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Abstract 

The paper presents numerical computations of deterministic SN transport for 

the multigroup energy and linear discontinuous spatial discretization on 

tetrahedral meshes for anisotropic scattering of Legendre order L. We use the 

Power method to describe this phenomenon and in particular, implemented 

interval results for the Rayliegh Quotient iteration for the spectral radius. As 

an extension, we computed the solution for the system of second order 

ordinary differential equation using the Euler-Chevbyshev matrix square root 

method whereby, the result obtained from Power method respectively, the 

Rayleigh Quotation iteration, becomes free of charge as useful tools. The 

technique can be interpreted as an acceleration problem for the described 

phenomenon. 

       

Keywords: Deterministic transport SN ATTILA, anisotropic scattering of Legendre order L, power 

method, interval arithmetic, nuclear science, Euler-Chevbyshev matrix square root method.   

 

1.0 Introduction 

The paper presents applications of the well known Power method [1] for the determination of growth rate of a 

system. Included in the presentation is the multigroup in energy, and linear discontinuous finite element spatial 

discretization of the SN equations on tetrahedral meshes [2]. The SN transport code is facilitated by the Krylov 

subspace iteration. ATTILA [3] is being known to be a three – dimensional discrete ordinate (SN) code which has 

the capacity to solve the discrete equations on a tetrahedral mesh by employing the linear discontinuous (LD) 

finite-element spatial differencing scheme. The LD scheme would yield the angular flux within each tetrahedron 

as a function which is linear for the four unknowns in each tetrahedron where, the angular flux is permitted to 

discontinue at the boundaries. 

With a well simplified approach to the presentation, firstly, consider dynamic or discrete system listing the current 

values of its parameters  nxxx ,, 21
. Now, in the continous time, their dynamics may be represented as  

 ni xxxfx ,, 21       (1.1) 

Quite interestingly, such system as Equation (1.1) may be transformed to an equivalent system. 
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21 ,,          (1.2) 

Using a shift operator 
jii vxx  , one obtains an equivalent system of Equation (1.2) in the form 
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21 ,, 
        (1.3) 

The equation of state for problem be written as  





n

j

jiji xax
1

  (dynamic continuous system),     (1.4) 

and, 

   txatx
n

j

iji 



1

1  (dynamic discrete system)    (1.5) 

Continuous dynamical system usually represented an idealization, useful for algorithm analysis and design. 

computing solution to system of Equations (1.4) and (1.5) uses the approach of eigenvalues and eigenvectors for 

analyses of growth rates of a system.  

These growth rates are patterned in the form of uncertainties. Computing these growth rates will certainly by 

measured based on the knowledge of spectral radius. Determination of growth rate under interval uncertainty is 

NP-hard [4]. Computing growth rate  under uncertainty usually results in excess widths. Our main goal is to 

narrow this excess width created by interval in the range [,] as much as possible. This leads to the deep 

knowledge of Perron vectors of an interval matrix and we shall give more of these properties later in the work. 

The k-eigenvalue problem principally focuses attempts to determine if these is self-sustaining time-independent 

chain reaction is neutron transport calculations-that is, criticality situation. The smallest eigenvalue on the other 

hand, represents the effective number of neutrons created and the magnetic signifies if these is self sustaining 

reaction where, eigenvector connotes the asymptotic power distribution. 

The remaining sections in the paper is arranged as follows: Section two discusses the formulation of discrete SN 

equation on tetrahedral meshes with boundary conditions given angular quadrature set with N specified nodes and 

weights formulated on anisotropic scattering of Legendre order L in the sense of [3,5]. In section three, the 

concept of interval operations of vectors and matrices are highlighted. Section 4 gives numerical illustration based 

on Perron vector. 

 

2.0 The Deterministic SN Codes 

We follow the line of presentation of [2] by adopting the CGS units, a review of deterministic SN code for the 

multigroup in energy transport is presented in this section. Our aim is to bring to focus the numerical 

approximation to the requested results. 

