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Abstract 

In this paper we used the Centre Manifold theorem to analyzed the local stability of 

Endemic Equilibrium (EE). We obtained the endemic equilibrium point in terms of 

forces of infection and use it to analyze for the bifurcation of the model. We carried out 

the bifurcation analysis of the model with four forces of infection which resulted into 

bifurcation diagram. The forces of infection of vector-primary host and vector-

secondary host transmissions were plotted against basic reproduction number. The 

bifurcation diagram revealed that the model exhibit forward bifurcation.  
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1. Introduction 

In a dynamical system, bifurcation occurs when a small smooth change made to the parameter values (the bifurcation 

parameters) of a system causes a sudden qualitative or topological change in its behaviour. Bifurcations occur in both 

continuous systems and discrete systems [1]. A slight variation in parameter can caused a change in the differential system. 

The change in a parameter can also cause the stable equilibrium to change to unstable equilibrium [2].  

Mathematical modelling of epidemics is aim at understanding the spread and control of an infectious disease within a host 

population [3, 4].  The basic reproduction number,
0R  played a key role by providing the condition for the eradication or 

persistence of the epidemics [5, 6, 7]. Indeed, assessing the direction of the transcritical bifurcation arising at 10 R is a 

primary issue in epidemic modelling. For many compartmental epidemic models, if
0R is greater than unity, then the disease 

will spread and possibly persist within the host population; if
0R is less than the unity, then the infection cannot sustain itself 

[3, 4, 8]. When this happens, the bifurcation at the criticality is said to be a trans critical forward bifurcation. However, in 

some cases the dynamics may be more complex. This happens, in particular, when the model exhibits the phenomenon of 

backward bifurcation [8, 9]. This occurrence implies that a stable endemic equilibrium may also exist when
0R is less than 

unity. From the epidemiological point of view, this phenomenon has important public health implications because reducing

0R below the unity is no longer sufficient to guarantee disease elimination; the basic reproduction number must be reduced 

under a smaller threshold in order to avoid endemic states and get the elimination[10]. 

Yellow fever is an acute viral disease. In most cases symptoms include fever, chills, loss of appetite, nausea, muscle pains 

particularly in the back, and headaches. The disease is caused by the yellow fever virus and is spread by the bite of the female 

mosquito. It only infects humans, other primates and several species of mosquito [11]. In cities it is primarily spread by 

mosquitoes of the Aedesaegypti species. The virus is an Ribonucleic acid (RNA)  virus of the genus Flavivirus [12].Basically 

Yellow Fever Virus (YFV) is spread through the bite of the mosquito A𝑒des aegypti, however different mosquitoes, for 

example, the tiger mosquito (Aedesalbopictus) can likewise serve as a carrier for this infection. To confirm a suspected case 

blood sample testing with Polymerase Chain Reaction (PCR) is required [13]. 

Yellow fever virus (YFV) is mainly transmitted through the bite of the yellow fever mosquito Aedesaegypti, but other 

mosquitoes such as the tiger mosquito (Aedesalbopictus) can also serve as a vector for this virus. Like other Arboviruses 

which are transmitted via mosquitoes, the yellow fever virus is taken up by a female mosquito when it ingests the blood of an 

infected human or other primate. Viruses reach the stomach of the mosquito, and if the virus concentration is high enough, 

the virus can infect epithelial cells and replicate there [14]. 
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In persons who develop symptoms, the incubation period (time from infection until illness) is 3–6 days. The initial symptoms 

include sudden onset of fever, chills, severe headache, back pain, general body aches, nausea, and vomiting, fatigue, and 

weakness. After a brief remission of hours to a day, roughly 15% of cases progress to develop a more severe form of the 

disease. The severe form is characterized by high fever, jaundice, bleeding, and eventually shock and failure of multiple 

organs [15]. Surviving the infection provides lifelong immunity [16]. 

In [17] the model of yellow fever epidemics was formulated which involves the interactions of two principal communities; 

hosts (humans) and Vectors (aedesaegypti mosquitoes). The host community was divided into three compartments of 

Susceptible )(tS , Infected )(tI  and Recovered )(tR  while the vector community was partitioned into two compartments of 

Susceptible )(tN  and Infective or virus carriers )(tM  where 0t is the time. He analyzed the local stability of the model 

using Jacobian matrix and implicit function. 

