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Abstract 

 
This study was aimed at modelling and optimizing mechanical properties (i.e. wear 

rate, creep rate, density, tensile strength, hardness and melting temperature) of a 

composite material fabricated from the combination of 99.85% pure aluminium ingot, 

periwinkle shell and palm kernel shell particles in a determined mix ratio using the 

central composite design (CCD) of the response surface methodology (RSM). The 

results of the mechanical properties obtained for the different compositions of the 

fabricated specimens were modeled and optimized in this study. Multi-objective 

numerical optimization was done to ascertain the desirability of the overall model. The 

obtained optimal blend solution (i.e. predicted values) of the input variables was 

validated by producing specimens with the optimal solution values and obtaining the 

mechanical properties (i.e. empirical values). The RSM analysis gave an optimal 

composition of the aluminium ingot, periwinkle shell and palm kernel shell particles at 

97.3% desirability value. A coefficient of determination (R
2
) value of 0.9997 (i.e. 

99.97%) was obtained when the predicted values from RSM was plotted against the 

empirical values. The R
2 

value showed that the model could explain 99.97% of the 

variance between predicted and empirical values, indicating that there is no significant 

difference between the predicted values and the empirical values that were obtained.  
 

Keywords: Wear Rate; Creep Rate; Density; Tensile Strength; Hardness; Melting Temperature;        

Optimal Blend Solution. 

1.0 Introduction 

Today composite material appears to be the material of choice in engineering applications as it has found 

increasingly wider use in automotive components, sporting goods, aerospace parts, consumer goods, marine and oil 

industries, offshore structures, piping, electronics, etc. [1,2,3]. Composite materials have the potential of competing 

with widely used engineering materials like steel and aluminium. Pal et al. [3] reported that 60 to 80% in component 

weight can be saved when steel part is replaced with composite material and 20 to 50% in component weight when 

aluminium part is replaced with composite material.  

Montgomery [4] described response surface methodology (RSM) as a set of mathematical and statistical techniques which 

can be used to model and analyze problems in which several variables influence the response of interest and the objective is 

to optimize this response. The response surface can be mathematically illustrated by wanting for example, to find the levels 

of temperature (xi) and pressure (xii) that maximize the yield (y) of a process. However, the process yield is a function of the 

levels of temperature and pressure, 

i.e. 𝑦 = 𝑓 𝑥𝑖 . 𝑥𝑖𝑖 + ∈      (1) 

the symbol ∈ represents the observed noise or error in the response 𝑦. If the expected response is denoted as, 

𝐸 𝑦 =  𝑓 𝑥𝑖 . 𝑥𝑖𝑖 =  𝜂      (2) 

then the surface which is   

𝜂 =  𝑓 𝑥𝑖 . 𝑥𝑖𝑖        (3) 

is actually the response surface. Response surface designs are essentially those designs for fitting response surfaces [4].  
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According to Montgomery [4], RSM was first introduced by G.E.P. Box and K.B. Wilson in 1951 as an empirical statistical 

technique employed for multiple regression analysis of quantitative data obtained from statistically designed experiments. 

RSM is usually represented graphically as surface plot or contour plot. 

Usually, the first stage in RSM is to find a suitable approximation for the true functional relationship between the response 

and the set of independent variables. A low-order polynomial in some region of the independent variables is commonly used. 

For a response that is modelled by a linear function of the independent variables, the approximating function is the first-

order-model below [4]: 

𝑦 =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 +  𝜖    (4) 

where, y = response 

𝛽0 = intercept 

𝛽1−𝑘= regression coefficients 

𝑥1−𝑘=  independent variables 

𝜖 = error term. 

The second-order models are fitted using the central composite design (CCD). The CCD is the most frequently used among 

the classes of designs for fitting models. Other methods are the Box-Behnken design, equiradial designs, small composite 

design and hybrid design. The CCD is a very efficient design for fitting second-order model. Two parameters must be 

specified in the CCD design, these are the distance 𝛼 of the axial runs from the design centre and the number of centre points 

nC[4]. According to Montgomery [4], blocking in response surface design is often necessary in order to eliminate nuisance 

level, which is mostly caused by the sequential assembly from a first-order design to a second order design. Orthogonal 

blocking in RSM is achieved if it is divided into blocks such that the parameters estimation of the RSM is not really affected 

by the blocking effects.  

