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Abstract 

In this paper, optimal control theory was applied to a mathematical model describing 

the transmission dynamics of tuberculosis (TB) with variability in susceptibility due to 

difference in awareness level. Seeking to minimize the number of high-risk susceptible 

(and latently-infected) individuals with low level of TB awareness as well as persons 

with infectious TB, and to maximize the number of isolated actively-infected 

individuals placed under the Directly Observed Treatment Short-Course (DOTS), we 

incorporated time-dependent control functions to represent the fraction of susceptible 

(and latently-infected) individuals who benefited from TB awareness message and are 

now aware in a population where there is limited-resources for carrying out such 

enlightenment campaign programmes about TB, as well as case finding techniques for 

detecting and isolating active TB cases for effective treatment. The optimal controls 

were characterized in terms of the optimality systems, which were solved numerically 

for several scenarios using an iterative method with Runge-Kutta fourth order scheme. 

From this work, we presented a new optimal control model that examines the impact of 

limited-resources on TB awareness campaign programs, which ultimately affects the 

transmission dynamics of the disease in a population. The optimal control model 

presented in this work can be implemented in resource-poor countries. Numerical 

simulations were performed for various setting to illustrate the effect of the controls on 

the transmission dynamics of the disease in a population. 

 

Keywords: Tuberculosis, mathematical model, awareness campaign, case finding techniques, limited-resources, 

optimal control theory, numerical simulations. 

 

1.0 Introduction 

In several developed countries of the world, TB is already considered as a disease of the past. However, in most developing 

countries (especially in sub-Sahara Africa and South-East Asia), the impact of TB is still devastating till date. This is 

especially the case in resource-poor countries affected with high disease burdens of both TB and HIV [1]. There was an 

estimated 10.4 million new TB cases globally in 2015, with six high burden countries (HBC) accounting for 60% of the new 

cases, namely: India, Indonesia, China, Nigeria, Pakistan and  

South Africa [2]. This confirms the fact that TB is still a major health problem in resource-poor countries. Poverty is a 

significant factor influencing the current TB epidemic in countries with limited-resources for effective TB control. TB 

transmission is closely linked to unhealthy and crowded living conditions, malnutrition, unavailability of free or affordable 

health care services, as well as dependence on traditional healers for treatment which encourage the spread of TB in the 

community [3]. 
In resource-poor countries, there exists unmet need for modern diagnostic procedures. The few available smear microscopy 

laboratories are understaffed, poorly maintained, and they lack adequate infrastructure, reliable power supply and clean water [1]. 

Moreover, in such resource-limited setting, there exist few opportunities for training and retraining of staff on modern diagnostic 

procedures for both latent and active TB cases. The above situation is further compounded with unavailability of qualified personnel 

as well as limited financial resources in such countries. From the foregoing, it is obvious that the scarcity of adequate laboratory 

facilities in resource-poor countries makes the laboratory diagnosis (and treatment) of chronic TB cases very challenging [1]. 
 

 

Corresponding Author: Egonmwan A.O., Email: amos.egonmwan@uniben.edu, Tel: +2348164116572, +2348037042587 (DO) 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 209 –220 



210 
 

Optimal Control Strategies for the…            Egonmwan and Okuonghae                 Trans. Of NAMP 
 

 

The epidemics of TB and HIV have continued to grow in resource-poor countries. Even with the introduction of effective and 

efficient treatment strategies, such as DOTS, for active TB cases, the incidence of TB will continue to increase if HIV 

epidemic is not urgently checked [4]. Unfortunately, in most resource-poor countries with high TB and HIV burden, 

antiretroviral therapy is often not commenced on persons infected with HIV until such patients have advanced HIV. As a 

result, most persons with HIV infection are already infected with TB without knowing so [4]. 

Furthermore, based on the natural history of TB, it has been shown that early detection of active TB cases, quick and 

effective delivering of anti-TB drugs, coupled with prevention of TB through vaccination and prophylaxis therapy can lead to 

effective control of TB in a resource-poor setting [5]. In spite of the gains achieved by DOTS, the treatment strategy has 

however been limited by the cost-effectiveness of the programme, the high unpredictability of DOTS interventions combined 

in TB control programmes, and the suitability of the treatment strategy to patients and health care workers in various setting 

[5]. 

