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Abstract  

 

The behaviour of the electrically neutral hydrogen atom in the presence of an external 

electric field has been studied. The hydrogen atom sees the application of the external 

electric field as a perturbation. The perturbation induces an electric dipole moment 

and lowers the ground state energy. The shift in the energy is the well-known stack 

effect phenomenon. The aim of the paper is to use an analytical method such as the 

techniques of differential equations and necessary mathematical assumption to obtain 

the solutions for the perturbed wave function and the second order energy correction, 

instead of applying the time independent perturbation approximation method which is 

beset by mathematical complexities.  It is worthwhile to mention that the analytical 

techniques presented in this paper provide the simplest way of deriving the result. Our 

approach corresponds with other methods discussed in literatures. 
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1.0 Introduction  

If an external electric field is applied to the neutral hydrogen atom in its ground state, the atom sees it as a perturbation. The 

neutral atom will experience a net zero force and the energy levels are shifted. This shift is known as the stack effect. The 

disturbance occasioned by the applied electric field would cause the electron and the proton to be displaced in different 

direction in such a way that the field induces an electric dipole moment𝑃   given as 

𝑃 =  𝛼𝐸𝑒𝑥𝑡       (1) 

Where𝐸𝑒𝑥𝑡  is the external electricfield in 𝑉𝑜𝑙𝑡𝑠/𝑚𝑒𝑡𝑒𝑟 and 𝛼  is the atomic polarizability of a system given as  

𝛼 = 4𝜋𝜀0𝑎0
3      (2) 

Where  𝑎0 is the Bohr radius given by 

𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒2
 

The resulting energy shift is given as 

∆𝐸 = −
1

2
 𝑃 . 𝐸𝑒𝑥𝑡  =   −

1

2
𝛼𝐸2

𝑒𝑥𝑡     (3) 

Equation (3) is the classical result and the direct proportionality of the energy shift to the square of the applied electric field is 

also reproduced when the perturbation theory is applied to the neutral hydrogen atom [1].The authors [1-3] state that the 

energy shift can be determined by solving the Schrodinger Wave Equation for the perturbed system. These statements follow 

from the fact that the perturbation approximation method for higher order corrections is beset with some mathematical 

difficulties. However, Merzbacher [4] notes that the perturbation approximation method can be used to evaluate the second 

order energy correction by using the technique originated by Dalgarno and Lewis [5]. This paper presents a more tractable 

and detailed approach for evaluating the second order energy correction by first evaluating the perturbed wave function using 

the techniques of convergence series to solve the second-order inhomogeneous differential equation arising from the 

application of the external electric field to the neutral hydrogen atom. It is also noteworthy to mention that mathematical 

assumptions were used to arrive at the result with precision.  

2.0   Theoretical Background. 

The perturbation approximation method can be used to predict the eigenstate of a system. According to Davies and Betts[1], 

the use of approximation and numerical methods in both classical and quantum mechanics is crucial because of limited  
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number of exact soluble systems. Starting from the Schrodinger Wave Equation, the energy and wave function corrections 

can be estimated. 

Suppose𝐻,Ψ𝑛  and    𝐸𝑛  represent the Hamiltonian, Eigen-function and Eigen-value for the system, then we can write the 

Schrodinger equation as 

𝐻Ψ𝑛 =  𝐸𝑛Ψ𝑛      (4) 

If the system experiences a perturbation𝐻′, then the Hamiltonian for the perturbed system becomes 

 𝐻 = 𝐻0 + 𝛽𝐻′     (5) 

Where 𝛽 is a constant and has value between0 to 1.  The series expansions for the eigenvalues and Eigen-functions 

respectively, are given by 

𝐸𝑛 =   𝛽𝑘∞
𝑘=0 𝐸𝑛

(𝑘)
    (6) 

Ψ𝑛 =   𝛽𝑘∞
𝑘=0 Ψ𝑛

(𝑘)
    (7) 

Substituting equations (5), (6) and (7) into (4) for lower values of 𝑘 say 𝑘 = 0, 1, 2 and equating the resulting 

correspondingcoefficientsof  𝛽powers, we obtain the equations for the first and second order energy corrections respectively 

as 

𝐸𝑛
(1)
Ψ𝑛

(0)
= 𝐻′Ψ𝑛

(0)
+ (𝐻0 − 𝐸𝑛

(0)
)Ψ

𝑛
(1)

  (8) 

𝐸𝑛
(2)
Ψ𝑛

(0)
= (𝐻′ − 𝐸𝑛

(1)
)Ψ

𝑛

(1)
+ (𝐻0 − 𝐸𝑛

(0)
)Ψ

𝑛
(2)

 (9) 

A further simplification of (8)  shown in [1] gives the equations for the first order energy and wave-function corrections as  

𝐸𝑛
(1)

=  Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(0) = 𝐻𝑛𝑛

′ =    Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(0)
 𝑑𝑉  (10) 

Ψ𝑛 =  Ψ𝑛
(0)

+  𝛽  
𝐻𝑚𝑛

′

𝐸𝑛
(0)

−𝐸𝑚
(0) Ψ𝑚

(0)
𝑚≠𝑛   (11) 

Where  𝐻𝑚𝑛
′  is the matrix element andΨ𝑛

(0)∗
is the complex conjugate of the wave-function. 

