
155 

 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 7, (March, 2018), pp155 – 168 

© Trans. of NAMP 

 

ORTHOGONAL DECOMPOSITION FOR THE REDUCED ORDER MODEL SYSTEM OF 

ODE 
 

Stephen Ehidiamhen Uwamusi 
 

Department of Mathematics, Faculty of Physical Sciences, University of Benin,  

Benin City, Edo State. 

 
Abstract 

 

The paper presents orthogonal decomposition (POD) for reduced order model for 

system of ordinary differential equation obtained from using four stage –fourth order 

Runge-Kutta method subject to least squares approach. We give the Wallis factor for 

these phenomena and showed that the solutions to the slope matrices for the Runge-

Kutta method in the subspace integration satisfy the Polarization identity. It is 

established that the rank deficient matrix arising there from in these slope matrices 

could be amenable to Tikhonov regularization parameter subject to Givens orthogonal 

transformation for the singular values decomposition (SVD).The procedures for de-

noising solution space in the data have been highlighted.  Cholesky Factorization used 

on the reduced symmetric matrix to tridiagonal matrix by the Givens orthogonal matrix 

similarity transformation is given. Numerical example is discussed with the described 

methods with huge success. 
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0.1     Introduction 

The paper considers solving system of ordinary differential equation ( sODE ) using proper orthogonal decomposition on the 

reduced order model facilitated by the Runge-Kutta method. 

The system of ordinary differential equation (ODEs) is given in the form: 

00 )(),,( ytyytf
dt

dy
  ,         (1.1) 

Where nn RRRf : . Such a system of Equation (1.1) has existence and uniqueness theorem which is given below. 

Theorem 1.1,[1] . Let f be defined and continuous on the strip   nRybtaytS  ,,  where ba,  finite. Assuming that 

there is a constant L such that ],[,),(),( 2121 batyyLytfytf   and nRyy 21,  (Lipschitz condition). Then, for every 

],[0 bat   and nRy 0
, there exists exactly one function )(ty  such that : 

(i) )(ty  is continuous and continuously differentiable for ],[ bat ; 

(ii) ))(,()(/ tytfty   for ],[ bat ; 

(iii) 
00 )( yty  .   

Theorem 1.2, [1]. Let the function nRSf : be continuous on the strip 

 nRybtaytS  ,),( , which satisfies the Lipschitz condition 
2121 ),(),( yyLytfytf   for all Syt ),( . The 

solution ),( sty  of the initial value problem  

Sstyytfy  ),(),,(/  , 
2121

0),(),( ssestysty
ttL


  holds true. 

Definition 1.1; A solution which is stable on ],[ 0 t , i.e., stable on ],[ 0 ptt   for each pt  and with   
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Independent of pt  is said to be stable in the sense of Lyapunov. If in addition, 0)()(lim 


twtv
t

, then the solution )(tvy  is 

called asymptotically stable where  Stwtv )(),( . 

Wherever it is not explicitly stated it is that Meanvalue theorem holds which guarantees the existence of solution as well as 

continuity of the function f . 

A general One- step method could be written in the form: 

 hythyy kkkk ,,1 
, ( ,...;.1,0k with 0y  given);          (1.2) 

Where, 

 hyt kk ,,  is a continuous function of its variables. The global error is denoted   kkk ytye  . 

Theorem 1.3,[2]. For a given general One-step method  

 hythyy kkkk ,,1 
 , where it is assumed that   is a continuous function of its arguments and in addition   satisfies the 

Lipschitz condition with respect to its arguments, viz: there exists a positive constant L  such that, for each 
00 hh   and 

for the same region 
nR as in Picard’s theorem, 

        RzyytzyLhzthyt  ,,,,,,,,  with the fact that 
mk yyy  0

, then we have  
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eee

ttL
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 , nk ,...,1,0                            (1.3) 

Where, 
k

nk
TT

10
max


  for   ],[,0 battyty kkk  . 

To implement Equation (1.2), the Runge-Kutta  fourth order method [2] may be executed .Starting with Taylor series for two 

variables, the infinite series is represented in the form 

   ytf
y

k
t

h
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kyhtf

i
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,
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1
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, wherefrom the Runge-Kutta methods can be derived. 

Taking  into consideration that: 
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then  it can be derived that the Fourth  order -Stage four  Runge-Kutta  method is  in the form: 
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                                               (1.3)                       

We expect solution with their norms  to satisfy  the Polarization identity: 

       

     22

22

222 usuutrsstr

usstrusustrusus

TT

TT



                      (1.4) 

us,  are well defined . 