The aim of this paper is to modify the mathematical model for TB in Okuonghae and Ikhimwin [6] by incorporating time-

dependent control functions and to apply optimal control theory in the resulting model. The control functions represent the 

impact of limited-resources on intensive mass media enlightenment campaign and case finding techniques, as they impact on 

the population dynamics of TB. This paper is organized as follows. In Section 2, we formulate the optimal control model as 

an optimal control problem, and characterize the problem using the Pontryagin's Maximum Principle, and the optimality 

system is derived. In Section3, the optimality system is solved numerically using the Runge-Kutta method in a forward-

backward fashion. Section 4 contains a brief discussion of the results from this work. 

 

2.0 Formulation of optimal control model 

The mathematical model for TB in Okuonghae and Ikhimwin [6] is modified by incorporating time-dependent control 

functions. 

2.1 TB model in Okuonghae and Ikhimwin [6] 

In this section, we describe the model in [6]. The authors in [6] extended the TB model in Okuonghae and Omosigho [7]. 

Instead of partitioning only the susceptible individuals according to their level of TB awareness (i.e., S1 and S2 as described in 

[7]), the authors also partitioned the latently-infected individuals according to their level of TB awareness in [6]. This 

assumption is reasonable because latently-infected individuals show no signs and symptoms of TB and they also do not 

transmit the disease. Hence, according to their level of TB awareness, the latently-infected subpopulation is split into high 

risk (low level of TB awareness) group, E1, and the educated low risk (high level of awareness) group, E2. Persons in the E1 

compartment are made up of individuals from the S1 class as well as some from the treated class (T) who have a low level of 

TB awareness after their recovery. Individuals in the latent class with low level of awareness (E1)are educated at a per capita 

rateψ, and are thereafter moved to the E2 compartment. Individuals who recovers after successful treatment can become re-

infected, with a fraction 0 ≤ ω ≤ lof such persons entering the class of latent TB infections with low level of TB awareness 

(E1), while the remaining fraction, 1 - ω, are moved into the E2 compartment. 

The authors also assumed that the enlightenment programmes produces temporary ‘immunity’ at a per capita rate 
1  (for the 

susceptible individuals, S1 and S2) and at a rate 
2  (for the latently-infected individuals, E1 and E2). The case   21 

corresponds to the situation where there is absolutely no immunity (resulting from the enlightenment programme), whereas 

  021  corresponds to the situation where there is life-long immunity. Hence,  21   measures the rate at which 

individuals from the S2(E2) group returns to the S1(E1) group as a result of continuous education from the TB awareness 

programmes while the disease remains in the population. It was further assumed that   is TB transmission rate. 

In addition, the authors assumed that   10 21  pp  represent the fraction of individuals with new TB infections who 

developed the disease fast per unit of time from the class of latent TB infections with low level of TB awareness (high level 

of TB awareness). Due to the benefits accruing from the awareness programmes, the authors assumed that p1>p2 since new 

TB infections are promptly detected and as such fewer cases of fast progressions from latent to active TB will be recorded 

amongst individuals with a high level of TB awareness (low risk group). 

It was further assumed that the modifications parameters, b1(b2), accounts for exogenous reinfection of latently-infected 

individuals in the E1(E2) class, with 10 12  bb  and k1(k2)represent the progression rate of individuals from the latent 

class, E1(E2), to active TB. In addition to the impact of active cough identification  2  and the cost factor  v , on improving 

the case detection (and identification) rates, apparent from the number of active TB cases in the J compartment, the authors 

also assumed that   is the rate at which an active-case finding strategy is used in searching for chronic TB cases for 

treatment, with r being the treatment rate. The remaining parameter in the model are as defined in [7]. 

Based on the above assumptions, the modified model in [6] is given by the following system of non-linear ordinary 

differential equations: 
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with N = S1 + S2 + E1 + E2 + I + J + T as the total population.  

The effective reproduction corresponding to the model (1) denoted by RT, is given by 
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The qualitative and quantitative study as well as the TB control measures gleaned from the analysis of the TB model (1) are 

given in [6].The definition of state variables and parameters in the model (1) are presented in Tables 1 and 2.  