Also it can be easilyshown (see [3])that a further simplification of equation (9) gives the second order energy correction as  

 𝐸𝑛
(2)

=  Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(1)     (12) 

The correction Eigen-function in terms of orthonormal set is given as  

Ψ𝑛
(1)

=  𝑎𝑛𝑚𝑚 Ψ𝑚
(0)

    (13) 

Where  𝑎𝑛𝑚  are the coefficients of the series expansion which can be evaluated (see [1] and [3]) from (8) as 

𝑎𝑛𝑚 =   
𝐻𝑚𝑛

′

𝐸𝑛
(0)

−𝐸𝑚
(0)     (14)                                                                                                                    

By substituting (13) with 𝑎𝑛𝑚 into (12) we can re-write the second order energy correction as  

 𝐸𝑛
(2)

=    
 𝐻𝑚𝑛

′  
2

𝐸𝑛
(0)

−𝐸𝑚
(0) 𝑚≠𝑛     (15) 

 

3.0  Methodology 

The perturbation theory was first applied to calculate the shift in energy arising from the application of external electric field 

to the neutral hydrogen atom. The perturbing Hamiltonian 𝐻′ = −𝑒𝐸𝑧along the z-axis is considered. The first order energy 

correction vanishes, indicating that the ground state energy is not affected by the presence of an external field. Further to this, 

equation (8) was transformed into a second order inhomogeneous equation using spherical polar coordinates.Toobtain the 

solution, we assume that the complementary function of the inhomogeneous differential equationmust completely vanish at 

the boundary 𝜌𝑐 𝑟 =
𝑑𝜌𝑐 𝑟 

𝑑𝑟
= 0 at  𝑟 = 0. 

4.0   Results and Discussions 

The first order energy correction is given in equation (10)  as 

𝐸𝑛
(1)

=  Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(0) = 𝐻𝑛𝑛

′ =    Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(0)
 𝑑𝑉 

With volume element 𝑑𝑉 =   𝑟2 𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙 ,𝐻′ = −𝑒𝐸𝑒𝑥𝑡 𝑧 (𝑧 = 𝑟𝑐𝑜𝑠𝜃), and ground state wave functionΨ0
 0 =

 
exp ⁡(−𝑟 𝑎0 )

 𝜋 𝑎0 
3

, the integration would vanish for     0 < 𝑟 < ∞,    0 < 𝜃 < 𝜋  𝑎𝑛𝑑  0 < 𝜙 < 2𝜋  .This indicates that the first order 

energy correction to the ground state yields a null value. That is 

 𝐸0
(1)

= 0     (16)              

The physical significance of (16), implies that there is no induced dipole for linear stack effect and the perturbation does not 

affect the ground state energy of the neutral hydrogen atom. If the approximation computations for the first order energy   

correction is inadequate, we can proceed to the second order energy correction by using (12). To evaluate (12), we need to 

determine the first order wave function by using (8) instead of evaluating the summation in (13) which is not so easy to do.  
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The ground state energy,  𝐸0

(0)
, the unperturbed Hamiltonian 𝐻0in spherical polar coordinates, the perturbingHamiltonian 𝐻′, 

the ground state wave function Ψ0
 0 (𝑟, 𝜃)and the potential𝑉 𝑟 are given as 

 
𝐸0
 0 =  

−𝑚𝑒4

32𝜋2 𝜀0 
2ℏ2    𝐻0

=  −
ℏ2

2𝑚

1

𝑟2

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 +

𝐿2

2𝑚𝑟2
+ 𝑉 𝑟 

𝐻′ = −𝑒𝐸𝑒𝑥𝑡 𝑟𝑐𝑜𝑠𝜃  ,    𝑉 𝑟 =  −
𝑒2

4𝜋𝜀0𝑟
2

,        Ψ0
 0 (𝑟, 𝜃) =  

exp ⁡(−𝑟 𝑎0 )

 𝜋 𝑎0 
3

  (17) 