 

2.0 Methodology 

The materials used in this study included pure aluminium ingot, periwinkle shell particles, palm kernel shell particles 

and pure magnesium powder. The central composite design (CCD) of the response surface methodology (RSM) was 

used to perform the design of experiment (DoE). The hybrid composite was formulated and fabricated by stir casting 

process. In order to aid uniform mix of the reinforcement materials in the matrix, a stir casting rig was used to 

thoroughly stir the composite in molten state. 

Specimens containing these materials at different aggregate levels by %wt. were cast and tested at the laboratory for 

wear rate, creep rate, density, tensile strength, hardness and melting temperature. The results were recorded as the 

obtained values for the mechanical properties of the composites composition. RSM was used to optimize the values 

of the mechanical properties of the prepared composite specimens. Central composite design (CCD) was used in the 

optimization of process variables with three factors at three levels with 20 runs, including six (6) central points, six 

(6) axial points and eight (8) factorial points as shown in Table 1. The responses function was partitioned into linear, 

interactive and quadratic components. Experimental data were fitted to the second-order regression equation. 

Table 1: Summary of Results of all the Mechanical Tests Conducted 
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Run Response 1 

Wear Rate 

(g/s) 10-4 

Response 2 

Creep Rate 

% Elongation/hr 

Response 3 

Density 

kg/m3 

Response 4 

Tensile Strength 

MPa 

Response 5 

Hardness 

BHN 

Response 6 

Melting Temperature 
oC 

1 0.61 14.29 2653.57 94.32 291.08 935 

2 0.83 15.79 2645.18 96.62 280.07 930 

3 0.67 13.64 2635.74 95.59 282.77 930 

4 0.61 16.67 2646.11 94.18 285.49 925 

5 0.56 15 2646.91 95.94 291.08 930 

6 0.94 15 2648.21 95.64 282.77 935 

7 1.67 21.67 2574.06 85.55 121.07 909 

8 0.61 58.89 2573.94 93.69 412.54 925 

9 1.17 42.94 2637.81 87.71 194.21 880 

10 0.67 66.67 2652.77 80.66 138.00 894 

11 1.33 11.87 2660.90 80.68 162.69 860 

12 1.28 41.78 2643.46 83.07 200.48 880 

13 1.78 18.45 2624.24 88.99 138.00 870 

14 1.22 13.25 2636.08 86.93 106.86 840 

15 0.89 53.37 2661.46 92.36 321.56 868 

16 1.39 11.65 2625.46 75.52 324.86 890 

17 0.78 18.7 2609.12 74.02 299.75 932 

18 1.11 28.7 2657.07 96.53 277.42 899 

19 1.06 37.96 2479.17 95.83 299.75 920 

20 1.72 22.27 2672.24 88.67 200.48 896 
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The design and optimization was done using statistical design software. For this study, Design Expert 7.01 was 

employed. The model standard errors were computed to assess the suitability of RSM, t he goodness of fit (GOF) 

statistics was used to validate the model adequacy in terms of the R-squared, adjusted R-squared and adequate 

precision values of and adjusted. Analysis of variance (ANOVA) was employed to determine the significance of the 

models. The optimal equations in terms of the actual factors were obtained for the six responses. The 3 -D surface 

plot was used to study the effects of the combined variables on each response. Multi -objective optimization was done 

to ascertain the desirability of the overall model. The desirability bar graph was used to show the accuracies with 

which the model predicted the six responses. Contour plots were used to show the predicted values. The model 

validity was confirmed by obtaining the R-squared value from the plot of the optimised solution against the empirical 

values. 
 

3.0 Result and Discussion 

The results of the RSM analysis are presented and discussed. 

3.1 The model Standard Error Analysis 

The computed standard errors for the selected responses which were used to assess the suitability of response surface 

methodology are presented in Figure 1. 

