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Abstract 
 

We considered preconditioned iterative algorithm by introducing  non-orthogonal 

transform as an update recursion of the standard QR decomposition(Q is an 

orthonormal column vector and R is upper triangular matrix with positive diagonal 

entries) based recursive least squares algorithm by adapting an upper triangular block 

diagonal matrix. The Givens rotation is applied to derive the posterior and a priori 

error without the explicit computation of the tap weight coefficient vector. This 

computation requires the successive cosine term such that the performance function is 

minimized by choosing the tap weight coefficient and compute the upper triangular 

system via back-substitution. We extend the existing techniques by introducing an 

exponentially weighted factor. This technique has similar convergence property, 

stability as the conventional QRD-RLS approach. Although, the two techniques exhibit 

the tractability of signal information and are stable against white noise. The tractability 

of both techniques depends on the values assigned to the forgetting or control variable 

( ).  As the value of the forgetting factor increases, the tractability and stability of 

signal information is observed. The learning curve indicates that the exponentially 

weighted block QRD-RLS algorithm is consistent and efficient.  

 

Keywords: QR decomposition recursive least squares, Givens rotations, adaptive filter. 

 
1.0 Introduction 

The standard recursive least squares algorithm recursively updates the weights using the matrix inversion lemma. A 

commonly used alternative solutions performs a set of orthogonal rotations on the incoming data thereby transforming the 

over specified rectangular data matrix into upper triangular form. The weight are then obtained by back substitution [1].This 

technique is called the QR decomposition (QRD) based recursive least squares (RLS). The standard recursive least squares 

algorithm has been proved to be numerically unstable when implemented in finite word length. This problem has generated a 

lot of research interest on how to reduce the computational complexity and improves its numerical properties. As such, the 

fast recursive least square algorithm utilizes the QR decomposition (Givens rotations or Householder transformation), this 

approach uses the data matrix [2].However, the orthogonal decomposition is a well known approach to eliminate numerical 

instability problem [3, 4].The QR decomposition possesses good numerical properties and it’s possible implementation in 

systolic array which makes it interesting for real time application [5]. This study extend the QR-decomposition recursive least 

square by applying exponential weight factor. This procedure apply a non-orthogonal transform that recursively update the 

data matrix to generate the 2 2  block diagonal algorithm. 

This paper is organized as follows. Section two briefly introduces the adaptive filter structure. The QR decomposition based 

recursive least squares algorithm using Givens rotations is considered in Section Three. The 2 by 2 block –diagonal algorithm 

is presented in Section Four Conclusions are drawn in Section Five. 

 

2.0 Adaptive Filtering 

Adaptive filtering can be considered as a process whereby the parameters used in signal processing changes according to 

some criterion. Normally these criteria are the estimated mean squared error or the correlation [1, 6]. Adaptive filters are time 

varying since their parameters are continually changing in other to meet a specify performance requirement as such adaptive 

filter can be interpreted as filter that performs approximation step on-line. 
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Fig .1.Structure of adaptive filter. 

 

The structure above is the general configuration of the adaptive filter [6], where k is the length of iterations, ( )kd is the 

reference signal or desired signal, ( )kx is the input signal vector and  

( ) ( ) ( )Tk k ky x w       (2.1) 

is the adaptive filter output. Where 

( ) ( ) ( ) ( )Tk k k k e d x w      (2.2) 

 is the error signal used to form the performance function  that is required by the adaptation algorithm in other to determine 

the appropriate updating of the  adaptive filter coefficient  w k . The minimization of the performance function implies that 

there is a corresponding relationship between the adaptive filter output and the reference signal.  

 

3.0  QRD- RLS USING GIVENS ROTATIONS 

The triangularization approach can be applied to generate the QR-RLS algorithm[1,7]. The recursive least squares algorithm 

generate the recursive process the coefficient of the adaptive filter[6] minimizes the following performance function; 

2

0 0

ˆ( ) ( ) [ ( ) ( ) ( )]
k k

k i k i T

i i

k k k k k  
 

 

   2
e d x w               (3.1) 

where ( ) [ ( ) ( 1) ... ( )]Tk x k x k x k N  x is the input signal vector and 
0 1( ) [ ( ) ( ) ... ( )]T

Nk w k w k w kw is the filter 

coefficient at instant k . Where ( )ke is the a posteriori error at instant k  and  is the forgetting factor. The above equation 

can be written as a function of increasing dimension matrices and vectors. 
1/2 /2( ) [ ( ) ( 1) ... (0)]k Tk k k  X x x x  

1/2 /2( ) ( ) ( ) [ ( ) ( 1) ... (0)]k Ty k k k y k k y   x w    

and 1/2 /2( ) [ ( ) ( 1) ... (0)]k Tk k k  d d d d .Where ˆ( )ke  is the error vector containing the weighted past error values 
/2

( )
k i

k


e . 