Where  𝐿2 is the angular momentum operator and does not depend on the radius 𝑟 of the sphere. Also the energy level does 

not depend on the spin because the 𝑧 − 𝑎𝑥𝑖𝑠 orientation can be neglected in a spherically symmetric system [1]. The Eigen-

value equation for the angular momentum operator is given as 

𝐿2Ψ 𝑟, 𝜃 = 𝑙(𝑙 + 1)ℏ2Ψ 𝑟, 𝜃    (18) 

By substituting    (16), (17), (18) into (8) with   𝑙 = 1     and      𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒2  we obtain 

 
𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 − 2 +

2𝑟

𝑎0
−

𝑟2

 𝑎0 
2 Ψ0

 1  𝑟, 𝜃 =  −
2(4𝜋𝜀0)𝐸𝑒𝑥𝑡 𝑟

3  𝑐𝑜𝑠𝜃

𝑎0𝑒 𝜋 𝑎0 
3

exp −𝑟 𝑎0  (19) 

Equation (19) is a second order inhomogeneous ordinary differential equation separable in 𝑟 and 𝜃.We set the solution to  

(19)  as  

Ψ0
 1  𝑟, 𝜃 = 𝑓(𝑟)𝑐𝑜𝑠𝜃      (20) 

Substituting Ψ0
 1  𝑟, 𝜃  in (20) into (19), we obtain 

𝑑

𝑑𝑟
(𝑟2 𝑑𝑓

𝑑𝑟
) +  −2 +

2𝑟

𝑎0
−

𝑟2

 𝑎0 
2
 𝑓(𝑟) =  −𝐾 𝑟3exp −𝑟 𝑎0   (21) 

To further simplify (21) we set                                                                            

𝑓 𝑟 = 𝜌 𝑟 exp⁡(−
𝑟

𝑎0
)    (22) 

𝑟2 𝑑2𝜌

𝑑𝑟2 +  2𝑟 −
2𝑟2

𝑎0
 
𝑑𝜌

𝑑𝑟
− 2𝜌 𝑟 =  −𝐾𝑟3  (23) 

For simplicity sake, we have set 𝐾 =  
2(4𝜋𝜀0)𝐸𝑒𝑥𝑡

𝑎0𝑒 𝜋 𝑎0 
3
 (24) 

The general solution to (23) is given as 

𝜌 𝑟 =  𝜌𝑐 𝑟 + 𝐺(𝑟)     (25) 

Where𝜌𝑐 𝑟  is the complementary function for the homogeneous equation and   𝐺(𝑟) is the particular integral function. 

To evaluate the complementary solution of (23), we set the right hand side to zero. 

𝑟2 𝑑2𝜌𝑐

𝑑𝑟2 +  2𝑟 −
2𝑟2

𝑎0
 
𝑑𝜌𝑐

𝑑𝑟
− 2𝜌𝑐 𝑟 = 0  (26) 

As 𝑟 becomes infinite, the wave-function blows up and the solution is not acceptable, so we assume the value of 𝑟 that will 

make the wave-function finite by setting 𝑟 = 0.We now apply the method of convergent series, in particular we use the 

Frobenius method because the point𝑟 = 0  is a regular singular point. This method enable us to write the solution as 

𝜌𝑐 𝑟 =   𝑐𝑛𝑟
𝑛+𝜍∞

𝑛=0     (27) 

 The parameter 𝜍 is an integer that determines the approach for obtaining two linearly independent solution of (26). If we 

substitute (27) into (26) we obtain  

   𝑛 + 𝜍  𝑛 + 𝜍 − 1 + 2 𝑛 + 𝜍 − 2 𝑐𝑛𝑟
𝑛+𝜍∞

𝑛=0 −
2

𝑎0
 𝑐𝑛𝑟

𝑛+𝜍+1 = 0∞
𝑛=0  (28) 

We set 𝑟 = 0, 𝑛 = 0 and demand that the terms in the summation independently vanish so as to obtain the indicial equation  

𝜍2 + 𝜍 − 2 = 0 

The roots of the indicial equation are  𝜍 = 1   or 𝜍 = −2 

Clearly,the roots differ by an integer and we may not be able to find two linearly independent solutions that satisfy (26) but 

we can obtain a solution corresponding to the larger root [6].  

On substituting the larger indicial root (𝜍 = 1)into (28) and shifting the index of the second summation, we obtain the 

recursion relation as 

𝑐𝑛 =
2

(𝑛+3)𝑎0
𝑐𝑛−1𝑛 ≥ 1    (29)   

 Calculating the coefficients 𝑐𝑛  in (29)and substituting into (27)we obtain the solution of (26)as  

𝜌𝑐 𝑟 =  𝑟 +
1

2𝑎0
𝑟2 +

1

15 𝑎0 
3 𝑟

3 +  ………  𝑐0 (30) 

To obtain the general solutionof (23), we use the assumption stated in section 3.0. This requires that the complimentary 

function(30) must vanish completely. To achieve this purpose, we use the one point boundary condition  𝜌𝑐 𝑟 =
𝑑𝜌𝑐 𝑟 

𝑑𝑟
=

0 at  𝑟 = 0.  We found𝑐0 = 0. Thus (30) yields a null value. 