 

Table 1: Description of state variables in the TB model (1). 

Variable Description 

 tS1
 Population of ‘uneducated’ susceptible individuals 

 tS2
 Population of ‘educated’ susceptible individuals 

 tE1
 Population of ‘uneducated’ latently-infected individuals 

 tE2
 Population of ‘educated’ latently-infected individuals 

 tI  Population of infectious individuals 

 tJ  Population of infectious (identified) individuals 

 tT  Population of treated individuals 

 

Table 2: Description of parameters in the TB model (1). 

Parameter Description 

  Natural death rate 

  Recruitment rate 

  Transmission rate 

21,bb  Transmission rate (exogenous re-infection) 

21, pp  Fraction of fast progression 

21,kk  Progression rate 

r  Recovery rate 

d  TB – induced death rate 
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v  Cost factor 

  Modification parameter for reduced infectiousness of isolated persons 

 ,1
 Awareness rate 

2  Cough identification rate  

 Modification parameter for infectiousness of previously treated 

individuals 

21 ,  ‘Immunity’ measure 

  Effect of program 

  Fraction of treated with high awareness 

  Active case–finding rate 

 

2.2 Formulation and analysis of optimal control problem  

The TB model in [6] is modified by incorporating time-dependent control functions, w1(t) and w2(t). The control functions are 

bounded and Lebesgue integrable, with w1(t) being a control that represent the fraction of susceptible (and latently-infected) 

individuals who received TB awareness message and are now aware in a population where there is limited-resources for 

carrying out such enlightenment campaign programmes about TB. The case   11 tw  implies that limited resources has a 

strong negative impact on TB awareness campaign programmes, and thus unable to educated high-risk susceptible   tS1
 and 

latently-infected   tE1
 individuals with a low level of TB awareness. Whereas, the case   01 tw  indicates that limited 

resources does not negatively impact on TB awareness campaign programmes, thus available enlightenment programmes are 

able to educate a large fraction of high-risk susceptible (and latently-infected) individuals with a low level of TB awareness. 

The function  tw2
, is a case finding control that represent the proportion of infectiouspersons who are identified and isolated 

in health-care facilitiesfor proper treatment and prevention of contacts with susceptibleand latently-infected individuals.The 

term 
21 w  represent the effort that supports the case findingtechniques and isolation policy in ‘holding down’ the isolated 

infectious individuals for proper treatment. 

Based on the above assumptions, the optimal control model is given by 
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        (4) 

The objective functional to be minimized is given by 
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In (5), we minimize the number of high-risk susceptible and latent TB infections with low level of TB awareness through 

intensive mass media campaign efforts, and also minimize the number of persons in the undetected infectious persons 

through case finding techniques. At the same time, we seek to maximize the number of individuals in the identified infectious 

group (placed on a treatment regime under DOTS programme). Hence, our interest is to minimize an objective functional that 

shows a trade-off needed in minimizing the number of high-risk susceptible (S1) and latently-infected (E1) individuals with 

low level of TB awareness, as well as undetected infectious individuals (I), while maximizing the number of detected 

infectious individuals(J), with minimal associated relevant cost of achieving these interventions. The associated cost of 

carrying the intensive mass TB awareness campaign as well as the cost of implementing case finding techniques (which uses 

active cough as a marker for identifying a potential active TB case) in a population are nonlinear and hence take a quadratic 

form.  
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It assumed that that the associated cost of carrying out such an intensive TB awareness campaign, and the cost of conducting 

active cough identification are nonlinear and thus take a quadratic form. The parameters
1B and

2B  signifies the weights on 

the benefit and cost (and they balance the cost factors due to the size and significance of the terms constituting the objective 

functional).Consequently, we seek to find an optimal pair, w1*and w2*, such that 

    ,,:,min**, 2121221  wwwwGwwG   (6)                       

where   is the control set defined by: 
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with ai, bi, i = 1,2being non-negative constants. 

