HANKEL DETERMINANT FOR λ-PSEUDO-SPIRALIKE FUNCTIONS

${ }^{1}$ J. O. Hamzat and ${ }^{2}$ M. T. Raji

${ }^{1}$ Department of Mathematics, University of Lagos, Akoka, Lagos State, Nigeria. ${ }^{2}$ Department of Mathematics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

Abstract

For function $f(z) \in S_{p}(\rho, \lambda, \beta)$ of the form: $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic and univalent in the open unit disk $E=\{z:|z|<1\}$. We determine sharp upper bounds for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ in the unit disk.

Keywords: Analytic, univalent, Hankel determinant, pseudo-spiralike function.

1. Introduction

Let S denote the class of function $f(z)$ of the form:
$f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$
which are analytic and univalent in the open unit disk $E=\{z:|z|<1\}$. For ρ real, $0 \leq|\rho|<\pi / 2$, a function f of the form (1.1) is said to be in $S_{p}(\rho)$, the class of ρ - spiralike functions if and only if
$\Re\left\{e^{i \rho} \frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in E$.
The likes of Silvia, Libera, Robertson [1-5] to mention but few, have widely studied the above class of functions and their investigation has led to many interesting results. In particular, the class $S_{p}(\rho)$ was introduced and shown to be a subfamily of S by Spacek [6]. Later, Zamonski [7] obtained sharp coefficient bounds for the class. For $\rho=0, S_{p}(0)=S^{*}$ which is the well-known class of functions starlike with respect to the origin. For $\rho \neq 0$, it is known that $S_{p}(\rho)$ is not contained in S^{*}. Furthermore, Robertson [3, 4] showed that the radius of starlikeness $S_{p}(\rho)$ is $(\cos \rho+|\sin \rho|)^{-1}$. An approach of defining subclasses of $S_{p}(\rho)$ builds on the observation (1.2) that for $f \in S_{p}(\rho)$,
$A=e^{i \rho} \frac{z f^{\prime}(z)}{f(z)}, \quad z \in D$
is contained in the right half-plane, $\mathfrak{R}(z)>0$. Subclasses can be obtained nicely by restriction to functions f for which A is contain in geometrically meaningful subsets of the right half-plane. Libera [1,2] introduced the first formulation of subclasses of $S_{p}(\rho)$ by placing A in half-plane contained in $\mathfrak{R}(z)>0$. The class of $\rho-$ spiralike functions of order $\beta \quad(0 \leq \beta<1)$, denoted by $S_{p}(\rho, \beta)$, to be the set of function f of the form (1.1) that satisfy
$\mathfrak{R}\left\{e^{i \rho} \frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \cos \rho, \quad z \in E$.
Definition 1.1: Let $f \in S, \quad$ suppose $0 \leq \beta<1,0 \leq \rho<\frac{\pi}{2} \quad$ and $\quad \lambda \quad$ is real. Then $f(z)$ belongs to the class $S_{p}(\rho, \lambda, \beta)$ of λ-pesudo-spiralike functions of order β in the unit disk if and only if $\mathfrak{R}\left\{e^{i \rho} \frac{z f^{\prime}(z)^{\lambda}}{f(z)}\right\}>\beta \cos \rho, \quad z \in E$.

Correspondence Author: Hamzat J.O., Email: jhamzat@unilag.edu.ng, Tel: +2348060085718, +2348077652244 (MTR)
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 1-4