𝜌𝑐 𝑟 = 0     (31) 

Now we guess the solution for the particular integral function of (23) by letting 

𝐺 𝑟 = 𝐴𝑟3 + 𝐵𝑟2 + 𝐶𝑟 + 𝐷(32) 
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Where 𝐴, 𝐵 𝐶 and 𝐷 are arbitrary constants. When we substitute (32) into (23), we found  

 𝐴 = 𝐷 = 0, 𝐵 =
𝑎0𝐾

4
, 𝑎𝑛𝑑 𝐶 =

 𝑎0 
2𝐾

2
   (33) 

Putting (33) into (32) yields the particular integral solution as 

𝐺 𝑟 =
 𝑎0 

2𝐾

2
𝑟 +

𝑎0𝐾

4
𝑟2    (34) 

The general solution to (23) then becomes 

𝜌 𝑟 = 𝜌𝑐 𝑟 + 𝐺 𝑟 =
 𝑎0 

2𝐾

2
𝑟 +

𝑎0𝐾

4
𝑟2  (35)                  

The first order wave function correction to the ground state now yields 

Ψ0
 1  𝑟, 𝜃 = 𝑓 𝑟 𝑐𝑜𝑠𝜃 = 𝜌 𝑟 exp⁡(−

𝑟

𝑎0
)𝑐𝑜𝑠𝜃 =   

 𝑎0 
2𝐾

2
𝑟 +

𝑎0𝐾

4
𝑟2 exp⁡(−

𝑟

𝑎0
)𝑐𝑜𝑠𝜃  

Finally, by substituting 𝐾 term in (24) we obtain 

Ψ0
 1  𝑟, 𝜃 =  

(4𝜋𝜀0)𝐸𝑒𝑥𝑡

𝑒 𝜋 𝑎0 
3
 𝑎0𝑟 +

1

2
𝑟2 exp⁡(−

𝑟

𝑎0
)𝑐𝑜𝑠𝜃 (36) 

Now we can evaluate the second-order energy correction to the ground state by putting (36) into (12). With 𝐻′ =  −𝑒𝐸𝑒𝑥𝑡 𝑧 =

−𝑒𝐸𝑒𝑥𝑡 𝑟𝑐𝑜𝑠𝜃, Ψ0
 0 =  

exp ⁡(−𝑟 𝑎0 )

 𝜋 𝑎0 
3

  we have that  

 𝐸𝑛
(2)

=  Ψ𝑛
(0)∗

 𝐻′ Ψ𝑛
(1) =    Ψ𝑛

 0 ∗ 𝐻′ Ψ𝑛
 1  𝑑𝑉  (37) 

Therefore we write the volume element as 

 𝑑𝑉 =   𝑟2 𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙For     0 < 𝑟 < ∞,    0 < 𝜃 < 𝜋  𝑎𝑛𝑑  0 < 𝜙 < 2𝜋so that  

𝐸0
(2)

=  −
(4𝜋𝜀0) 𝐸𝑒𝑥𝑡  

2

𝜋 𝑎0 
3   𝑎0𝑟

4 +
1

2
𝑟5 exp  −

2𝑟

𝑎0
 𝑑𝑟  𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃𝑑𝜃  𝑑𝜙

2𝜋

0

𝜋

0

∞

0
(38) 

By using special function (gamma function) and substitution integration techniquein (38), we obtain 

 𝐸0
(2)

= − 4𝜋𝜀0 𝑎0 
3 9

4
 𝐸𝑒𝑥𝑡  

2   (39) 

If we substitute (2) into (39) we have 

 𝐸0
(2)

= − 
9

4
𝛼 𝐸𝑒𝑥𝑡  

2    (40) 
 

5.0 Conclusion 

The perturbation approximation method has been applied to evaluate the energy shift of the neutral hydrogen atom in the 

presence of an external electric field. A series of mathematical techniques were used to calculate the first order wave function 

correction (36) and the second order energy correction to the ground state (40). Equation (40) gives a good estimation of the 

energy shift when compared to the classical result (3). It is worthwhile to note that the analytical approachpresented in this 

paper allows us to evaluate (36) and (40) with ease and precision. Thus this approach helps in avoiding needless 

computations in using the perturbation theory in equations (13) and (15). The results in literatures [1-4] thus validate the 

mathematical procedure applied.  
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