X. 

 

Example 2.4. For a set of natural numbers N, let  𝑋 = {
1

n
, n ∈ N} and for all 𝑧1, 𝑧2,  𝑧3  ∈  X with 

𝐺𝑏(𝑧1, 𝑧2, 𝑧3) = 𝐺𝑏(𝑧1, 𝑧3, 𝑧2) = 𝐺𝑏( 𝑧2, 𝑧1, 𝑧3) = ⋯ 

then 𝐺𝑏: 𝑋3 → 𝐶 defined by: 

𝐺𝑏(𝑧1, 𝑧2, 𝑧3) = 𝑒𝑧3𝑖|𝑧1 − 𝑧2| 
where 𝑧1 = (𝑥1, 𝑦1),  𝑧2 = (𝑥2, 𝑦2),  𝑧3 = (𝑥3, 𝑦3) is a complex valued 𝐺𝑏-metric on X. 

 

We now prove the following theorems and proposition which are analogues of some results in a metric space, G-metric space and 

𝐺𝑏-metric space.(see [12,13,14,15,16]). 

Theorem 2.5 . Let X be a complete complex valued 𝐺𝑏 – metric space and T ∶  X → X a map for which there exists the real number 

k satisfying 0 ≤ 𝑘 < 1 with 
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Φ(𝑎) = {
0 𝑖𝑓 𝑎 = 0

𝑎 𝑖𝑓 𝑎 ≠ 0
 

and  s <
1

kn+k
 such that for each pair x, y, z ∈  X;  𝑎 ∈  N ∪ {0}, 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑘𝐺𝑏(𝑥, 𝑦, 𝑧) + Φ(𝐺𝑏(𝑇𝑥, 𝑦, 𝑦)) 

where Φ: [0, ∞) → [0, ∞). Then T has a unique fixed point.  

Proof. Let 𝑥0 ∈ 𝑋 be an arbitrary point and define the sequence {xn} by xn = Txn for all n ∈ N, then we have 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑘𝐺𝑏(xn−1, xn, xn) + Φ(𝐺𝑏(xn, xn, xn)) 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑘𝐺𝑏(xn−1, xn, xn) + Φ(0) 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑘𝐺𝑏(xn−1, xn, xn) … … … … … … … … … … … … … … … … … … … … … … . … (1) 

From (1), we deduce that 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑘𝐺𝑏(xn−1, xn, xn) 

                                  ≼ 𝑘2𝐺𝑏(xn−2, xn−1, xn−1) 

                                  ≼ 𝑘3𝐺𝑏(xn−3, xn−2, xn−2) 

  

                                  ≼ 𝑘𝑛𝐺𝑏(x0, x1, x1) … … … … … … … … … … … … … … … … … … … … … … … . … . (2) 

By repeated use of rectangle inequality with 𝑚 > 𝑛, we have  

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + 𝑠3𝐺𝑏(xn+2, xn+3, xn+3)
+ ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) … … … … … … … … … … … … … … … … … … … . . … . . (3) 

From (2) and (3), we have 

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) 

                             ≼ 𝑠𝑘𝑛𝐺𝑏(x0, x1, x1) + 𝑠2𝑘𝑛+1𝐺𝑏(x0, x1, x1) + ⋯ + 𝑠𝑛𝑘𝑚−1𝐺𝑏(x0, x1, x1) 

                             ≼ [𝑠𝑘𝑛 + 𝑠2𝑘𝑛+1 + ⋯ + 𝑠𝑛𝑘𝑚−1]𝐺𝑏(x0, x1, x1) 

                              ≼ 𝑠𝑘𝑛[1 + 𝑠𝑘 + ⋯ + 𝑠𝑛−1𝑘𝑚−𝑛−1]𝐺𝑏(x0, x1, x1) 

                              ≼ 𝑠𝑘𝑛[1 − 𝑠𝑘]−1𝐺𝑏(x0, x1, x1) 

Taking the limit of 𝐺𝑏(xn, xm, xm) as 𝑛, 𝑚 → ∞, we have  

lim
𝑛→∞

|𝐺𝑏(xn, xm, xm)| = lim
𝑛→∞

|𝑠𝑘𝑛[1 − 𝑠𝑘]−1𝐺𝑏(x0, x1, x1)| = 0 

For 𝑛, 𝑚, 𝑙 ∈ 𝑁 

𝐺𝑏(xn, xm, xl) ≼ 𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl) 

Taking the limit of 𝐺𝑏(xn, xm, xl) as 𝑛, 𝑚, 𝑙 → ∞, we have 

lim
𝑛→∞

|𝐺𝑏(xn, xm, xl)| = lim
𝑛→∞

|𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl)| = 0 

So, xn is a Gb-Cauchy sequence. 