In [18] they formulated a model and incorporated the biology of the urban vector of yellow fever, the mosquito Aedesaegypti, 

the stages of the disease in the host (humans). From the epidemiological point of view, the mosquito follows a Susceptible, 

Exposed, Infective (SEI) sequence. In their, model the adult populations are subdivided according to their status with respect 

to the virus. They assumed that there is no vertical transmission of the virus and eggs, larvae, pupae and non parous adults are 

always susceptible. The humans are subdivided in sub-populations according to their status with respect to the illness as: 

susceptible (S), exposed (E), infective (I), in remission (r), toxic (T) and recovered (R). 

In[19] they formulated a mathematical model of yellow fever dynamics incorporating secondary host and two equilibrium 

states exist; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). In [20] they obtained the Disease Free 

Equilibrium (DFE) points, computed the basic reproduction number and analyzed the local and global stabilities.  

In this paper, we obtained the Endemic Equilibrium (EE) point in terms of forces of infection and analyze the local stability 

using centre manifold theorem as used in[21, 22]. We carried out the bifurcation analysis of the model with four forces of 

infection which resulted into bifurcation diagram where forces of infection of vector to primary host transmission **

vh  and 

vector to secondary host transmission **

vm  were plotted against the basic reproduction number of vector to primary host 

transmission
vhR  and basic reproduction number vector to secondary host transmission

vmR , respectively. 

 

2. Materials and Methods 

Model Formulation 

The schematic diagram of the model is shown in figure 2. 1. The dash line from infected human class, 
hI , to the non-carrier 

vector, 
1V , shows that the infected human individuals infect the non-carrier vector population while the dash line from carrier 

vector, 
2V , to the susceptible human population, 

hS , shows the transfer of the virus from infected mosquito to susceptible 

human. So also, the dash line from infected monkey class, 
mI , to the non-carrier vector, 

1V , shows that the infected monkey  

infect the non-carrier vector population while the dash line from carrier vector, 
2V , to the susceptible monkey population, 

mS , 

shows the transfer of the virus from carrier vector to susceptible monkey. 

 
Figure 2.1: Schematic Diagram of the Model  
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Assumptions of the Model 

The details of the model formulation is given in [19] and [20]. 

The following assumptions were made: 

(i) The susceptible vaccinated individuals move to recovered/immune class; 

(ii) The recovery rate, h  of humans include the treatment and natural healing of the infected individuals; 

(iii) The vaccinated and recovered susceptible and infected individuals become permanently immune to the disease for life; 

(iv) The natural death rate of vectors v  include the death due to absence of blood meal; 

(v) 
The infected secondary host died with the infection since they do not have access to vaccination and treatment;

 

(vi) 
The forces of infection of vector-human transmission 

h

h

N

VS 21 and human-vector transmission 
h

h

N

IV12
 as no effect on the 

forces of infection of vector-secondary host transmission 
m

m

N

VS 24
and secondary host -vector transmission 

m

m

N

IV12
 and 

vice visa because the contact between the humans and secondary host cannot cause the transmission of the virus. 
 

 

  hh

h

h

h

h S
N

VS

dt

dS



 21       (2.1)  

  hhhh

h

hh I
N

VS

dt

dI



 21       (2.2) 

hhhhh
h RIS

dt

dR
         (2.3) 

  1

13121 V
N

IV

N

IV

dt

dV
vv

m

m

h

h

v 



      (2.4) 

  2

13122 V
N

IV

N

IV

dt

dV
vv

m

m

h

h 


       (2.5) 

mm

m

m

m

m S
N

VS

dt

dS



 24       (2.6)  

  mmm

m

mm I
N

VS

dt

dI



 24       (2.7) 

Where, 

hhhh RISN          (2.8) 

21 VVNv          (2.9) 

mmm ISN          (2.10) 

 

Table 2.1: Notation and definition of variables and parameter  

Symbol Description 

 tSh
 Number of susceptible humans at time t  

 tI h
 Number of infectious humans at time t  

 tRh
 Number of recovered/Immune human at time t  

 tV1
 Number of non-carrier vectors at time t  

 tV2
 Number of carrier vectors at time t   

 tSm
 Number of susceptible secondary host at time t  

 tIm
 Number of infectious secondary host at time t  

hN  Total human population at time t  

vN  Total vector population at time t  

mN  Total secondary vector population at time t  

1  Effective virus Transmission rate from mosquito to humans 
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2  Effective virus Transmission rate from humans to mosquito  