 
Figure 1: Result of Computed Standard Errors of the Model 
Figure 1shows that the model has a low standard error ranging from 0.27 for the individual terms, 0.35 for the combined 

effects and 0.26 for the quadratic terms. The error values were also observed to be less than the model basic standard 

deviation of 1.0 which suggested that the response surface methodology was ideal for the optimization process.  Also the 

variance inflation factor (VIF) of approximately 1.0 was obtained which is good since ideal VIF is 1.0. The Ri-squared values 

were observed to be between 0.0000 and 0.0179 which is good. High Ri-squared (above 0.1) means that design terms are 

correlated with each other, possibly leading to poor models. 

3.2 The Goodness of Fit Analysis 

To validate the adequacy of the model based on its ability to satisfy the set objectives the goodness of fit (GOF) statistical 

analysis was done as shown in Figures 2 to 7. 

    
Figure 2: GOF of the  Wear Rate    Figure 3: GOF of the Creep Rate 
 

    
Figure4: GOF of the Density    Figure5: GOF of the Tensile Strength 
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Figure 6: GOF of the Hardness   Figure 7: GOF of the Melting Temperature 
 

Coefficient of determination (R-Squared) values of 0.9481, 0.9248, 0.9011, 0.9529, 0.9195 and 0.9064 as shown in Figures 2 

to 7 respectively revealed the extent to which the model was able to predict the responses. According to Montgomery [4], the 

closer the R
2
 value is to 1 (i.e. unity) the better the ability of the model to predict the response. Adjusted (R-Squared) values 

of 0.9014, 0.8572, 0.8121, 0.9106, 0.8470 and 0.8221 as shown in Figures 3 to 8 respectively, gave model reliability of 

90.14%, 85.72%, 81.21%, 91.06%, 84.70% and 82.21% respectively. The coefficient of variation (CV) obtained were 10.8%, 

21.16%,1.66%, 2.59%, 14.03% and 1.36% respectively. These relatively low values of CV obtained showed high precision 

and reliability of the model [5].Adequate precision values of  14.272, 9.895, 12.546, 15.118, 12.545 and 10.119 showed an 

adequate signal that is desirable. Therefore, this model can be used to navigate the design space and obtain the set objectives. 

Adequate precision measures the signal to noise ratio.  A ratio greater than 4 is desirable[6]. 
 

3.3 One Way Analysis of Variance 

A one way analysis of variance (ANOVA) was done to check for the model significance for each response variable. The 

results are shown in Figures 8 to 13. 

    
Figure 8: ANOVA Table the Wear Rate   Figure9: ANOVA Table the Creep Rate 
 

    
Figure 10: ANOVA Table for the Density   Figure 11: ANOVA Table for the Tensile Strength 

    
Figure12: ANOVA Table for the Hardness  Figure 13: ANOVA Table for Melting Temperature 
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Form the one way ANOVA analysis inFigure 8, the significant model has an  F-value (or test statistics value) of 20.30 and p-

value (significant level) of 0.0001.This implies that there is only a 0.01% chance that a "Model F-Value" this large could 

occur due to noise. In this case, the significant models terms included: A, AB, AC, BC, A2, B2, C2because, Values of "Prob 

> F" less than 0.0500 and greater than 0.1000 indicate significant and insignificant models respectively [7,8]. The respective 

significant terms had p-values less than 0.05 and are therefore significant models. 

Figure 9 shows the Model F-value of 13.67 with computed p-value of 0.0002. There is only a 0.02% chance that a "Model F-

Value" this large could occur due to noise.  In this case A, B, AB, AC, A2, B2 are significant model terms.  

Figure 10 shows the Model F-value of 10.12 with computed p-value of 0.0006. There is only a 0.06% chance that a "Model 

F-Value" this large could occur due to noise. In this case A, B, AB, AC, A2 are significant model terms. 

Figure 11 shows the Model F-value of 22.50 with a computed p-value of 0.0001. There is only a 0.01% chance that a "Model 

F-Value" this large could occur due to noise. In this case A, AB, AC, BC, A2, B2, C2 are significant model terms.  