By completeness of (X; Gb), there exist u ∈ X such that xn is Gb-convergent to u.  

Suppose 𝑇u ≠ u, 

𝐺𝑏(xn, 𝑇𝑢, 𝑇𝑢) ≼ 𝑘𝐺𝑏(xn−1, 𝑢, 𝑢) + Φ(𝐺𝑏(xn, 𝑢, 𝑢)) 

Taking the limit as 𝑛 → ∞ and using the fact that function is Gb-continuous in its variables, we get: 

𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢) ≼ 𝑘𝐺𝑏(u, 𝑢, 𝑢) + Φ(𝐺𝑏(u, 𝑢, 𝑢)) ≼ 0 

A contradiction. So, 𝑇u = u. 

To show the uniqueness, suppose 𝑣 ≠ u is such that 𝑇v = v, then 

𝐺𝑏(Tu, 𝑇𝑣, 𝑇𝑣) ≼ 𝑘𝐺𝑏(𝑢, 𝑣, 𝑣) + Φ(𝐺𝑏(Tu, 𝑣, 𝑣)) 

Since 𝑇u = u and 𝑇v = v, we have 

𝐺𝑏(u, 𝑣, 𝑣) ≼ 𝑘𝐺𝑏(𝑢, 𝑣, 𝑣) + Φ(𝐺𝑏(u, 𝑣, 𝑣)) 

which implies that 𝑣 = u. 

If Φ(𝐺𝑏(Tx, 𝑦, 𝑦)) = Φ(0) in Theorem 2.5, we have Theorem 3.7 in [12] and setting 𝑑(𝑥, 𝑦) = 𝐺𝑏(Tx, 𝑦, 𝑦), the theorem reduces to 

Banach contraction principle [13]. We can also obtain generalized Banach contraction principle in G-metric spaces if 𝑠 = 1. 

 

Corollary 2.6. Let X be a complete complex valued 𝐺𝑏-metric space and T ∶  X → X a map for which there exists the real number k 

satisfying  0 ≤ 𝑘 < 1  such that for each pair x, y, z ∈  X, 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑘𝐺𝑏(𝑥, 𝑦, 𝑧). 
 Then T has a unique fixed point. 

Proposition 2.7. Let X be a complete complex valued 𝐺𝑏 - metric space and T ∶  X → X a map for which there exists the real 

numbers 𝑎, 𝑏, 𝑐 satisfying 0 ≤ 𝑎 <
3

2𝑠+3
, 𝑏 ≤ min {

1

2
,

3

2𝑠+3
},  and 𝑐 ≤ min {

1

2
,

3

2𝑠+3
} such that for each pair x, y, z ∈  X at least one of 

the following is true. 

(GBZ1)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑎𝐺𝑏(𝑥, 𝑦, 𝑧); 
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(GBZ2)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑏[𝐺𝑏(𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺𝑏(𝑦, 𝑇𝑦, 𝑇𝑦)]; 
(GBZ3)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑐[𝐺𝑏(𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺𝑏(𝑦, 𝑇𝑥, 𝑇𝑥)]. 
Then T has a unique fixed point. 

Proof. Adding (GBZ1), (GBZ2) and (GBZ3),we have 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≼ 𝑞𝐺𝑏(𝑥, 𝑦, 𝑦) + 𝑞𝐺𝑏(𝑥, 𝑇𝑥, 𝑇𝑥) + 𝑞𝐺𝑏(𝑦, 𝑇𝑦, 𝑇𝑦) + 𝑞𝐺𝑏(𝑥, 𝑇𝑦, 𝑇𝑦) 

                             +𝑞𝐺𝑏(𝑦, 𝑇𝑥, 𝑇𝑥) 

where  𝑞 = 𝑚𝑎𝑥 {
𝑎

3
,

𝑏

3
,

𝑐

3
}. 