K-eigenvalue problem tends to determine whether there is self-sustaining time-independent chain reaction in 

neutron transport calculations (critically problem). The k-eigenvalue problem, smallest eigenvalue defines the 

only effective number of neutrons created whose magnitude specifies if there is self-sustaining reaction [5].  
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On the other hand, eigenvector always signifies the asymptotic power distribution in the chain reaction in the 

isotropic SN transport deterministic code. 

Considering an angular quadrature set with N-specified nodes and weights  mm ,  with anisotropic scattering of 

Legendre order L, the steady state SN transport equation [2] for the energy group g = 1,2,…G in three domains 

Vr  is written in the form: 
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Where,   ˆ,,,2,1 lnYNm   are the spherical harmonics function. 

Then, the scalar flux moments are 

     rYr mg

N

lm

mmgl ,ln.
ˆ  




 ,      (2.2) 

The boundary conditions specified at the surface br with outward unit normal n̂  are  

      0ˆ.ˆ,ˆ  nforr mmbm        (2.3) 

Where, the reflected image of m̂ is denoted by  

 nn mmm
ˆ.ˆˆ2ˆˆ  

       (2.4)   

The discrete finite element meshes on tetrahedral is now reviewed for discussion. Given energy group g, the 

angular flux is expanded in a set of four independent linear basis function jL  on a tetrahedron 
sT (with cell index 

s) in the form: 

   



4

,,,,,

lj

jsjmgsmg rLr 
       (2.5) 

To evaluate the weak transport equation for every quadrature angle m, and for each of the functions 

4,...,2,1, iL j  on cell sT , we have  
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Method of Equation (2.6) consists of four equations for the four unknown kjm ,, on each cell s in each angle 
m̂ . 

We give the boundary fluxes appearing in the first term on the left side of Equation (2.6) for a cell k with face j 

and outward normal jn̂ by the equation 
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   (2.7) 

To obtain the Power iteration method from Equation (2.7), the discretized SN equations in the form of operator 

was initiated in [2] and is given by  
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 MFDMSDL
k
1

       (2.8) 

In Equation (2.7) L is the transport operator, S is the scattering  operator, and F is the fission operator, while the 

operators M and D denote respectively, the moment to discrete and discrete to moment operators. Their aim is to 

convert a vector of scalar flux moments to angular fluxes and vice versa. 

By arrangement of equation (2.8) and multiplying both sides by D, we obtain in [2] that  

   ,1,0,,1111 
 ll

k

l DwhereFMSDLD
l

   (2.9) 

In other words, there are a total n-meshes and G energy groups in a reactor core neutron transport equations 

obtained from method of Equation (2.9). In the fundamental mode, k0 represents the multiplicative factor effk and 

0 are the scalar fluxes. Therefore, the set of higher eigenpairs is  1,, ik ii  . 

Method of Equation (2.9) is a Fixed Source Problem (FSP) and it belongs to the family of Implicitly Restarted 

Arnoldi Method (IRAM). The drawback of using IRAM efficiently on FSP with strong up scatter is its high 

computational complexity across time in high dimension [6,7]. 

We use the basic tools of the power method and Rayleigh Quotient iteration in the sense of [8] for obtaining 

solution to Equation (2.9) implemented in the interval version of Moore’s arithmetic [8], e.g.,. The algorithm for 

the Power method in real floating point arithmetic is given below. 

Algorithm  

Define 
  nRy 0

 and  - order of accuracy. 