1/ 2 1/ 2 ˆˆ( ) [ ( ) ( 1),..., (0)] ( ) ( ) ( )Tk k k k k k    e e e e d x w                      (3.2)     

Since each Givens rotation matrix is orthogonal, then it can be proved that ( )kQ  is also orthogonal [8] i.e.,
1( ) ( )T

kk k I Q Q

.As such we have 

21 0 0 0 0ˆ ˆ( ) ( ) ( ) ... ( )
ˆ ˆ ˆ ( )0 ( 1) 0 ( 2) 0 ( )

k NI I
k k k k

kk k k N

       
        

         
Q X Q X

UQ Q Q

    (3.3) 
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where ( )kQ  is ( 1) ( 1)k k   matrix which is the overall triangularization matrix via elementary Givens rotation 

matrices. From (3.3) we note that  
1 0ˆ( ) ( )
0 ( 1)

k k
k

 
  

 
Q Q

Q

                           (3.4) 

which is the recursive nature of ( )kQ  and ˆ ( )kQ  is responsible for zeroing ( )T kx .By pre-multiplying (3.2) by ( )kQ , we 

obtain 

1 1

2 2

ˆˆ ( ) ( ) 0
ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )( )

q q

q

q q

k k
k k k k

k kk

    
       

      

e d
Q e e w

e Ud

   (3.5) 

where ( )kU is the upper triangular matrix .The subscripts 1 and 2 indicate that the first k N  and the last 1N   components 

of the vector. The performance function can be minimized by choosing ( )kw  such that 
2

ˆ ( ) ( ) ( )q k k kd U w  is zero. The tap 

weight coefficients are then calculated by using back substitution. From (3.3) we have 

1/ 2

( ) ( 1)... ( )

0 0 0

ˆ( ) ( ) ( ) : : :

0 0 0

( 1)

x k x k x k N

k k k

k
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 
 
 
 
 
  

Q X Q

U

     (3.6) 

where 1/ 2 ( 1)k U  is a triangular matrix. Consider the intermediate calculation of (3.6)  

1 0

1/2
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ˆ ( ) 0 ( ). ( )... ( ) 0

( 1) ( )
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i
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                          (3.7)            

where  ( ) ( ) ( 1),..., ( )0.. 0i i i ik x k x k x k N     x  and ( )i kU  is an intermediate upper triangular matrix ,which implies that  

1/2

( )
0ˆ ( ) 0
( )

( 1)

T k

k
k

k

 
  
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x
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      (3.8) 

By deleting the increasing section of 1k NI    of ˆ ( )kQ  thereby generating a matrix with reduced dimension ( )kQ .By this we 

can rewrite (3.7) as 

1 01/ 2
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( ) ( ). ( )... ( )

( ) ( )( 1)
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i

N N

i

x kk
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x
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      (3.9) 

where ( )kQ is derived from ˆ ( )kQ  along with the corresponding rows and columns. From (3.5) we observe that 

1 1
ˆˆ ( ) ( )q qk ke d  and the product of ( ) ( )k kQ d  can be written as  
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      (3.10) 

Where 

1 011/ 2

22

ˆ ( ) ˆ ( )

ˆ ˆ( ) ( ). ( )... ( ) ( )ˆ ( 1)
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      (3.11) 

where ˆ ( )qi kd , ˆ ( )qi ke  and
2

ˆ ( )q i kd   are intermediate quantities generated during the rotation 
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That is 
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1
1 1/ 2 1/ 2

11/ 2
2 1/ 2
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Applying (3.10), (3.11) and (3.12) we can easily understand if we observed in (3.7) that ˆ ( )kQ  only alter the first and the last

1N   components of the vector. From (3.12) it is possible to remove the increasing section of ˆ ( )kQ [2] to obtain 

11

1/ 2
22
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ed
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dd

                  (3.13)      

Where 
1( )q ke  is the first element of the rotated error signal and 

2
ˆ ( )q kd  is a vector with the last 1N   element of the rotated 

desired signal vector. Expression (3.9) gives the detail structure of ( )kQ  as a product of Givens rotation matrices. 