Let 𝑥0 ∈ 𝑋 be an arbitrary point and define the sequence {xn} by xn = Txn for all n ∈ N, then we have 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑞[2𝐺𝑏(xn−1, xn, xn) + 𝐺𝑏(xn−1, xn+1, xn+1) + 𝐺𝑏(xn, xn+1, xn+1)] 

                                   ≼ 𝑞[2𝐺𝑏(xn−1, xn, xn) + 𝐺𝑏(xn, xn+1, xn+1) + 𝑠𝐺𝑏(xn−1, xn, xn) 

                                   +𝑠𝐺𝑏(xn, xn+1, xn+1)] 

                                   ≼
2𝑞 + 𝑠𝑞

1 − 𝑞 − 𝑠𝑞
𝐺𝑏(xn−1, xn, xn) 

Let 𝑝 =
2𝑞+𝑠𝑞

1−𝑞−𝑠𝑞
, 𝑝 ∈ [0,1),  

We deduce that 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑝𝐺𝑏(xn−1, xn, xn) 

                                  ≼ 𝑝2𝐺𝑏(xn−2, xn−1, xn−1) 

                                  ≼ 𝑝3𝐺𝑏(xn−3, xn−2, xn−2) 

     

                                  ≼ 𝑝𝑛𝐺𝑏(x0, x1, x1) … … … … … … … … … … … … … … … … … … … … … … . . . (4) 

By repeated use of rectangle inequality with 𝑚 > 𝑛, we have  

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + 𝑠3𝐺𝑏(xn+2, xn+3, xn+3) 

                              + ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) … … … … … … … … … … … … … … … … … … . . … . . (5) 

From (4), we have 

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) 

                             ≼ 𝑠𝑝𝑛𝐺𝑏(x0, x1, x1) + 𝑠2𝑝𝑛+1𝐺𝑏(x0, x1, x1) + ⋯ + 𝑠𝑛𝑝𝑚−1𝐺𝑏(x0, x1, x1) 

                             ≼ [𝑠𝑝𝑛 + 𝑠2𝑝𝑛+1 + ⋯ + 𝑠𝑛𝑝𝑚−1]𝐺𝑏(x0, x1, x1) 

                             ≼ 𝑠𝑘𝑝𝑛[1 + 𝑠𝑝 + ⋯ + 𝑠𝑛−1𝑝𝑚−𝑛−1]𝐺𝑏(x0, x1, x1) 

                             ≼ 𝑠𝑝𝑛[1 − 𝑠𝑝]−1𝐺𝑏(x0, x1, x1) 

Taking the limit of 𝐺𝑏(xn, xm, xm) as 𝑛, 𝑚 → ∞, we have  

lim
𝑛→∞

|𝐺𝑏(xn, xm, xm)| = lim
𝑛→∞

|𝑠𝑝𝑛[1 − 𝑠𝑝]−1𝐺𝑏(x0, x1, x1)| = 0 

For 𝑛, 𝑚, 𝑙 ∈ 𝑁 

𝐺𝑏(xn, xm, xl) ≼ 𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl) 

Taking the limit of 𝐺𝑏(xn, xm, xl) as 𝑛, 𝑚, 𝑙 → ∞, we have 

lim
𝑛→∞

|𝐺𝑏(xn, xm, xl)| = lim
𝑛→∞

|𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl)| = 0 

So, xn is a Gb-Cauchy Sequence. 

By completeness of (X; Gb), there exist u ∈ X such that xn is Gb-convergent to u.  

Suppose 𝑇u ≠ u, 

𝐺𝑏(xn, 𝑇𝑢, 𝑇𝑢) ≼ 𝑞𝐺𝑏(xn−1, 𝑢, 𝑢) + 𝑞𝐺𝑏(xn−1, xn, xn) + 𝑞𝐺𝑏(𝑢, 𝑇𝑢, 𝑇𝑢) + 𝑞𝐺𝑏(xn, 𝑇𝑢, 𝑇𝑢) 

                             +𝑞𝐺𝑏(𝑢, xn, xn) 

Taking the limit as 𝑛 → ∞ and using the fact that function is Gb-continuous in its variables, we get 

𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢) ≼ 𝑞𝐺𝑏(u, 𝑢, 𝑢) + 𝑞𝐺𝑏(u, u, u) + 𝑞𝐺𝑏(𝑢, 𝑇𝑢, 𝑇𝑢) + 𝑞𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢) 

                          +𝑞𝐺𝑏(𝑢, u, u) 

                          ≼ 0 

A contradiction. So, 𝑇u = u. 

To show the uniqueness, suppose 𝑣 ≠ u is such that 𝑇v = v, then 

𝐺𝑏(Tu, 𝑇𝑣, 𝑇𝑣) ≼ 𝑞𝐺𝑏(u, 𝑣, 𝑣) + 𝑞𝐺𝑏(u, Tu, Tu) + 𝑞𝐺𝑏(𝑣, 𝑇𝑣, 𝑇𝑣) + 𝑞𝐺𝑏(Tu, 𝑇𝑣, 𝑇𝑣) 

                             +𝑞𝐺𝑏(𝑣, Tu, Tu) 

Since 𝑇u = u and 𝑇v = v, we have 

𝐺𝑏(u, 𝑣, 𝑣) ≼ 0 

which implies that 𝑢 = v. 