For ,,1,0 k compute  

   kk Ayw 1
   

(1) 
   11   kk Awy  

(2) 
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(3) If converged, 
 ,1 k  quit, end  

In real floating point arithmetic operations, the perturbation error to the computation is that for a given 
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for  
    

   

22

1 kk

kTk

vh

vh
q        (2.11) 

The 
 kh  is a multiple of    0hA

kT
 

                

3.0 The Interval Matrix Operation On Power Method 

We hereby signify with the following notations: 

An interval matrix  AAA ,  is a matrix whose entries are expressed in terms of uncertainty with the following: 

   ;
2

1
,

2

1
AAAAAc       (3.1) 

If  bb,  is an interval vector, then    bbbbbc 
2

1
,

2

1
  

Thus interval matrix and interval vector respectively can be expressed in the form of midpoint – radius interval 

thus: 

         ccc bbbwhileAAA ,,,,, . 

Interval arithmetic obeys the four operators of (+,-,/,*) for real numbers. For further details interested readers are 

referred to [9-13]. 

First we define the following terms. 

Definition 3.1. A Real number R is an eigenvalue of     cc AAA ,  if and only if the interval matrix 

     IAIA cc  ,  is singular. 

To decide which eigenvalue is real or complex for the interval matrix A, we use the following technique due to 

[12,13]. 

     


ij
c IAifi

1
max  1, then  is a real eigenvalue of     

1
; IAifiiA c  , then  is not a real eigenvalue 

of A. 

Definition 3.2 A vector "RxO   is a real eigenvector of A if and only it satisfies [13] assertion 

xsignzTAxxTTxxAT z

T

zz

T

zz

T

zzz   , .  

Where the matrices are respectively well defined. It holds that if R and Rx 0 , then  x,  is a real 

eigenpair of   xAAA cc  , , then  x,  where 0x is a real eigenpair of A if and only if  
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x x

xTAT
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ji






 00
minmax  , where xsignz  .  (3.2) 

For the symmetric matrix case and for each  ni ,,2,1   the set   symmetricAAA ,:,   is a compact 

interval, denoted as     AA i , . To compute an external eigenvalues for the matrix   cc AAA , , we have 

a representation in the form: 
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 (3.3) 

The matrix 
zycyz TTAA   is well defined so that 

             niAAA ciciii ,,2,1,,,      (3.4) 

Therefore, for each eigenvalue   AofAi , there follows [13] the inequality relation: 

           ciicn AAA      (3.5) 

The implication of these is that we then introduce a generalized eigenvalue problem BxAx   where A is 

Hermittian and B Hermittian positive definite for which holds  

   xBxBABB 2
1

2
1

2
1

2
1




       (3.6) 

Equation 3.6 is the standard Hermittian eigenvalue problem and areas of applications include but not limited to 

second order ordinary differential equation 

    ll yyyyOAy
dt

yd
002

2

0,0,        (3.7) 

With solution in the form: 

        lytAAytAty 0

1

0 sincos


      (3.8) 

Where, A  is the square root of A [14]. To compute the square root of A, we adopted the matrix square root 

iteration formula in the form of the Euler Chebbyshev iteration [15] given in the algorithm below. 

Algorithm 3.1: Euler-Chevbyshev method. 

Given a matrix 
nxnRA , whose real eigenvalues are not on 

R , it is required to compute  kasAX k
2
1

. 

(1) Define ,,, 00 CSIR
A
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C      
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4.0 Numerical Example 

Example 1 

We set 
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A
 in the second order differential equation (3.7) where we introduce some kind of uncertainty  
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  ,  into the coefficients of the matrix with %2  tolerance. The initial starting vector is 
   Tx 1,1,10   

The actual values for the eigenvalues of A are 000.6,000.3.000.2 321   and . 

Thus the spectral radius is 6.000. 

To demonstrate our methods in interval arithmetic operations, for the Power method and Rayleigh quotient 

applied on the problem 1, we construct the following Table for the compound results. 