3  Effective virus Transmission rate from secondary host to mosquito 

4  Effective virus Transmission rate from mosquito to secondary host 

h  Recruitment number of human population 

v  Recruitment number of mosquito population 

m  Recruitment number of secondary vector population 

h  Disease-induced death rate of humans 

v  Death rate of mosquito due to application of insecticide 

m  Disease-induced death rate of secondary host  

h  Natural death rate of human population 

v  Natural death rate of mosquito population 

m  Natural death rate of secondary host population 

h  Recovery rate of human population due to drug administration 

v  vaccination rate for the human population 

 

Disease Free Equilibrium (DFE) Points 

The DFE is given as 

  








 
 0,,0,,,0,,,,,,,

311

000

2

0

1

0000

m

mv

h

hh

mmhhh
AAA

ISVVRISE


   (2.11) 

Basic Reproduction Number, 
0R
 

The basic reproduction number is the average number of secondary infections caused by a single infectious individual during 

his/her entire infectious life time. Applying next generation matrix operator to compute the Basic Reproduction Number of 

the model [7 23, 24]. The basic reproduction number is obtained by dividing the whole population into n compartments in 

which there are nm   infected compartments. Let mixi .,..,3,2,1,   be the numbers of infected individuals in the thi  

infected compartment at time t  .   

The largest eigenvalue or spectral radius of 1FV is the basic reproduction number of the model. 
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     (2.12)

 

Where 
iF   is the rate of appearance of new infection in compartment i , 

iV  is the transfer of infections from one 

compartment i to another and 0E is the disease-Free Equilibrium. 
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Where  

m

v

h

v AA








 65  and
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multiplying (2.13) by (2.15) gives 
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The characteristic equation of (2.16) is given by 
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Therefore,  
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(2.18) 

Hence,  

2 is the spectral radius of  1FV  

4

2

3

643

2

321

2

521
0

AA

A

AAA

A
R mh 


     (2.19) 

There are two host populations and one vector in the model, and it was shown from the schematic diagram in Figure 2.1 that 

the vector transmits the infection to human host and secondary host (monkey). Hence, the Basic Reproduction Number can 

be represented as, 

vmvhvmvh RRRRRR 
2

00 or      (2.20) 

Such that 

2

321

2

521

AAA

A
R h

vh


       (2.21) 

which is the basic reproduction number of vector-primary host compartments and represents the infection from vector to 

human and human to vector in the absence of secondary host (monkeys). 

and 

4

2

3

643

AA

A
R m

mv




      (2.22) 

which is the basic reproduction number  of vector-secondary host compartments and represents the infection from vector to 

monkey and monkey to vector in the absence of primary host (humans). 

 

Endemic Equilibrium Point (EEP) in Terms of Forces of Infection  

The Endemic Equilibrium Point (EEP) in terms of forces of infectionare computed for the bifurcation analysis. 

Let,  

   ******

2

**

1

******

21

** ,,,,,,,,,,,, mmhhhmmhhh ISVVRISISVVRISE   (2.23)
 

bethe Endemic Equilibrium points     

0**

1

****  hvhhh SAS       (2.24) 
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0**

2

****  hvhh IAS         (2.25) 

0******  hhhhh RIS        (2.26) 
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    (2.31) 

**

vh is the force of infection of vectors  (mosquitoes) to primary host (humans) 

**

hv is the force of infection of primary host (humans) to vectors (mosquitoes) 

**

mv is the force of infection  of secondary host (monkeys) to vectors (mosquitoes) 

**

vm is the force of infection of vectors (mosquitoes)  to secondary host  (monkeys) 

Solving (2.24) to (2.30) gives the endemic equilibrium point in terms of forces of infection: 

 
 
 

 
 

  



























































































































**

4

**

**

****

33

****

****

3

**

12

**

2

**

12

**

**

1

**

**

**

2

**

1

**

**

**

vmm

vmm

vmm

m

mvhv

mvhvv

mvhv

v

vhh

vhh

vh

vhh

vh

h

m

m

h

h

h

A

AA

A

AA

vA

AA

A

I

S

V

V

R

I

S























     (2.32) 

The total population of human at endemic equilibrium in terms of forces of infection is given as 
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Where    hA7  
The total population of secondary host at endemic equilibrium in terms of forces of infection is given as 
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mmm