  

Corollary 2.8. Let X be a complete complex-valued 𝐺𝑏 - metric space and T ∶  X → X a map for which there exist the real numbers 

𝑎 satisfying 0 ≤ 𝑎 <
3

2𝑠+3
 such that for each pair x, y, z ∈  X, 
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𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑎𝐺𝑏(𝑥, 𝑦, 𝑧); 
Then T has a unique fixed point. 

 

Corollary 2.9. Let X be a complete complex-valued 𝐺𝑏 - metric space and T ∶  X → X a map for which there exist the real numbers 𝑏 

satisfying  𝑏 ≤ min {
1

2
,

3

2𝑠+3
} such that for each pair x, y, z ∈  X , 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑏[𝐺𝑏(𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺𝑏(𝑦, 𝑇𝑦, 𝑇𝑦)]; 
Then T has a unique fixed point. 

 

Corollary 2.10. Let X be a complete complex-valued 𝐺𝑏 – metric space and T ∶  X → X a map for which there exist the real numbers 

𝑐 satisfying  𝑐 ≤ min {
1

2
,

3

2𝑠+3
} such that for each pair x, y, z ∈  X , 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑐[𝐺𝑏(𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺𝑏(𝑦, 𝑇𝑥, 𝑇𝑥)]. 
Then T has a unique fixed point. 

 

In view of Corollary 2.6 and Proposition 2.7, we have the following: 

Theorem 2.11. Let X be a complete complex valued 𝐺𝑏 - metric space and T ∶  X → X a map for which there exist the real numbers 

𝑎, 𝑏, 𝑐 satisfying 0 ≤ 𝑎 < 1, 𝑏 ≤ min {
1

2
,

3

2𝑠+3
},  and 𝑐 ≤ min {

1

2
,

3

2𝑠+3
} such that for each pair x, y, z ∈  X at least one of the 

following is true. 

(GBZ1)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑎𝐺𝑏(𝑥, 𝑦, 𝑧); 
(GBZ2)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑏[𝐺𝑏(𝑥, 𝑇𝑥, 𝑇𝑥) + 𝐺𝑏(𝑦, 𝑇𝑦, 𝑇𝑦)]; 
(GBZ3)𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑐[𝐺𝑏(𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺𝑏(𝑦, 𝑇𝑥, 𝑇𝑥)]. 
Then T has a unique fixed point. 

 

Proof: It follows from Proposition 2.7 and Corollary 2.6.  

Remark 2.12. If 𝑠 = 1 in Theorem 2.11 and we set 𝑑(𝑥, 𝑦) = 𝐺𝑏(𝑥, 𝑦, 𝑦), it reduces to Zamfirescu’s fixed point theorem [16]. 

Theorem 2.13. 

Let X be a complete complex-valued 𝐺𝑏 - metric space and T ∶  X → X a map for which there exists the real numbers 𝑎, 𝑏, 𝑐 

satisfying 0 ≤ 𝑎 + 𝑏 + 𝑐 < 1 with 

Φ(𝑡) = {
0 𝑖𝑓 𝑡 = 0

𝑎 𝑖𝑓 𝑡 ≠ 0
 

and 𝑠 <
𝑎𝑛+𝑎(1−𝑏−𝑐)𝑛−1

(1−𝑏−𝑐)𝑛  such that for each pair x, y, z ∈  X, t ∈ N ∪ {0}, 

𝐺𝑏(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≼ 𝑎Φ(𝐺𝑏(𝑥, 𝑇𝑥, 𝑇𝑥)) + 𝑏Φ(𝐺𝑏(𝑦, 𝑇𝑦, 𝑇𝑦)) + 𝑏Φ(𝐺𝑏(𝑧, 𝑇𝑧, 𝑇𝑧)) 

where Φ: [0, ∞) → [0, ∞). Then T has a unique fixed point. 
 