The following remarks are noteworthy:
(i.) All power shall mean principal determination only throughout this work. Now, if $\rho=0$ we have the class of $\lambda-$ pseudo - starlike functions of order β.
(ii.) If $\rho=0, \lambda=1$ we have the class of starlike functions of order β which in turn could be called 1- pseudo- starlike functions of order β.
(iii.) For $\lambda=2$ we shall have the class of functions that satisfies
$\mathfrak{R}\left\{e^{i \rho} f^{\prime}(z) \frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \cos \rho, \quad z \in E$
which is a product of combination of geometric expression for bounded turning and spiralike functions. More details on the above definition can be seen in Babalola [8].
Now, in 1976, Noonan and Thomas [9] stated the $q^{\text {th }}$ Hankel determinant for $q \geq 1$ and $m \geq 1$ as
$H_{q}(m)=\left|\begin{array}{cccc}a_{m} & a_{m+1} & \ldots & a_{m+q-1} \\ a_{m+1} & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ a_{m+q-1} & \ldots & \ldots & a_{m+2 q-2}\end{array}\right|$.
Several researchers have studied the above determinant extensively and several interesting results were obtained. For more details on the determinant $H_{q}(m)$ interested reader can refer to [9-15]. Obviously, one can observe that the Fekete and Szego functional is the one given by $H_{2}(1)$ that is, when $q=2$ and $m=1$. Fekete and Szego [16] further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ where μ is real and $f \in S$. However, for our present discussion, we shall consider the Hankel determinant in which case $q=2$ and $m=2$, such that for function f of the form (1.1), we have
$H_{2}(2)=\left|\begin{array}{ll}a_{2} & a_{3} \\ a_{3} & a 4\end{array}\right|$.
Here, we seek sharp upper bound of the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions belonging to the analytic class $S_{p}(\rho, \lambda, \beta)$ defined in (1.3). It is noted that the results proved by Mehrok and Singh [13] and Janteng et al. [17] follow as special cases in the present work. At this juncture, the following Lemmas shall be necessary.
Let P denotes the family of all functions p analytic in E for which $\mathfrak{R}\{p(z)\}>0$ and
$p(z)=1+p_{1} z+p_{2} z^{3}+p_{3} z^{3}+\ldots, z \in E$.
Then the following Lemmas are immediate.
Lemma 1.1: [18]. If $p \in P$, then $\left|p_{k}\right| \leq 2$ for each $\mathrm{k}(k=1,2,3, \ldots)$.
Lemma 1.2: [17]. If $p \in P$, then
$P_{2}=\frac{1}{2}\left\{P_{1}^{2}+\left(4-P_{1}^{2}\right) x\right\}$
$p_{3}=\frac{1}{4}\left\{p_{1}^{3}+2 p_{1}\left(4-p_{1}^{2}\right) x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}$
for some X and z satisfying
$|x| \leq 1, \quad|z| \leq 1 \quad$ and $p_{1} \in[0,2]$.

2. Main Results

Theorem 2.1: If $f \in S_{p}(\rho, \lambda, \beta)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4\left(e^{i \rho}-\beta \cos \rho\right)^{2}}{(3 \lambda-1)^{2}}$.
Proof: Since $f \in S_{p}(\rho, \lambda, \beta)$, then there exists $p \in P$ such that
$e^{i \rho} z\left(f^{\prime}(z)^{\lambda}\right)=f(z)\left[\beta \cos \rho+\left(e^{i \rho}-\beta \cos \rho\right) p(z)\right]$.
By comparing the coefficients in (2.2), we have that
$a_{2}=\frac{p_{1}\left(e^{i \rho}-\beta \cos \rho\right)}{\left(2 \lambda e^{i \rho}-e^{i \rho}\right)}$,
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 1-4
$a_{3}=\frac{\left(e^{i \rho}-\beta \cos \rho\right)}{\left(3 \lambda e^{i \rho}-e^{i \rho}\right)}\left\{p_{2}-\frac{\left(e^{i \rho}-\beta \cos \rho\right)\left(2 \lambda^{2} e^{i \rho}-4 \lambda e^{i \rho}+e^{i \rho}\right)}{\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{2}\left(3 \lambda e^{2 \rho}-e^{i \rho}\right)} p_{1}^{2}\right\}$
and
$a_{4}=\frac{\left(e^{i \rho}-\beta \cos \rho\right)}{\left(4 \lambda e^{i \rho}-e^{i \rho}\right)} p_{3}+\frac{\left(e^{i \rho}-\beta \cos \rho\right)^{2}\left(11 \lambda e^{i \rho}-6 \lambda^{2} e^{i \rho}+2 e^{i \rho}\right)}{\left(2 \lambda e^{i \rho}-e^{i \rho}\right)\left(3 \lambda e^{i \rho}-e^{i \rho}\right)\left(4 \lambda e^{i \rho}-e^{i \rho}\right)} p_{1} p_{2}$
$+\frac{\left(e^{i \rho}-\beta \cos \rho\right)^{3}\left(24 \lambda^{4} e^{i 2 \rho}-80 \lambda^{3} e^{i 2 \rho}+84 \lambda^{2} e^{i 2 \rho}-28 \lambda e^{i 2 \rho}+3 e^{i 3 \rho}\right)}{3\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{3}\left(3 \lambda e^{i \rho}-e^{i \rho}\right)\left(4 \lambda e^{i \rho}-e^{i \rho}\right)} p_{1}^{3}$.
Now,
$a_{2} a_{4}-a_{3}^{2}=\frac{1}{H(\lambda)}\left\{A p_{1}^{4}+B p_{1}^{2} p_{2}+C p_{1} p_{3}-D p_{2}^{2}\right\}$
where
$A=\left(e^{i \rho}-\beta \cos \rho\right)^{4}\left(24 \lambda^{5} e^{i 3 \rho}-60 \lambda^{4} e^{i 3 \rho}+44 \lambda^{3} e^{i 3 \rho}+12 \lambda^{2} e^{i 3 \rho}+\lambda e^{i 3 \rho}\right)$,
$B=3\left(e^{i \rho}-\beta \cos \rho\right)^{3}\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{2}\left(-2 \lambda^{3} e^{i 2 \rho}-3 \lambda^{2} e^{i \rho}\left(e^{i \rho}-2\right)-\lambda e^{i 2 \rho}-4 e^{i 2 \rho}\right)$,
$C=3\left(e^{i \rho}-\beta \cos \rho\right)^{2}\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{3}\left(3 \lambda e^{i \rho}-e^{i \rho}\right)^{2}$,
$D=3\left(e^{i \rho}-\beta \cos \rho\right)^{2}\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{4}\left(4 \lambda e^{i \rho}-e^{i \rho}\right)$
and
$H(\lambda)=4.3\left(2 \lambda e^{i \rho}-e^{i \rho}\right)^{4}\left(3 \lambda e^{i \rho}-e^{i \rho}\right)^{2}\left(4 \lambda e^{i \rho}-e^{i \rho}\right)$.
Applying Lemma (1.1) and Lemma (1.2), we obtain