A

A
N

A
N

RSN











      (2.34) 

Substituting (2.32) and (2.33) into first equation of (2.31) gives 

  
  **

721

****

33

******

1521**

vhmvhv

mvhvvhh
vh

AAAAA

AAA











     (2.35) 

**

721

**

2**

vh

hvh

hv
AAA 





       (2.36) 

**

4

**

3**

vm

vm

mv
A 





        (2.37) 
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  

  **

4

****

33

******

644**

vmmvhv

vmmmvhv
vm

AAA

AA











     (2.38) 

Note that, **

mv  and **

vm  are the force of infections of secondary host to mosquitoes and mosquitoes to secondary host 

respectively. It was assumed that, the infected secondary host cannot infect humans even if they have contact, since the 

means of transmission is through mosquito bite. Hence, they are taken as zero in the force of infections of mosquitoes to 

human and human to mosquitoes, i.e. 0****  vmmv  .  

Therefore, (2.35) becomes 

 
  **

721

**

33

**

1

**

521**

vhhv

vhhvh

vh
AAAAA

AAA











     (2.39) 

Substituting (2.36) into (2.39) gives 

   
  0

2

2

52121

2

3

2

2

2

1

**2

52213127

2

321

2**

732

2

7

2

3





h

vhhhvhh

AAAAAA

AAAAAAAAAAAAA



  (2.40) 

03

**

2

2**

1  GGG vhvh        (2.41) 

Where, 

  














vh

hh

h

RAAAG

AAAAAAAAAG

AAAAG

1

2

2

3

2

2

2

13

2

52213127

2

3212

732

2

7

2

31



     (2.42) 

Note also that, **

vh  and **

hv  are the force of infections of mosquitoes to human and human to mosquitoes respectively. It was 

assumed that, the infected secondary host cannot infect humans even if they have contact, since the means of transmission is 

through mosquito bite. Hence, they aretaken as zero in the force of infections of secondary host to mosquitoes and 

mosquitoes to secondary host, i.e. 0****  hvvh  .  

Therefore, (2.38) becomes 

 **

4

**

3**

vm

vm
mv

A 





        (2.43) 

Substituting (2.37) into (2.43) gives 

      02 6443

2

4

2

3

**

64434334

2

3

2**

33

2

3  mvmvm AAAAAAAAAAAA   (2.44) 

03

**

2

2**

1  HHH vmvm        (2.45) 

Where, 

 

  














vmRAAH

AAAAAAH

AAH

1

2

2

4

2

33

64434334

2

32

33

2

31



      (2.46) 

The quadratic equation (2.41) and (2.45) can be analyze for the possibility of multiple equilibria whenever the associated 

reproduction number is greater than or less than unity. The coefficient 
1G  is always positive and 

3G is positive if 1vhR  and 

negative if 1vhR . Hence, this leads to the following remark:  

Remark 2.1 

The model equation (2.1) to (2.7) has 

i. Precisely one unique endemic equilibrium if 03 G , 1vhR , 

ii. Precisely one unique endemic equilibrium if 02 G and 03 G or 04 31

2

2  GGG , 

iii. Precisely two endemic equilibria if 03 G ,  02 G  and 04 31

2

2  GGG , 1vhR and  

iv. No endemic equilibrium otherwise. 
 

Remark 2.2 

The model equation (2.1) to (2.7) has 

i. Precisely one unique endemic equilibrium if 03 H , 1vmR , 

ii. Precisely one unique endemic equilibrium if 02 H and 03 H or 04 31

2

2  HHH , 

iii. Precisely two endemic equilibria if 03 H ,  02 H  and 04 31

2

2  HHH , 1vmR and  

iv. No endemic equilibrium otherwise. 
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Local Stability of Endemic Equilibrium  

From the result above, the following theorem is stated which will be proved by using Centre Manifold Theorem and 

bifurcation diagram. 
 

Theorem 2.1: The endemic equilibrium point **E , exist if 03 G ,  02 G , 04 31

2

2  GGG and 1vhR , and is locally stable if

1vhR  and unstable if 1vhR . 