Proof: 

Let 𝑥0 ∈ 𝑋 be an arbitrary point and define the sequence {xn} by xn = Txn for all n ∈ N, then we have 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑎Φ(𝐺𝑏(xn−1, xn, xn)) + 𝑏Φ(𝐺𝑏(xn, xn+1, xn+1)) + 𝑏Φ(𝐺𝑏(xn, xn+1, xn+1)) 

                                  ≼
𝑎

1 − 𝑏 − 𝑐
𝐺𝑏(xn−1, xn, xn) … … … … … … … … … … … … … … … … … … … … … … … (6) 

Let  𝑟 =
𝑎

1−𝑏−𝑐
< 1. From (6), we deduce 

𝐺𝑏(xn, xn+1, xn+1) ≼ 𝑟𝐺𝑏(xn−1, xn, xn) 

                                  ≼ 𝑟2𝐺𝑏(xn−2, xn−1, xn−1) 

                                  ≼ 𝑟3𝐺𝑏(xn−3, xn−2, xn−2) 

  

                                  ≼ 𝑟𝑛𝐺𝑏(x0, x1, x1) … … … … … … … … … … … … … … … … … … … … … … . (7) 

By repeated use of rectangle inequality with  𝑚 > 𝑛, we have  

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + 𝑠3𝐺𝑏(xn+2, xn+3, xn+3)
+ ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) … … … … … … … … … … … … … … … … … … . . … . . (8) 

From (7) and (8), we have 

𝐺𝑏(xn, xm, xm) ≼ 𝑠𝐺𝑏(xn, xn+1, xn+1) + 𝑠2𝐺𝑏(xn+1, xn+2, xn+2) + ⋯ +𝑠𝑛𝐺𝑏(xm−1, xm, xm) 

                                 ≼ 𝑠𝑟𝑛𝐺𝑏(x0, x1, x1) + 𝑠2𝑟𝑛+1𝐺𝑏(x0, x1, x1) + ⋯ + 𝑠𝑛𝑟𝑚−1𝐺𝑏(x0, x1, x1) 

                                 ≼ [𝑠𝑟𝑛 + 𝑠2𝑟𝑛+1 + ⋯ + 𝑠𝑛𝑟𝑚−1]𝐺𝑏(x0, x1, x1) 

                                 ≼ 𝑠𝑟𝑛[1 + 𝑠𝑟 + ⋯ + 𝑠𝑛−1𝑟𝑚−𝑛−1]𝐺𝑏(x0, x1, x1) 

                                 ≼ 𝑠𝑟𝑛[1 − 𝑠𝑟]−1𝐺𝑏(x0, x1, x1) 

Taking the limit of 𝐺𝑏(xn, xm, xm) as 𝑛, 𝑚 → ∞, we have  

lim
𝑛→∞

|𝐺𝑏(xn, xm, xm)| = lim
𝑛→∞

|𝑠𝑟𝑛[1 − 𝑠𝑟]−1𝐺𝑏(x0, x1, x1)| = 0 
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For 𝑛, 𝑚, 𝑙 ∈ 𝑁 

𝐺𝑏(xn, xm, xl) ≼ 𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl) 

Taking the limit of 𝐺𝑏(xn, xm, xl) as 𝑛, 𝑚, 𝑙 → ∞, we have 

lim
𝑛→∞

|𝐺𝑏(xn, xm, xl)| = lim
𝑛→∞

|𝑠𝐺𝑏(xn, xm, xm) + 𝑠𝐺𝑏(xm, xl, xl)| = 0 

So, xn is a Gb-Cauchy Sequence. 

 

By completeness of (X; Gb), there exist u ∈ X such that xn is Gb-convergent to u.  

Suppose 𝑇u ≠ u, 

𝐺𝑏(xn, 𝑇𝑢, 𝑇𝑢) ≼ 𝑎Φ(𝐺𝑏(xn−1, xn, xn)) + 𝑏Φ(𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢)) + 𝑐Φ(𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢)) 

Taking the limit as 𝑛 → ∞ and using the fact that function is Gb-continuous in its variables, we get: 

𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢) ≼ 𝑎Φ(𝐺𝑏(u, u, u)) + 𝑏Φ(𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢)) + 𝑐Φ(𝐺𝑏(u, 𝑇𝑢, 𝑇𝑢)) ≼ 0 

A contradiction. So, 𝑇u = u. 

To show the uniqueness, suppose 𝑣 ≠ u is such that  𝑇v = v, then 

𝐺𝑏(Tu, 𝑇𝑣, 𝑇𝑣) ≼ 𝑎Φ(𝐺𝑏(u, 𝑇u, 𝑇u)) + 𝑏Φ(𝐺𝑏(v, 𝑇𝑣, 𝑇𝑣)) + 𝑐Φ(𝐺𝑏(v, 𝑇𝑣, 𝑇𝑣)) 

Since 𝑇u = u and 𝑇v = v, we have 

𝐺𝑏(u, 𝑣, 𝑣) ≼ 0 

which implies that 𝑣 = u. 

 

Remark 2.14. If Φ(𝐺𝑏(x, 𝑦, 𝑦)) = Φ(𝑑(𝑥, 𝑦)) in Theorem 2.13, we have the result in [14]. 
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