Assuming $p_{1}=p \in[0,2]$ and using triangle inequality with $|z| \leq 1$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{4 H^{*}(\lambda)}\left\{\begin{array}{l}p^{4}\left(4 A^{*}+2 B^{*}+C^{*}-D^{*}\right)+2 p^{2}\left(D^{*}-C^{*}-B^{*}\right)\left(4-P^{2}\right)|x| \\ +\left(C^{*} p^{2}+\left.D^{*}\left(4-p^{2}\right)\left(4-p^{2}\right) x\right|^{2}+2 C^{*} p_{1}\left(4-p^{2}\right)\left(1-|x|^{2}\right)\right.\end{array}\right\}$
where

$$
\begin{aligned}
& A^{*}=\left(e^{i \rho}-\beta \cos \right)^{4}\left(24 \lambda^{5}-60 \lambda^{4}+44 \lambda^{3}-12 \lambda^{2}+\lambda\right), \\
& B^{*}=3\left(e^{i \rho}-\beta \cos \rho\right)^{3}(2 \lambda-1)^{2}\left(-2 \lambda^{3}-3 \lambda^{2}\left(e^{i \rho}-2\right)-\lambda-4\right), \\
& C^{*}=3\left(e^{i \rho}-\beta \cos \rho\right)^{3}(2 \lambda-1)^{3}(3 \lambda-1)^{2}, D^{*}=3\left(e^{i \rho}-\beta \cos \rho\right)^{2}(2 \lambda-1)^{4}(4 \lambda-1) \\
& \text { and } \\
& H^{*}(\lambda)=4.3(2 \lambda-1)^{4}(3 \lambda-1)^{2}(4 \lambda-1) .
\end{aligned}
$$

If we set $\delta=|x| \leq 1$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{4 H^{*}(\lambda)}\left\{\begin{array}{l}
p^{4}\left(4 A^{*}+2 B^{*}+C^{*}-D^{*}\right)+2 p^{2}\left(D^{*}-C^{*}-B^{*}\right)\left(4-P^{2}\right) \delta \\
+\left(C^{*} p^{2}+D^{*}\left(4-p^{2}\right)-2 C^{*} p\right)\left(4-p^{2}\right) \delta^{2}+2 C^{*} p_{1}\left(4-p^{2}\right)
\end{array}\right\}
$$

where

$$
\begin{aligned}
& F(p, \delta)=p^{4}\left(4 A^{*}+2 B^{*}+C^{*}-D^{*}\right)+2 p^{2}\left(D^{*}-C^{*}-B^{*}\right)\left(4-P^{2}\right) \delta \\
&+\left(C^{*} p^{2}+D^{*}\left(4-p^{2}\right)-2 C^{*} p\right)\left(4-p^{2}\right) \delta^{2}+2 C^{*} p_{1}\left(4-p^{2}\right)
\end{aligned}
$$

is an increasing function.
Now,
$\operatorname{Max} . F(p, \delta)=F(p, 1)=G(p)$.
Consequently,

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{4 H^{*}(\lambda)} G(p) \tag{2.6}
\end{equation*}
$$