Using the Center Manifold theory as used by [21] to investigate the likelihood of backward or forward bifurcation of the 

model. This is accomplished by renaming the factors as follows 

Let 

765241321 ,,,,,, yIySyVyVyRyIyS mmhhh    (2.47)
 

where 

1321  yyy ,  154  yy , 176  yy    (2.48)
 

By using vector notation 

 TyyyyyyyY 7654321 ,,,,,, ,    (2.49) 

the model (2.1) to (2.7) can be re-written in the form of  

 yF
dt

dY


,       (2.50) 

with 

 TfffffffF 7654321 ,,,,,,
    (2.51)

 

as follows; 

11
511

1
1 yA

N

yy
f

dt

dy

h

h 
      (2.52) 

22
511

2
2 yA

N

yy
f

dt

dy

h


      (2.53) 

3213
3 yyvyf

dt

dy
hh  

     (2.54) 

43
743242

4
4 yA

N

yy

N

yy
f

dt

dy

mh

v 
     (2.55) 

53
743242

5
5 yA

N

yy

N

yy
f

dt

dy

mh


     (2.56) 

6
564

6
6 y

N

yy
f

dt

dy
m

h

m 



     (2.57) 

74
564

7
7 yA

N

yy
f

dt

dy

h


      (2.58) 

The Jacobian matrix of the model  at DFE is given as  













































444

44

33322

33322

112

111

0

00000

00000

0000

0000

0000

00000

00000

)(

AB

B

BAB

BAB

v

BA

BA

EJ

m

hh













    (2.59) 

The following theorem will be used to determine whether the model system (2.1) – (2.7) exhibit a backward or forward 

bifurcation at  10 R
 

              
Figure 2.2: Bifurcation Diagram for Mosquitoes to Human Infection            Figure 2.3: Bifurcation Diagram for Mosquitoes to Secondary Host Infection 
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Theorem 2.2:[22], consider the following general system of ordinary differential equations with a parameter   such that 

  nnfyf
dt

dy
 :,,  and   ncf 2 where 0  is an equilibrium point of the system (i.e.   0,0 f ) for all   and  

i. 
   












 0,00,0

i

i

y

f
yfM is the linearization matrix of the system around the equilibrium 0 with  evaluated at 0.

 

ii. Zero is a simple eigenvalues of M  and all other eigenvalues of M  have negative real parts. 

iii. Matrix M has a right eigenvectors r  and left eigenvectors l  corresponding to zero eigenvalues. 

Let 
kf  be the thk  component of f  and  

 
 




n

jik ji

k
jik

yy

f
rrla

1,,

2

0,0
     (2.60) 

 
 




n

jik i

k
jk

y

f
rlb

1,, 1

2

0,0


     (2.61) 

The local dynamics of the system around the equilibrium point is determined by the signs of a  and b  particularly, if 0a

and 0b , then a backward bifurcation occurs at 0 .  

The local dynamics of (2.41) are totally governed by the signs of a  and b . 

Suppose *1    is the chosen bifurcation parameter and when 10 R
 
and solve for 

1  from   

4

2

3

643

2

321

2

521

4

2

3

643

2

321

2

521
0

1
AA

A

AAA

A

AA

A

AAA

A
R

mh

mh








    (2.62) 

2

542

621434

2

321*1

h

m

AA

AAAAAAA









    (2.63) 

Thus, the centre manifold theory can be used to analyze the dynamics of (2.1)-(2.7) at *1   . It can be shown that the 

Jacobian matrix (2.59) at *1    has a right eigenvector associated with the zero eigenvalues given by 

 Trrrrrrrr 7654321 ,,,,,, ,    (2.64) 

Multiplying (2.59) by (2.64) and equate to zero gives 

Right eigenvectors are:  

5

1

11
1 r

A

B
r




      (2.65) 

5

2

11
2 r

A

B
r




      (2.66) 

 
5

21

112111
3 r

AA

vBABA
r

h

h



 


     (2.67) 

 
5

432

4343221214
4 r

AAA

BBABBA
r

 


    (2.68) 

5
44

6 r
B

r
m




      (2.69) 

5

4

44
7 r

A

B
r




      (2.70) 

where 05 r  and is called a free right eigenvector. 

Furthermore, the Jacobian matrix (2.59) has left eigenvector associated with the zero eigenvalues at *1   . Given by  

 Tllllllll 7654321 ,,,,,, ,     (2.71) 

Taking the transpose of (2.59) and multiplying by (2.71) and equate to zero gives 

The left eigenvectors are: 

06431  llll       (2.72)  

5

2

22
2 l

A

B
l




      (2.73)  

5

4

33
7 l

A

B
l




      (2.74)  
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For which 05 l  is a free left eigenvector. 

