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Abstract 

For function ( ) ,,)( pSzf   of the form: 
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which are analytic and 

univalent in the open unit disk  .1: = zzE
 
We determine sharp upper bounds for the 

functional 2

342 aaa − in the unit disk. 
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1. Introduction 

Let S denote the class of function ( )zf  
of the form:  




=

+=
2

)(
k

k

k zazzf
        (1.1) 

which are analytic and univalent in the open unit disk  .1: = zzE  For  real, ,2/0    a function f of the form (1.1) is said to 

be in ( )pS , the class of  - spiralike functions if and only if 

0
)(

)(








 


zf

zfz
e i , .Ez       (1.2) 

The likes of Silvia, Libera, Robertson [1-5] to mention but few, have widely studied the above class of functions and their investigation has 

led to many interesting results. In particular, the class ( )pS
 
was introduced and shown to be a subfamily of S  by Spacek [6]. Later, 

Zamonski [7] obtained sharp coefficient bounds for the class. For ( ) == SS p 0,0 which is the well-known class of functions starlike 

with respect to the origin. For ,0  it is known that ( )pS
 
is not contained in .S  Furthermore, Robertson [3, 4] showed that the 

radius of starlikeness  ( )pS
 
is ( ) 1

sincos
−

+  . An approach of defining subclasses of ( )pS  builds on the observation (1.2) that for 

( ),pSf      
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is contained in the right half-plane, .0)(  z  Subclasses can be obtained nicely by restriction to functions f for which A is contain in 

geometrically meaningful subsets of the right half-plane. Libera [1, 2]
 
introduced the first formulation of subclasses of ( )pS  by placing A 

in half-plane contained in ( ) .0 z
 
The class of spiralike− functions of order   ),10(  

 
denoted by ( ),,pS to be the 

set of function f of the form (1.1) that satisfy  
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Definition 1.1: Let ,Sf 
 

suppose 10   ,
2

0


   and   is real. Then ( )zf  belongs to the class 

( ) spiralikepesudoofS p −− ,,
 
functions of order 

 
in the unit disk if and only if 
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The following remarks are noteworthy: 

(i.) All power shall mean principal determination only throughout this work. Now, if 0=  we have the class of 

. orderoffunctionsstarlikepseudo−−  

(ii.) If 1,0 ==   we have the class of starlike functions of order   which in turn could be called 1- starlikepseudo−  

functions of order  . 

(iii.) For 2= we shall have the class of functions that satisfies  

Ez
zf

zfz
zfe i 
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which is a product of combination of geometric expression for bounded turning and spiralike functions. More details on the above 

definition can be seen in Babalola [8]. 

Now, in 1976, Noonan and Thomas [9] stated the 
thq  Hankel determinant for 1q  and 1m  as 
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Several researchers have studied the above determinant extensively and several interesting results were obtained. For more details on the 

determinant ( )mHq
 interested reader can refer to [9-15]. Obviously, one can observe that the Fekete and Szego functional is the one given 

by ( )12H
 
that is, when 12 == mandq . Fekete and Szego [16] further generalized the estimate 2

23 aa −  where   is real and 

.Sf 
 
However, for our present discussion, we shall consider the Hankel determinant in which case 22 == mandq , such that 

for function f of the form (1.1), we have 
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43

32
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H =

    

Here, we seek sharp upper bound of the functional 2

342 aaa − for functions belonging to the analytic class ( ) ,,pS  defined in (1.3). 

It is noted that the results proved by Mehrok and Singh [13] and Janteng et al. [17] follow as special cases in the present work. At this 

juncture, the following Lemmas shall be necessary. 

Let P  denotes the family of all functions p  analytic in E  for which ( )  0 zp and 

( ) ....,1 3

3

3

21 Ezzpzpzpzp ++++=
        (1.4) 

Then the following Lemmas are immediate. 

Lemma 1.1: [18]. If ,Pp then 2kp  for each k ...).,3,2,1( =k  

Lemma 1.2: [17]. If ,Pp then 
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for some x  and z  satisfying 

  .2,01,1 1  pandzx
 

 

2. Main Results 

Theorem  2.1: If ( ),,, pSf  then 
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Proof: Since ( ),,, pSf   then there exists Pp such that  

( )( ) ( ) ( ) ( ) .coscos zpezfzfze ii   −+=
   (2.2)  

By comparing the coefficients in (2.2), we have that  
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and   
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(2.5) 

Now, 
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where 

( ) ( ),12446024cos 3323334354   iiiiii eeeeeeA +++−−=   

( ) ( ) ( )( ),42322cos3 2222323   iiiiiiii eeeeeeeeB −−−−−−−=            

( ) ( ) ( ) ,32cos3
232   iiiii eeeeeC −−−=

 
( ) ( ) ( )  iiiii eeeeeD −−−= 42cos3

42

 
and 

( ) ( ) ( ) ( ) .4323.4
24   iiiiii eeeeeeH −−−=

 
Applying Lemma ( )1.1  and Lemma ( ) obtainwe,2.1
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Assuming ]2,0[1 = pp and using triangle inequality with 1|| z , then 
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 where 

( ) ( ),12446024cos 23454
 +−+−−= ieA

 ( ) ( ) ( )( ),423212cos3 2323
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If we set 1|| = x , then 
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is an increasing function. 

Now,    

( ) ( ) ).(1,,. pGpFpFMax ==
  Consequently, 
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Then, 

( ) ( ) ( ) +−= DpNpMpG 16,, 24 
 where, 

( ) ( )  +=−++= CBNDCBAM 48,,2244, 
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 DandCBA ,, are as earlier defined.
 

So, 

( ) ( ) ( ) ( ) ( ) ( ) ,2,12,2,4 23 NpMpGandpNpMpG −=−=
 

such that if 0)( = pG , then 
 

( ) ( ) .0],,2[2 2 =−  NpMp
 

Therefore )( pG  attains it maximum value at 0=p and max )0()( GpG = . Hence, from (2.6), we obtain our result. The result is sharp 

for 02,0 321 =−== pandpp . 

Corollary 2.1: If ( ),0,,pSf  then 
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Corollary 2.2: If ( ),,,0 pSf  then 
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Corollary 2.3: If ( ),,1, pSf  then 

22

342 )cos(  −− ieaaa      (2.9) 

Corollary 2.4: If ( ),,1,0 pSf  then 

22

342 )1( −− aaa       (2.10) 

Corollary 2.5: If ( ),0,1,0pSf  then 

 .12

342 − aaa       (2.11) 

Incidentally, (2.11) coincide with the result obtained by Janteng et al. [17].  For recent work on Hankel determinant, interested reader can 

refer to [19-21] among others. 
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