Then,
$G(p)=M(\lambda, \beta) p^{4}-N(\lambda, \beta) p^{2}+16 D^{*}$
where,
$M(\lambda, \beta)=4 A^{*}+4 B^{*}+2 C^{*}-2 D^{*}, N(\lambda, \beta)=8 B^{*}+4 C^{*}$
Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 1-4
A^{*}, B^{*}, C^{*} and D^{*} are as earlier defined.
So,
$G^{\prime}(p)=4 M(\lambda, \beta) p^{3}-2 N(\lambda, \beta) p$ and $G^{\prime \prime}(p)=12 M(\lambda, \beta) p^{2}-2 N(\lambda, \beta)$
such that if $G^{\prime}(p)=0$, then
$2 p\left[2 M(\lambda, \beta) p^{2}-N(\lambda, \beta)\right]=0$.
Therefore $G(p)$ attains it maximum value at $p=0$ and $\max G(p)=G(0)$. Hence, from (2.6), we obtain our result. The result is sharp for $p_{1}=0, p_{2}=-2$ and $p_{3}=0$.
Corollary 2.1: If $f \in S_{p}(\rho, \lambda, 0)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4 e^{i 2 \rho}}{(3 \lambda-1)^{2}}$.
Corollary 2.2: If $f \in S_{p}(0, \lambda, \beta)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4(1-\beta)^{2}}{(3 \lambda-1)^{2}}$.
Corollary 2.3: If $f \in S_{p}(\rho, 1, \beta)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left(e^{i \rho}-\beta \cos \rho\right)^{2}$
Corollary 2.4: If $f \in S_{p}(0,1, \beta)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq(1-\beta)^{2}$
Corollary 2.5: If $f \in S_{p}(0,1,0)$, then
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$.
Incidentally, (2.11) coincide with the result obtained by Janteng et al. [17]. For recent work on Hankel determinant, interested reader can refer to [19-21] among others.

References

[1] Libera, R. J., "Univalent alpha-Spiralike functions", Canad. J. Math., 19(1967), 449-456.
[2] Libera, R. J. and Ziegler, M. R., "Regular functions $f(z)$ for which $f^{\prime}(z)$ is Alpha-Spiral" Trans. Amer. Math. Soc. 166(1972), 361-370.
[3] Robertson, M. S., "Radii of starlikeness and close-to-convex", Proc. Amer. Math. Soc. 16 (1965), 847-852.
[4] Robertson, M. S., "Univalent functions $f(z)$ for which $f^{\prime}(z)$ is Alpha-Spiral", Michigan Math. J. 16(1969), 97-101.
[5] Silver, E.M., "A brief overview of subclasses of spiralike functions", Current Topic in analytic functions theorem (Editor: H.M.
Srivastava and Shigoyoshi Owa) World Scientific, Singapore, new Jessey, London, Hong Kong, 1992, 328-337.
[6] Spacek, L., Contribution a la theorie des functions, Univalents, Univalents, J. Math. Casopis Pest. Mat. 62 (1932), 12-19.
[7] Zamonski, J., "About the extremal Schlicht functions", Ann. Polon. Math. 9 (1962), 265-273.
[8]
[9] Noonan, J. W. and Thomas, D. K., "On the second Henkel Determinant of a really mean p-valent functions", Trans. Amer. Math. Soc., 223(2) (1976), 337-346.
[10] Ehrenbor, R., "The Henkel determinant of experimental Polynomial", American Mathematical Monthly, 107(2000), 557-560.
[11] Hayman, W. K., "Multivalent functions", Cambridge Tracts in Math. and Math. Phys., No.48, Cambridge University press, Cambridge, 1958.
[12] Layman J. W.M., "The Henkel transform and some of its properties", J. of Integer. Sequences, 4(2001), 1-11.
[13] Mehrok, B. S. and Singh, G., "Estimate of second Henkel determinant for certain classes of analytic functions", Scientia Magna, 8(3) (2012), 85-94.
[14] Noor, K. I., "Henkel determinant problem for the class of functions with bounded boundary rotation", Rev. Rum. Math. Pure Et Appl., 28(8) (1983), 731-739.
[15] Singh, G., "Hankel determinant for new subclasses of analytic functions with respect to symmetric points", International Journal of Modern Mathematical Sciences, 5(2), (2013), 67-76.
[16] Fekete, M. and Szego, G., "Eine Bemerkung über ungerade Schlichte Funktionen", J. London Math. Soc., 8(1933), 85-89.
[17] Janteng A., Halim, S. A. and Darus, M., "Henkel determinant for starlike and convex functions", Int. J. Math. Anal., 1(13) (2007), 619-625.
[18] Pommerenke, Ch., "Univalent functions", Gottingen, Vandenhoeck and Ruprecht., 1975.
[19] Hamzat J. O. and Fagbemiro O., "Second Hankel determinant for certain generalized subclass of modified Bazilevic functions", J. Nig. Association of Math. Phy., 42(2017), 27-36.
[20] Hamzat J. O. and Oni A. A., "Hankel determinant for subclasses of analytic functions", Asian Research J. Math., 5(2), (2017), 1-10.
[21] Hamzat J. O., Raji M. T. and Oni A. A., "Hankel determinant associated with logistic Sigmoid functions in the space of λ -Pseudo-Starlike functions", Asian J. Math. And Compt. Research, 25(2), 2018, 74-84.

Transactions of the Nigerian Association of Mathematical Physics Volume 8, (January, 2019), 1-4