The asymptotic contraction is discussed for our purpose. Defined that ),( dT  is a non-empty, complete metric space and 

TTf :  be such that for each 1n  there is a constant n  for which for all     ytdyftfdTyt n

nn ,)(),(,   

,where 


1n

n . 

By using the Picard iteration sequences it is implicated that Tt  and for Ni  gives that: 
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as i .Thus there follow the inequalities 

   ))(),((suplim)(),(suplim 11 tftfdtftfd nn
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 . 

This means that  

    0)(),(suplim)(),(lim 11  






tftfdtftfd nn

n

nn

n

 

It remains to show that Cauchy-Schwartz-Bunyakovskii  inequality holds for the function f . To show this, let pLf   , and 

qLg  where 1
11


qp

.Then consider qq

p

Lf  .  

We apply the Binomial theorem expansion on the function f for the Holder inequality in the form: 

 
)()( 22

1
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.        (1.5) 

Since  
pq

q 11


 , the convexity of 
pt  implies that  
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 (since 0, gf  ).     (1.6) 

We now describe the reduced order model for the errors facilitated by proper decomposition (P O D) using closely the ideas 

due to [3] for system of ODE. The studies of P O D are important and have wide readership from fluid mechanics, 

identification of coherent structures, control and inverse problems as well as for industrial applications. P O D has been 

widely applied in the modeling of supersonic Jet, turbine flows, thermal processing of foods and dynamic wind pressures 

acting on a building as reported in some literatures. The P O D provides best approximating affine subspace to a given set of 

data.  

In the meantime, the remaining sections in the paper are arranged as follows: Section 2 in the paper describes the theoretical 

backgrounds of study based on existing works from literatures. Section 3 gives the core error problem arising from section 2 

which highlights the ingredients of least squares supported by the Givens QR-Cholesky decomposition as well as singular 

values decomposition (SVD). We employ the techniques of [4,5] supported by Tikhonov regularization method technique for 

deblurring obscured images and unwanted noise from calibration of data with inherited error can be executed. In section 4, 

numerical example is demonstrated with described methods with high success. 
 

0.2    Theoretical Backgrounds  

As is standard, we follow the way of [3],[6] and the cited references therein. In the given system (1.1) in one dimensional 

ODE, at the m time points )(...,),(),( 21 mtytyty , which is computed by the standard Runge-Kutta method, or Adams 

Bashforth and Adams-Mouton methods, we give the values of deviations of mean from the data in the form: 













))((...,),)((),)((
_

2

_

1 ytyytyytyy m

,              (2.1) 

Where 


y  is the arithmetic mean for computed results )(...,),(),( 21 mtytyty . 

Using P O D, we seek a subspace 
mRS   and the projection matrix A  for which the total distance 

2
Aty  ,             (2.2) 

is at minimum!  

We then form a system of linear equations in the form: 

yAAtA TT                   (2.3) 
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The matrix mnm RyRA   , with m>n  is highly ill-conditioned.  

Finding solution to Equation (2.2) leads to inverse problems [7,8,9]. Inverse problems emanate from such diverse scientific 

and engineering disciplines to include medical imaging, oil and gas exploration, land-mine detection and process control. 

Mathematical tool box for solving inverse problems are embedded in mathematical analysis to include functional analysis, 

conformal mappings, spectral theory, theory of partial differential equations, integral equations ,micro-local and global 

analysis. Thus inverse problem is an interesting topic with wide readerships. 

The Tikhonov regularization is the minimization problem 

}{min
2

2

22

2
LtyAt

t
                  (2.4) 

The   in Equation 2.4 is the Tikhonov parameter, L  may be taken as an identity matrix. 

Equation (2.4) has the solution  

  yAIAAt TT 12 
 

.        (2.5) 

Introducing filter factor  

22

2








i

i

if
, then we have that the regularized solution to Equation (2.4) is in the form 
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           (2.6) 

Where from, we set that  
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0

1   

Besides, we also decompose the matrix TVUA   where, U  and V  have orthonormal columns, 

 ndiag  ...,,, 21  and 
n  ...21
. 