The transformation of the data matrix into upper triangular matrix results in the input data   

 ˆ ( ) ( ) ( 1).... ( ) 0... 0i i i ik x k x k x k N i      x  and ( )i kU  are assumed intermediate upper triangular matrix and note that

0
ˆ ˆ( ) ( )Tk k x x , 1/ 2

0( ) ( 1)k k  U U  and
1( ) ( )N k k

 U U .We conclude that the matrix ( )kU  is triangularised as a upper 

triangular matrix with the corresponding structure of ( )i k
Q [1, 4,9] 
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The Givens rotation elements are calculated as 
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where    
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1, 1
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c k x k N i
  

    U  and  
,

.
i j

 is the  ,i j element of the matrix.  

Matrix ( )kU  and 
2

ˆ ( )q kd  are updated recursively. Vector ( )kw  is calculated using the back- substitution algorithm to solve 

2
ˆ( ) ( ) ( )qk k kU w d . From the definition of ( )kQ  we obtain the following relation: 

1( ) ( ) ( )qk k k   e                                                                

which shows that the a posteriori error can be computed without explicit computation of the coefficient vector.  The only 

information required is the Givens rotation cosines and the exponential weighting factor. The a priori error can be computed 

as 1*
( )

( )
( )

q k
k

k


e
e

. The exponentially weighted QRD-RLS algorithm is summarized as follows: 
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For each k  

 Compute ( )kQ  and update ( )kU : 
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4.0 2 2    BLOCK –DIAGONAL ALGORITHM  

The least squares parameter estimation problem is the minimization problem expressed as 

 
( )

( )min
k

k
w

        (4.1)       

where  
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T

q qk k k k k k k k k   e Q Q e e e Q e  

Since ( )kQ is orthogonal matrix[8] and recall that ˆ ( )kQ is responsible for zeroing ( )T kx . From (3.5) we obtain 
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k k k k
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   
     

  

d 0
Q e e w

d U

, 

where ( )kU is the upper triangular matrix. The subscripts 1 and 2 indicate that the first k N  and the last 1N   

components of the vector. The performance function can be minimized by choosing ( )kw  such that 

2( ) ( ) ( )q k k kd U w  is zero. The tap weight coefficient is obtained via back-substitution algorithm. 

2
ˆ ( ) ( ) ( )q k k kd U w          (4.2)  

Based on the above, we introduce a regularizing transform that is non-orthogonal to update the QRD-RLS 

algorithm. The matrix ( )kU  is partitioned as follows 
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k
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 

U A
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         (4.3) 

Where
1( )kU  and

2 ( )kU  are 1 1 and 2 2  upper triangular matrices and 
12A  is 1 2  matrix. Compute the 

coefficient vector which is the solution to
2( ) ( ) ( )q k k kd U w . By (4.2) and using the non-orthogonal transform (4.2) 

can be written as 

( ) ( ) ( )k k k
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q 2
U w d       (4.4) 

where ( )kU  and
2

ˆ ( )q kd  are used  as an update equation. From (3.9) and (3.13) we have 
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. 

The transformation from (4.2) to (4.3) reduces the matrix ( )kU  to its block –diagonal submatrix. The extra 

diagonal block
12A  is re-assigned to (4.2), that is, 

1
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One can see that the submatrix 
12A is a rank one matrix. We note the following relations 

1

2 2 2
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1 1 12 2
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k
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w
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. 

The 2 2  block–diagonal algorithm is summarized as follows: 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 179 –184 



184 

 

Exponential Weighted Block QR…                   Okwonu                           Trans. Of NAMP 
  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe that the transformation of step (4) from equation (4.2) and (4.3) improves the conditioning of the system; hence 

this algorithm is a preconditioned iterative algorithm. 
 

 
Fig .2.Learning curve of the proposed algorithm (exponentially weighted QR decomposition based recursive least squares algorithm).  
 

5.0  Conclusion 

In this paper, we used the triangularization approach to generate the exponentially weighted QR decomposition based recursive least 

squares algorithm and apply a non-orthogonal transform that recursively update the data matrix to generate the 2 2  block diagonal 

algorithm. The algorithms proposed so far are assumed numerically robust and stable and possess the  fast convergence properties  of the 

conventional  recursive least squares algorithm. 
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