The Pontryagin's Maximum Principle [8] provides the necessary conditions that an optimal pair must satisfy. This principle 

converts (4), (5) and (6) into a problem of minimizing an Hamiltonian, H, pointwisely with respect to w1 and w2: 
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where fi (i=1, …, 7) is the right-hand side of the system of differential equations of the i-th state variable. When the 

Pontryagin's Maximum Principle is applied and the existence result for optimal control from [9], we claim the following 

result: 

Theorem1: There exists an optimal control pair *
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with transversality conditions 
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Proof: By Corollary 4.1 in [9], the convexity of the integrand of G in (5) with respect to (u1, u2) guarantees the existence of 

an optimal pair, a priori boundedness of the state variables, and the Lipschitz property of the state system with respect to the 

state variables. The adjoint equations and transversality conditions can be obtained by using Pontryagin's Maximum Principle 

[8] such that: 
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on the control set   1
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Similarly, for the optimal control function  tw*
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on the control set   2

*

22: btwat  . 

We note that the optimality conditions (i.e., taking derivatives of the Hamiltonian with respect to the controls) only hold in 

the interior of the control set. 

  

3.0 Numerical simulations 

The optimal strategy for effective control of TB, consisting of intensive mass media enlightenment campaign coupled with 

some case finding techniques (for identifying chronic TB cases), in a population with limited-resources are obtained by 

solving the optimality systems which is made up of the system of controlled ordinary differential equations for the state 

system and their corresponding adjoint equations.  

Consequently, the state system, together with an initial condition, are solved forward in time using a guess for the controls 

over the simulated time, while the adjoint system, with values at the final time tf, is solved backward in time using the current 

iterative solution of the state system. The controls are then updated using a convex combination of the controls coupled with 

the value from the characterization (12). 

The process, as well as the iteration is stopped if the values of unknowns at the previous iteration are very close to the ones at 

the present iteration [10]. It is important to note that the optimal control analysis carried out in this work, as well the 

simulations do not depend on the specific parameter values used for the simulation. 
 

Table 3: Baseline value and ranges of the parameters of the optimal control model (4) 

Parameters Baseline values Range References 
  0.02041year

-1
 (0.0143, 0.04) [11] 

    x 10
5
 year

-1
 

___ 
[12] 

  8.557 year
-1

 (4.4769, 15.1347) [13] 

21,bb  1.5 year
-1

 (0, 1) [13] 

21, pp  0.1 year
-1

 (0.05, 0.3) [14] 

21,kk  0.0005 year
-1

 (0.005, 0.05) [15] 

r  1.5 ind
-1

 year
-1

 (1.5, 2.5) [7] 

d  0.365 year
-1

 (0.22, 0.39) [16] 

v  0.5 year
-1

 (0, 1) [6] 

  0.4 year
-1

 (0, 1) [6] 

 ,1
 5 year

-1
 (0, 40) [6] 

2  5 year
-1

 (0, 40) [6] 

 1.2 year
-1

 (1, 2) [17] 

21,  1 year
-1

 (0, 40) [6] 

  0.5 year
-1

 (0, 1) [6] 

  0.5 year
-1

 (0, 1) [6] 

  0.5 year
-1

 (0, 30) [6] 
 

The parameters used in numerically solving the optimal control problem in this chapter are given in Table 3, and for the initial conditions, 

we made use of the following values: S1(0)=(65/120)N,S2(0)=(30/120)N, E1(0)=(20/120)N, E2(0)=(4/120)N, I(0)=(35/1200)N, 

J(0)=(20/1200)N,T(0)=(0/1200)N, where N=100,000 

[2, 18]. For the weights on the control functions, we have made use of the values: B1 = 50 and B2 = 100. And for the bounds on the control 

functions, we made use of 0 ≤ u1≤ 0.95 and 0 ≤ u2≤

v2

1



 

 
Figure 1: The controls

1u  and 
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p ,05.01 k

,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0 ,4.0 ,5

,501 B ,1002 B when 
1  is varied. 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 209 –220 



216 
 

Optimal Control Strategies for the…            Egonmwan and Okuonghae                 Trans. Of NAMP 
 

 

Figure 1 shows the controls plotted as a function of time when the awareness rate  1
 is varied. For both values of 