Using the generic notation  ttVtUt T  , , we have that  

222
min tt

t
   ,                      (2.7) 

and we defined yuT

ii  , tVt T . Using this technique, we obtain 

 TT tI  )( 2                         (2.8) 

The Tikhonov solution will be rewritten as  


 


n

i

i

i

ii

tk vt
1

22 

 .                              (2.9) 

We provide the solution to the discrete case, that is, true noise free by the equation 







n

i

i

i

ii

true vt
1 

  , ( for euT

ii  .)         (2.10) 

We now minimize the distance between the Tikhonov regularization method and the true solution in the absence of noise. 

 


ftt truetk minmin
2
         (2.11) 

We carry out the transformation of Equation (2.11) using equations (2.9) and (2.10) to obtain  
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    .                         (2.12) 

For stationary values  , 
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From Equation (2.13), it shows that either 
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 .                                                                   (2.14) 

We give now extra statistical observations obtainable from Equation (2.3) and are reported here for discussion. It is supposed 

that 
2  denotes the variance of each of the element c . The element of c  are supposed to be independently identical 

distributed ( i.i.d) of each other, and 
2  is computed in the form: 

 nm  2   ,                       (2.15) 

where,  nm   denotes the difference between number of observations and number of parameters being estimated and  is the 

degrees of freedom of the parameter estimation problem. 

The Covariance matrix )(yC is computed in the form: 

  12)(


 AAyC T               (2.16) 

We give correlation coefficient matrix from Equation (2.16), defined as  

jjii

ij

ij





.
 ,                                                                (2.17) 

 Forming a matrix TyyG    using standard matrix-matrix multiply, the eigenvalues of the correlation matrix are 

0...21  m and  are of decreasing order of magnitude. The matrix G  is decomposed using the SVD in the form: 

TVUG     .                                                                (2.18) 

We obtained the P O D subspace , the projection matrix nnT RssH    where s  is the matrix projection onto S , the 

subspace spanned by the reduced basis obtained from SVD. 

Finally in the concluding part here, we bring out all the subspace filtering  emanating from the vector ),...,2,1(),( nity i   be 

the n- dimensional vector of clean speech samples (trajectory) and i , (i=1,2,…,n )  the zero mean , additive white noise 

distortion that is uncorrelated with clean speech (trajectory). 

We thus represent noisy speech in the trajectory of solution )(ty given by 

)()()( ttyty 


. By denoting the 
NM y ,  and 

y

O  as representing  nn  covariance matrices .Then we have  

NMO y
y

_
.                                           (2.19) 

Thus, their eigen decompositions are given by  

T

w
y

VIUO )( 2
, 

T

y VUM  , 

  T

w VIUN 2  .                                        (2.20) 

The 
2

w  is the white variance, I  is the identity matrix. 

The implication of this is that the speech and noise are separated in the sense that the speech is restricted to the nr   

dimensional subspace which is the signal subspace, whereas the noise occupies the n  dimensional observation space. 

In reality, we write that  
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We now move to the full space arbitrary vector  }...,,,{ 21 mzzzz   with 
^

y  as approximate solution to the ODE 

00

^^
^

)(,, AytytyAf
dt

yd









    .                                            (2.22) 

Compare to an equivalent P O D reduced model, we then have that:  

  00 )(,, yptztpzfp
dt

dz TT                                                       (2.23) 

The aim is to compute the statistical condition estimate (SCE) taking vector 
kRs  with q  

selected randomly and uniformly from the unit sphere 1kS  where the expected value sqT
 is approximation to the norm 

y . We then compute that: 

  sWyqE k

T  .                                                                    (2.24) 

We give the Wallis factor which is defined [ 10]  in the form 

























,...8,6,4,,
)1....(5.3.1

)2....(6.4.2
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,11

kwithevenk
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kwithoddk
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           (2.25) 

In the limit, the value for kW is  given by: 

 

2

1

5.0

2












k
Wk



. 

It follows that estimate for the norm s  satisfies the equation for the error  

k

T

W

sq
                                                                             (2.26) 

 Equation (2.26) is the optimal estimate for the relative error for the norm s  that is inversely proportional to the size of the 

error with guaranteed probability error bound given that  >1 in the form: 

)(
2

1Pr 2













 





Os

s                               (2.29) 

After computing for various estimates p ...,,, 21 corresponding to p randomly selected vectors psss ,...,, 21  from the 

unit sphere 1kS ,we compute the expected value for the length of error vector in the form 

s
W

W
sqsqsqE

p

kT

p

TT 




 

2

1

22

2

2

1 ...                           (2.30) 

0.3 The Derived Error for Proper Orthogonal Decomposition (P O D) From Reduced Model 

The essence is comparing errors incurred from the results computed using proper orthogonal decomposition with those 

obtained from standard theoretical solution. Firstly, we signify our intention by the following notation. 

yye 
^

 as total error and this is split into subspace approximation error: 

yype T  ,                                                                             (3.1) 

ypye T

s 
^

 ,                                                               (3.2) 

is the error computed by the integration in subspace. 