The computation of a  and b  

From the model system (2.1) – (2.7) the associated non-zero partial derivatives of F at DFE are given by 

hNyy

f 1

51

1

2 




       (2.75) 

hNyy

f 1

51

2

2 




       (2.76) 

mh Nyy

f

Nyy

f 3

74

4

2

2

24

4

2

,










      (2.77) 

mh Nyy

f

Nyy

f 3

74

5

2

2

24

5

2

,










      (2.78) 

mNyy

f 4

56

6

2 




       (2.79) 

mNyy

f 4

56

7

2 




       (2.80) 

From (2.60) andconsidering (2.75) to (2.80), it follows that, 

mmhh N
rrl

N
rrl

N
rrl

N
rrla 4

657
3

745
2

425
1

512




   (2.81) 

Substituting (2.65), (2.66), (2.68), (2.69), (2.70), (2.73) and (2.74) into (2.81) gives 

 






















mhmmh NA

B

NA

B

AAA

BBABBA
rl

NA

BB

NAA

BB
rla

4

443

2

121

432

43432212142

55

4

43

2

43

21

212

2

12

55






 (2.82) 

From (2.82)  

0a        (2.83) 

The value of b  is also obtained from (2.61) 

For the sign of b , the associated non-zero partial derivatives of F  at DFE are  

h

h

h NAN

y

y

f

1

1

51

1

2 








     (2.84) 

h

h

h NAN

y

y

f

1

1

51

2

2 








     (2.85) 

Since 

1

1
A

y h


 

Therefore, 


 









7

1 15

2

2

2

7

1 15

1

2

1

j

j

j

j
y

f
rl

y

f
rlb



     (2.86) 

h

h

h

h

NA
rl

NA
rlb

1

52

1

51







     (2.87) 

But 01 l  

Therefore,  

h

h

NA
rlb

1

52




      (2.88) 

Substituting (2.73) into (2.88) gives 

55

21

22 rl
NAA

B
b

h

h

       (2.89) 

Since 05 l  and 05 r  then 0b  

Hence, the endemic equilibrium is local stable 0a . 

Figure 2.2 and 2.3 clearly show the existence of a unique stable equilibrium and the model undergoes the phenomenon of 

forward bifurcation. The diagrams exhibits a globally stable disease-free equilibrium when 1vhR , 1vmR and an unstable 

state if 1vhR , 1vmR while it is evident that a unique stable endemic equilibrium emerges from the bifurcation point 1vhR , 

1vmR and increases rapidly when 1vhR  and 1vmR . It is clear that the disease-free state exists for all 
vhR and 

vmR while an 

endemic equilibrium only exists for 1vhR and 1vmR . 
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3. Result and Discussion 

In figure 2.2, the two equilibrium points exchange stabilities depending on the value of basic reproduction number of 

mosquitoes to human, 
vhR . A transcritical/forward bifurcation in the equilibrium points occur at 1vhR .If, 1vhR  the disease 

free equilibrium (DFE) is stable. But if 1vhR , the endemic equilibrium exists and it is stable while the disease free 

equilibrium is a saddle point. Thus there is a forward bifurcation because in the neighbourhood of the bifurcation point, the 

force of infection of mosquitoes to human, **

vh  is an increasing function of 
vhR . 

In figure 2.3, the two equilibrium points exchange stabilities depending on the value of basic reproduction number of 

mosquitoes to secondary host, 
vmR . A transcritical/forward bifurcation in the equilibrium points occur at 1vmR .If, 1vmR  the 

disease free equilibrium (DFE) is stable. But if 1vmR , the endemic equilibrium exists and it is stable while the disease free 

equilibrium is a saddle point. Thus there is a forward bifurcation because in the neighbourhood of the bifurcation point, the 

force of infection of mosquitoes to secondary host, **

vm  is an increasing function of 
vmR . 

4. Conclusion 

In this paper, the mathematical model of yellow fever dynamics was developed using a system of first order ordinary 

differential equation. The local stability analysis showed that, the Endemic Equilibrium (EE) is stable since 0,0  ba . 

Bifurcation analysis showed that the model exhibited forward bifurcation which implies there is no co-existence of stable 

endemic equilibrium at 1vhR and 1vmR , to this effect the disease can be put under control or eradicated from the 

population. 
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