Figure 12 shows the Model F-value of 12.69 with computed p-value of 0.0002. There is only a 0.02% chance that a "Model 

F-Value" this large could occur due to noise. In this case A, BC, B2, C2 are significant model terms.  

Figure 13 shows the Model F-value of 10.76 with computed p-value of 0.0005. There is only a 0.05% chance that a "Model 

F-Value" this large could occur due to noise. In this case C, B2, C2 are significant model terms.  

3.4 Optimal Equations of the Models 

The optimal equations which shows the individual effects and combined interactions of the selected variables against the 

mesured responses are presented based on the actual factors as shown in Figures 14 to 19. 
 

   
Figure 14: Optimal Equation for Wear Rate    Figure 15: Optimal Equation for Creep Rate 

   
Figure 16: Optimal Equation for Density   Figure 17: Optimal Equation for Tensile Strength 
 

   
Figure 18: Optimal Equation for Hardness  Figure 19: Optimal Equation for Melting Temp. 
 

The optimal equations of the actual factors for the six responses by the second order polynomial equation are represented as: 

𝑦 =  𝛽0  +  𝛽1𝐴 +  𝛽2𝐵 +  𝛽3𝐶 + 𝛽4𝐴𝐵 + 𝛽5𝐴𝐶 +  𝛽6𝐵𝐶 +  𝛽7𝐴
2  +  𝛽8𝐵

2  +  𝛽9𝐶
2(5) 
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where, 𝑦 = response 

𝛽′𝑠 = regression coefficients 

𝐴 = aluminium 

𝐵 = periwinkle shell 

𝐶 = palm kernel shell 

𝐴𝐵 = aluminium and periwinkle shell 

𝐴𝐶 = aluminium and palmkernel shell 

𝐵𝐶 = periwinkle shell and pal kernel shell 

From Figures 14 to 19, the optimal equations for the actual factors for all the responses are: 

1. Wear Rate (𝑦1): 

𝑦1 = 25.021 − 0.503𝐴 − 0.315𝐵 − 0.278𝐶 + 0.00273𝐴𝐵 + 0.00205𝐴𝐶  0.00279𝐵𝐶  
+ 0.00268 𝐴^2  + 0.00265𝐵2   + 0.00343 𝐶^2  (6) 

2. Creep Rate (𝑦2): 

𝑦2 = 2303.565 − 49.151𝐴 − 14.268𝐵 − 9.448𝐶 + 0.137𝐴𝐵 + 0.108𝐴𝐶 −  0.039𝐵𝐶  
+ 0.263𝐴2  + 0.179𝐵2  + 0.042 𝐶2   (7) 

3. Density (𝑦3): 

𝑦3 = −4283.948 + 152.915𝐴 + 50.465𝐵 − 86.331𝐶 − 0.607𝐴𝐵 + 0.925𝐴𝐶  
+ 0.253𝐵𝐶 −  0.839𝐴2  + 0.252𝐵2  + 0.035𝐶2   (8) 

4. Tensile Strength (𝑦4): 

𝑦4 =  −198.881 + 6.437𝐴 + 7.726𝐵 − 6.745𝐶 − 0.081𝐴𝐵 +  0.088𝐴𝐶 +  0.032𝐵𝐶  
−  0.036𝐴2 −  0545𝐵2  + 0.066𝐶2   (9) 

5. Hardness (𝑦5):  

𝑦5 =  −115.362 −  0.774𝐴 + 6.128𝐵 +  29.139𝐶 − 0.180𝐴𝐵 − 0.079𝐴𝐶 −  1.159𝐵𝐶  
+ 0.032𝐴2 − 0.548𝐵2 − 0.479𝐶2   (10) 

6. Melting Temperature (𝑦6): 

𝑦6 =  475.599 + 9.379𝐴 − 4.784𝐵 + 17.014𝐶 + 0.119𝐴𝐵 − 0.096𝐴𝐶 − 0.109𝐵𝐶  
− 0.058𝐴2 −  0.219𝐵2  + 0.302𝐶2   (11) 
 

3.6 Multi-objective Numerical Optimization of the Model 

Multi-objective optimization was performed to ascertain the desirability of the overall model. In the numerical optimization 

phase, we requested design expert to minimize the wear rate, creep rate and density while maximizing the tensile strength, 

hardness and melting temperature in order to determine the optimum values of aluminium, periwinkle shell and palm kernel 

shell. The interfaces of the numerical optimization are shown in Figures 20 to 25. 