1 , it is 

observed (in the first frame) that the control  1u , which represents the fraction of susceptible (and latently-infected) 

individuals who benefited from the enlightenment message, remained close to the lower bound for the entire 5-year period of 

simulation. It is worth noting that even a huge increase in the awareness rate did not impact positively on the control  1u , 

since 
1u  remained close to the lower bound. This implies that limited-resources for effective TB control had a strong 

negative impact on intensive mass media enlightenment campaign about TB.The second frame shows that for a low value of 

1 , the second control  2u , which presents the proportion of infectious persons who are identified and isolated in health-

care facilitiesfor proper treatment and prevention of contacts with susceptibleand latently-infected individuals, remained 

close to the lower bound for nearly 2 years before rising (sharply) to its upper bound for the remaining period of the 

simulation. On the other hand, with higher value of 
1 , the control  2u  remained at the upper bound for the entire 5-year 

period of simulation. This indicates that maintaining the case finding at the upper bound is required in order to achieve 

optimal control of TB, in the setting described here. 

 
Figure2: Optimal controls strategies for the case

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p

,1.02 p ,05.01 k ,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0

,4.0 ,5 ,501 B ,1002 B when 
1  is varied. 

 

Figure 2 represent the impact of implementing the optimal control strategy (presented in Figure 1) with an increase in the 

awareness rate  1  on some of the epidemiological classes. The plots show that increasing the value of 
1 leads to a 

reduction in the number of ‘uneducated’ (high risk) latently-infected individuals, and a corresponding increase in the number 

of ‘educated’ (low risk) latently-infected persons. However, implementation of this optimal control strategy will only result 

in a slight reduction of chronic TB cases. After implementing this optimal control strategy for a simulation period of 5 years, 

it will result in the aversion of about 2,127/100,000 latent TB infections, and 72/100,000 active TB cases. 

 

 
Figure3: Thecontrols 

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p ,05.01 k

,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0 ,4.0 ,5

,501 B ,1002 B when   is varied. 

Figure 3 depicts the controls plotted as functions of time when the effect of the enlightenment program is varied. We recall 

that the TB awareness programme is assumed to reduce the chances of TB infection of susceptible individuals (with high 

level of TB awareness) by a factor,  .10   The case 0  signifies that the awareness programme is completely  
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effective, whereas 1  implies that the programme is completely ineffective in reducing TB incidence. The first frame in Figure 3 shows that for 

both values of  , the control  1u  remained very close to the lower bound for the entire 5-year period of simulation; indicating that limited-

resources had a negative impact on the effectiveness of the awareness programme. Hence, regardless of the effectiveness of the enlightenment 

programme, the control will remain close to the lower bound if resources are limited.The second frame shows that for 9.0 , the second 

control  2u  remained close to the lower bound for nearly 3 years before rising (sharply) to its upper bound for the remaining period of the 

simulation. However, for 1.0  the control  2u  remained close to the lower bound for about 1 month, before a steep increase to the upper 

bound for the remaining period of simulation. 

 

Figure 4: Optimal controls strategies for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p ,05.01 k

,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0 ,4.0 ,5

,501 B ,1002 B when   is varied. 

Figure 4 shows some epidemiological classes when the optimal control strategy (presented in Figure 3) is implemented with an improvement in the 

effectiveness of the educational programme   , in a population with limited with resources. The plots show that as the effectiveness of the TB 

enlightenment programme is improved, it resulted in significant reduction in both latent and active TB cases. In fact, after implementing of this 

optimal control strategy for a period of 5 years, it will result in the aversion of about 9,055/100,000 latent TB infections and some 601/100,000 

active TB cases. 

Figure 5 shows the controls plotted as a function of time with a variation in the cough identification rate  2 . The first frame shows that for both 

values of 
2 , the control  1u  remained close to the lower bound. However, the second frame shows that for both values of 

2 , the control  2u  

initially remained close to the lower bound before a steep increase to the upper bound for almost the entire 5-year period of simulation. 

 
Figure5: The controls 

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p ,05.01 k

,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0 ,4.0 ,5

,501 B ,1002 B when 
2  is varied. 