By subtracting Equation ( 3.1) from ( 3.2), we have that  
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                  (3.3) 

The rate of change of approximation error with respect to t (time) is given by the following equation: 

),(),(),(),(),(),(
^^^

tyftyftyftyAftyftyAf
dt

de
          (3.4) 

Simple factorization of Equation (3.4) would yield that : 

   eOyytyJtyfIA
dt

de





























^^^

,,               (3.5) 

By further setting as : 

AIG  , then we obtain that: 

0

^^

,)(, GytyGftetyJ
dt

de


















                           (3.6) 

We noted that the matrix J appearing in equation (3.5) is the Jacobian matrix  
y

f



 . The matrix 
nnRtG )(  has transform   

GtyJ
dt

dG
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^
,                                                                 (3.7) 

with
nItG )( 0
. 

Before proceeding further, we shall adopt the following notation: 
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, where ess.sup )(tf  is 

the infimum of sup of )(tg  as g  ranges over all functions which are equal to f  almost everywhere on  t . 

The following theorem holds verbatim for adoption. 

Theorem 3.1 

Let p  and q  be conjugate exponent with  p1 . Let t  be a measure space with positive measure  . If f and g are 

measurable functions on t  with range in ],0[  .Then we have that: 
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The first inequality in (i) is the Holder’s inequality while that in (ii) is the Minkowski’s. Thus for 2p  and 2q  we 

have the Schwartz’ inequality. 

Firstly we represent 
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The matrix exponential for the identity is discussed below. 
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The Jacobian for the matrix exponential  is  
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Therefore, for any subordinate matrix norm we have 
A
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e

Ae
AK )(exp

. 

Thus the fundamental matrix solution for the error )( bte  at the end point b in the interval [a, b] is given by the equation: 
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1                           (3.8) 

The main purpose is to synchronize Equation (3.8) with estimated condition norm as derived in section 2  

Introduce thus into discussion a randomly selected vector s from unit sphere 1nS  for which holds: 
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Now the adjoint equation to the defining equation for the error is  
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Coupling together equations (3.9 ) through( 3.12) we then write that: 
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We relate Equation ( 3.13) with statistical condition estimate for the error norm )( bte in the form: 
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Equation  (3.14) is the POD error for the reduced model for system of ODE given earlier in section 2. Similarly, it can be  

described  that the error for the subspace integration as follows:  
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where,  )()( 0
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tyty a   is  the projection  )( a

T typ  of )( aty  onto S  which gives initial condition 0)( 0 tes . The rate of 

change of step size is given by the equation: 

 etyJpphtyJp
dt
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For a matrix
nnR  , we seek that 
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The qvvvv ...,, 21 is any vector that is randomly and uniformly selected from the unit sphere 1kS . 

As before the solution to the adjoint system defined in the form 

vtptyJp
dt

d
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                                        (3.19) 
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has the solution 
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We have the statistical condition number error estimate is in the form: 
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We now give the bounded error for the subspace integration  
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 The distribution nature of eigenvalues of the rectangular matrix A   is obtained by the Jacobi -Givens type similarity 

transformation  [9,11]which is orthogonal and preserves length a useful tool in the resolution of systemic matrix arrays for 

antennae beam formations. Thus we have  
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Applying the Sylvester Inertia Law on the symmetric matrix shows that  AQQA T
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Therefore, the matrix A will be far from normality if )()( AAr  . 

We now ask an important question that if the QR   iteration algorithm is shifted by a factor, what can be said about the 

eigenvalues of A ?  It is known that the shifted QR  algorithm does not alter the eigenvalues of A . This is established by the 

similarity transformation of kA following the orthogonality of kQ  in the sense of [11]. After setting as 
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 IARQIAQR kkkkkk   :  , it would hold that IQRA kkkk 1
.Hence,  IAQR kk
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kk  .Furthermore, in the 

same way it follows that 
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Besides, for the symmetric case for the matrix A , we can reduce the symmetric matrix A  to tridiagonal  matrix with Givens 

Similarity transformation [11].We may apply the Cholesky decomposition on kT  in the form  
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We calculated the kL for kT  in the form of elementary matrices wherefrom,  
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We then solve the system of linear equation the 
TLDL -Cholesky based method using suitable MATLAB routines. 