    
Figure 20: Optimization ModelforWear Rate       Figure 21: Optimization Model for Creep Rate 

    
Figure 22: Optimization Model for Density          Figure 23: Optimization Model for Tensile Strength 
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Figure 24: Optimization Model for Hardness   Figure 25: Optimization Model for Melting Temp. 

The constraint set for the numerical optimization algorithm is shown in Figure 26. While Figure 27 shows the three (3) 

optimal solutions that was given by the numerical optimization process.  

     
Figure 26: Constraints for Numerical      Figure 27: Optimal Solutions of  

Optimization of Selected Responses     Numerical Optimization Model 
 

From the results in Figure 27, the optimum mix ratio of the input variables will produce an engineering composite material with optimum 

values for each of the responses at a desirability value of 97.3%.  

3.7 Analysis of Model Prediction Accuracy 

The desirability bar graph which shows the accuracy with which the model was able to predict the values of the selected input variables and 

the corresponding responses as shown in Figure 28 was used to check the model prediction accuracy.  

 
Figure 28: Prediction Accuracy of Numerical Optimzation 

Figure 28 shows that the model developed based on response surface methodology and optimized using numerical optimization method, 

predicted the wear rate with an accuracy of 99.46%, creep rate with an accuracy of 98.60%, density with an accuracy of 91.81%, tensile 

strength with an accuracy of 98.98%, hardness with an accuracy of 95.97% and melting temperature with an  accuracy of 99.97%.  
 

3.8 Validation of Optimal Solution of the RSM Analysis 

The optimal blend solution of the input variables of aluminium ingot, PS and PKS that was obtained from the RSM analysis, was validated 

by producing specimens with the optimal blend solution values. The specimens were tested for creep rate; wear rate; density; tensile test; 

hardness; and melting temperature. Figure 29 shows the experimental (empirical) values and optimal solution values obtained from the 

RSM analysis (i.e. predicted).  

 
Figure 29:Empirical Results against RSM Results of Optimal Blend Solution 
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The values shown in Figure 29 obtained for the optimal solution of the RSM analysis (i.e. predicted values) and that obtained 

from the empirical tests (i.e. experimental values) for the six responses (i.e creep rate, wear rate, density, tensile strength, 

hardness and melting temperature) were tested for variability by determining the coefficient of determination (i.e. R
2
) value 

as shown in Figure 30.  

 
Figure 30: Plot of RSM Predicted Values against Experimental Values  

A coefficient of determination (R
2
) value of 0.9997 (i.e. 99.97%) was obtained when the predicted values from RSM was 

plotted against experimental values obtained as shown in Figure 30. The R
2 

value showed that the model could explain 

99.97% of the variance between predicted and experimental values. Therefore, there is no significant difference between 

predicted values and experimental values obtained.  

 

4. Conclusion 

The CCD method of the RSM was used to successfully optimize some sets of experimental values that were obtained as 

mechanical properties of locally fabricated hybrid composite material made of different mix compositions of pure aluminium 

ingot, periwinkle shell (PS) and palm kernel shell. From the study the following conclusions were drawn: 

(i) That an optimum composition ratio of 80.98 wt. % aluminiumingot, OPT1 wt. % PS and OPT2 wt. % PKSof the 

composite materials were obtained. 

(ii) The obtained optimum composition produced the following mechanical properties: wear rate of 0.623758 *10
-4

 g/s; 

creep rate of 19.0857% elongation/hr; density of 2598.62kg/m
3
; tensile strength of 94.0402MPa; hardness of 

278.827BHN; and melting temperature of 934.691
o
C. 

(iii) That the reinforcement materials (i.e. PS and PKS) substantially influenced the mechanical properties of the pure 

aluminium ingot used as the matrix. 

(iv) That there was no significant difference between predicted values and experimental values obtained which validated 

the optimization result obtained. 
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