Table 1: Showing interval results for Power method and Rayleigh quotient iteration 

Iterations 

k 

Results for Interval Vectors  Interval Spectral Radius  

 xi  

Interval results for 

Rayleigh Quotient Iteration 

 xi   

0 (1,1,1)
T
   

1 

































105367792.0,094567403.0

0801192838.0,798792750.0

1,1

 

[9.94, 10.06] [6.273333333,6.393333333] 

2 

















 103764776.0,1187830454.0

753389062.0,748252691.0

999999995.0,999999999.0

 

[7,145231297,7.23880708] [6.836215531,7.3838728205] 

3 

















 178489153.0,197138620.0

733545288.0,728656412.0

000000000.1,999999997.0

 

[6.442948285,6.580439372] [6.42102567,6.568626195] 

4 

















 0210891553.,230920402.0

724866184.0,719854181.0

999999994.0,999999997.0

 

[6.170559429,6.300735136] [6.050462767,6.178658220] 

5 

















 225220483.0,236622869.0

720823436.0,715641032.0

999999999.0,999999999.0

 

[6.04817987,6.178406093] [5.991058372,6.1219998693] 

6 

















 232057957.0,254211898.0

718885849.0,713563051.0

999999996.0,999999994.0

 

[5.989594089,6.121440167] [5.961491889,6.094494923] 

7 

















 23698721.0,259829797.0

717483926.0,711998456.0

999999999.0,999999994.0

 

[5.946230396,6.080873129] [5.590087646,6.074489927] 
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In the Boltzman equation [6] to which the Power method is highly effective, the source iteration may become 

extremely slow if the problem medium is scattering dominant, i.e., if the scattering ratio 







1

1

2




. 

In particular, the Rayleigh quotient iteration was implemented and is given by the equation 

 
xx

Axx
xr

T

T

 , 

which has been found to be a minimization of the least squares problem 

 
2

min IA 


 . 

Further details can be found in [8]. 

Table 2: Computed Results for Euler-Chevbyshev Algorithm 3.1 

Iteration k Rk Sk Xk 

1 



















6106.04234.02434.0

3750.06541.1030.0

3750.06856.10628.0

 





















8920.02267.01889.0

00757.10540.0

01513.08919.0

 

















4523.200

04523.20

004523.2
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5768.05300.01587.0

3542.07543.11698.0

3542.07988.10233.0

 





















9998.00006.00005.0

00000.10000.0

00000.00000.0

 



















4974.10383.05968.0

9196.00564.42282.0

9196.01333.41540.0
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5767.05302.01586.0

3542.07544.11699.0

3542.07989.10234.0

 





















0000.10000.00000.0

00000.10000.0

00000.00000.0

 





















4143.12998.13892.0

8686.03020.44164.0

8686.04110.40571.0
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5767.05302.01586.0

3542.07544.11699.0

3542.07989.10234.0

 



















0000.100

00000.10000.0

00000.00000.0

 





















4142.13002.13889.0

8685.03023.44166.0

8685.04113.40574.0

 

 

In Table 2, column 4 names Xk, is the result for the matrix square root while column 3, named Sk is the inverse 

matrix square root computed by the Euler-Chevbyshev algorithm. Convergence to the approximate solution was 

achieved at the third iteration. In the implementation of Euler-Chevbyshev algorithm, we obtain result for the 

estimate for the matrix norm A  from the results computed by the Rayleigh Quotient iteration free of charge 

which are freely applicable in providing result for the system of second order ordinary differential equation given 

in Equation (3.8). 
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5.0 Conclusion  

The paper presented methods for computing the deterministic SN transport codes for tetrahedral meshes in line 

with [1]. After transforming the problem into the equivalent eigenvalue problem, we use the interval arithmetic 

computation to execute the Rayleigh Quotient iterations and the Power method which form the reason for the 

studies when expressed, the data entries of the coefficients matrix under interval uncertainty. As a gain in the 

computation, the calculated result obtained by the Power method as a bye product was implemented in the Euler-

Chevbyshev algorithm for computing square root of a matrix with positive eigenvalues. This can be further used 

without additional calculation in the solution to a second order ordinary differential equation, a concept being 

interpreted as an acceleration solving techniques. 
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