TVUA  , where,  is a diagonal matrix containing 0...21  n . The matrices U and V  are the left and right 

singular vectors iu  and iv , i=1,2, …, n. 

The filtered solution [8] for the system (2.3) is given in the form: 
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Where  
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 for the regularization parameter  . 

We discuss the contribution by the noise   as follows: 

 From the system of linear equation assuming 
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 ,   see e.g., [12], the least squares solution is  
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In Equation (3.6), it is supposed that p is the numerical rank of A. The point is that 
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 where the Picard condition shows that 0buT

i
 faster compared to i .In Equation (3.5) the noise   is 

calculated by the quantity 
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 ; the condition number 
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The relative error for the solution to least squares equation is given by the inequality 
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                            (3.7) 

The angle  is between b and its projection onto )(AR .As a measure of effectiveness, whenever the system of equations is 

inconsistent, it will always flag off a warning signal that OAsbr   and besides, 0tan  . The fact is that a little 

perturbation of introduced relative error in the least squares solution is directly proportional to the squares of condition 

number )(2 AK . 

What can we deduce from the error in high frequencies, that is, the coefficients  nVb,  corresponding to singular vectors 

with large n (and small n )?   Really, it is that the errors are amplified much stronger than those for low frequencies (larger 

n ).  We should mention here that the way how high frequency errors are amplified depends on the operator matrix A .That 

is, the decay speed of its singular values. The faster the decay is, the more severe the Picard criterion 
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0.4   Numerical Examples 

We consider the system of ordinary differential equation as problem 1 taken from [13]. 

Problem 1:   

1)0(,1

1)0(,
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Take  1.0h . We implemented Fourth Stage order four  Runge-Kutta method 
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Numerical results for problem 1 are displayed in Table 1 for the first seven ordinate points. 
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Table 1 Shows Results computed by Four Order Stage Four Runge-Kutta-Method 

Iterations 

K 
Time  kt  Results for Runge-Kutta method for Problem 1 kW
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7374728509.1
 

 

Next we form the system of linear equation from the nodal points , the slopes of the iK  and the step sizes. 
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We solved the under determined system to cAs   with solution 



























2866.6

4109.20

2305.25

7846.9

s
. 

The Singular Value Decomposition (SVD) for the slop matrix iK  is  
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3679.07383.01761.00868.00354.00972.05200.0
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The eigenvalues for the Slope matrix  0283.0,0707.0,1311.0,8286.0K . 

Similarly, for the slope L -matrix from the Runge-Kutta method  we form the underdetermined linear system. 
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This gives the solution  
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The SVD for this matrix is  
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0078.03117.07802.05417.0

6732.05250.01442.05004.0

7375.04272.01662.04960.0

0539.06668.05850.04585.0

V
 

The  eigenvalues for the slope matrix L is  01.0,0354.0,1020.0,9744.0l . 

We computed and verified the polarization identity for the solutions obtained from the slope matrices  

With result given by  

  2337.45742
2222
 ususus . 

0.5  Conclusion  

The paper discussed system of ordinary differential equation using  Runge-Kutta fourth order method . We give the Wallis 

factor for the subspace integration for the POD system and the optimal estimate for the relative error for the norm s  that is 

inversely proportional to the size of the error with guaranteed probability error bound given that  >1. We made reference to 

this approach in [10]. 

 We applied the  Givens orthogonal  plane rotation matrix on the slope matrices appearing in the solution process in the 

Runge-Kutta method to obtain the singular values decomposition (SVD) .The resulting over determined system of linear 

equations from the slope matrices were solved  by means of least squares equation using the SVD. Since the resulting linear 

system is over determined and ill-conditioning may occur, the use of Tikhonov regularization parameter was brought into 

play in this direction. It was also mentioned on how to de-noise the solution space  due to huge condition number appearing 

in the left hand side of the overdetermined linear system  using the earlier method discussed in [8] by introducing filter factor 

into the calculation . This was discussed in section 2. All numerical calculations well carried by using MATLAB windows 

07. It was established that the solution space satisfied the polarization identity. 
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