 
Figure 6: Optimal controls strategies for the case 

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p

,05.01 k ,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12  ,5.0 ,4.0

,5 ,501 B ,1002 B when 
2  is varied. 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 209 –220 



218 
 

Optimal Control Strategies for the…            Egonmwan and Okuonghae                 Trans. Of NAMP 
 

Figure 6 shows the impact of implementing the optimal control strategy (presented in Figure 5) on some of the epidemiological classes, with an 

increase in the cough identification rate  2 . The plots show that an increase in the value of 
2 will result in significant decrease in the number of 

latent and active TB cases in the population. However, more effect is seen on the infectious subpopulations. After implementing the optimal control 

strategy for a 5-year period of simulation, it will result in the aversion of about 1,624/100,000 latent TB infections, and about 164/100,000 active 

TB cases. 

 
Figure 7: The controls 

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b ,1.01 p ,1.02 p

,05.01 k ,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52  ,2.1 ,11  ,12 

,5.0 ,4.0 ,5 ,501 B ,1002 B when   is varied. 

 

In Figure 7, we have the controls plotted as a function of time with a variation in the active case finding rate   . The first 

frame shows that for both values of  , the control  1u  remained close to the lower bound. The second frame shows that for 

both values of  , the behavior of the control  2u  is quite similar to that in Figure 6.5 for the entire 5-year period of 

simulation. 

 

Finally, in Figure 8, we have the simulation results of implementing the optimal control strategy (presented in Figure 7) on 

the infected epidemiological classes. The plots show that an increase in the active case finding rate will result in reduction in 

number of both latent and active TB cases in the population. Just like in the Figure 6, we also observe that greater effect is 

felt on infectious subpopulation. After implementing the optimal control strategy for a 5-year period of simulation, it will 

result in the aversion of about 1,693/100,000 latent TB infections, and about 168/100,000 active TB cases. 

 
Figure 8: Optimal controls strategies for the case 

1u  and  
2u  for the case 0241.0 , ,105  ,2.01 b ,2.02 b

,1.01 p ,1.02 p ,05.01 k ,05.02 k ,5.1r ,365.0d ,5.0v ,4.0 ,5 ,51  ,52 

,2.1 ,11  ,12  ,5.0 ,4.0 ,5 ,501 B ,1002 B when   is varied. 
 

4 Discussion and conclusion 

In this study, we have presented a new optimal control model that examines the impact of limited-resources on enlightenment 

campaign programmes for tuberculosis, which ultimately affects the population dynamics of the disease. The new optimal 

control model in this work is an extension of the TB model in [6]; where we incorporated time-dependent control functions 

which represented the fraction of susceptible (and latently-infected) individuals who benefited from TB enlightenment 

campaign programmes, as well as case-finding techniques for detecting and isolating active TB for effective treatment. The 

optimal control model presented in this paper can implemented in developing countries where there still exists limited-

resources for effective TB control. 

Results from the numerical simulations of our optimal control model suggest that in order to significantly reduce the 

incidence of latent TB infections in the population, then attention must immediately shift to improving the effectiveness of 

the educational programme, i.e., intensive mass media enlightenment campaign programmes about TB. On the other hand, in 

order to arrest cases of active TB, then attention must immediately shift to increasing the cough identification rate and the 

active case finding rate. 
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At the moment, there exists very little or no mass media enlightenment campaign about TB in Nigeria and perhaps, same in 

other developing countries of the world. This lack of advocacy and social mobilization about TB often keeps a large 

percentage of persons in the population in the dark about TB [19]. This ultimately fosters continued spread of TB in the 

population. 

The lack of financial commitment on the part of governments in some developing countries has greatly and negatively 

affected effective TB control in such regions [19, 20]. The financial burden associated with TB diagnosis and treatment on 

TB patients in resource-poor countries continues to be one of the major problems in effectively controlling the disease in 

these regions. Consequently, an overall strengthening of health care system and greater funding by government of developing 

countries and international donor agencies is urgently needed in these regions [20]. 

In conclusion, the results from our optimal control model and numerical simulation has shown how an optimal combination 

of intensive mass media enlightenment campaign about TB, coupled with cough identification and active case finding may 

depend on the cost of implementing the controls as well as the parameters of the TB model, particularly, the effect of the 

intensive mass media awareness campaign programme   , cough identification rate  2 , and active case finding rate for 

  . The result from this paper provides a framework for designing cost-effective strategies for the control of TB using 

multiple intervention programmes in a population with limited-resources. 
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