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Abstract

The implicit-explicit (IMEX) linear multistep methods are now emerging technique for
the numerical solutions of ordinary differential equations (ODESs) which arises from
the discretization of partial differential equations (PDE) by method of lines (MOL),
and chemical reaction models amongst other sources in which the resultant stiff ODEs
admits an additively separable structure. In fact, the Prothero-Robinson stiff ODE is a
typical example. In this paper, the purpose is to extend the implicit-explicit linear
multistep methods to implicit-explicitsecond derivative linear multistep methods (IMEX
SDLMM) for the numerical solution of additively separable stiff ODEs. The new
IMEX SDLMMare based on the second derivative backward differentiation formulas
(SDBDF). The IMEX methods developed herein are constructed by combining an
extrapolated explicit method with its implicit method. The IMEX methods are shown to
be stable on the conventional Dahlquist test problem. Numerical results are presented
on the notable Prothero-Robinson stiff problem.

Mathematics subject classification: 65L05, 65L06.
Keywords: Implicit-explicit second derivative linear multistep methods (IMEX SDLMM), stability, Cauchy test
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1.0 Introduction

Large systems of ordinary differential equations (ODESs) arise amongst other sources from chemical reaction models and
discretization in space of partial differential equations (PDEs) by method of lines (MOL).These differential equations (DES)
are sometimes models from real life applications. For such systems, there are often natural splitting of the right hand side of
the differential system into two or more parts; such system can be written in the general form;

y’(t)=§Fj @, y(t), Yt) =Y. telty,T] (1.1)
j=1
where each of the Fi(t y(t); Jj=1@)smay represent a process in the model. However, the interest will be in when

S=2.In particular, consider the two term additive splitting,
Y'(©) =&y +9 y®), Y(t) = Yo teit, (12)
where f (t, y(t)) represents the non-stiff process and suitable for explicit time integration, for example advection and g(t, y(t))

represents the stiff process and suitable for implicit time integration for example diffusion or chemical reaction models [1].
The implicit-explicit (IMEX) integration approach discretizes the non-stiff part f (t, y(t)) with an explicit method, and the

stiff part g(t, y(t)) with an implicit stable method. This strategy seeks to ensure the numerical stability of the solution of (1.2)

while reducing the implicitness and therefore the overall computational effort in solving the ODE (1.2). This is the
computational advantage of IMEX LMM. Hence in solving ODE (1.1), numerical schemes which integrate the g(t, y(t)) term

implicitly and £ (t, y(t)) term explicitly are highly desired, such implicit-explicit methods are referred to as IMEX schemes
[2]. One of the simplest examples is the IMEX Euler method
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Ynia=YnTt hf (t,. y(t,)) +hg (tn+1r y(tn+1))
which is obtained by applying the implicit Euler formula to the (J term and the explicit Euler formula to the f term. Here h

is the step size, t, =t,+nh, and Y, denotes an approximate value of the theoretical solution of y(t ) of (1.2). The IMEX

linear multistep method was introduced in [3] and [4] and further analysis of its stability is done in [5].

In this paper, the purpose is to extend the implicit-explicit linear multistep methods to implicit-explicitsecond derivative
linear multistep methods (IMEX SDLMM) based on the second derivative backward differentiation formulas (SDBDF). To
achieve this aim, the following objectives are outlined. The first of these is to develop IMEX SDLMM based on the second
derivative backward differentiation formula (SDBDF) up to the ninth order. The second objective is to analyze the basic
properties of the methods in terms of its order, zero stability and region of absolute stability. The last objective is to
numerically validate the proposed IMEX second derivative schemes.

This paper is arranged as follows. In section 2, a variety of k-step IMEX SDLMM are derived. The stability of the IMEX
SDLMM are analyzed and discussed in section 3. Section 4 presents the numerical experiments on the Prothero-Robinson
problem amongst others.

2.0 Derivation of IMEX SDLMM

Con3|der the addltlve spllttlng of the ODEs (1.1) into two parts in (1.2). The general SDLMM is,

Za Yo —hZﬁ, oy Zl o] (2.1)
We shall derlve an IMEX SDLMM based on the SDBDF

LT Do i[il

i=1 J].J

]VJT”” k <9, p=k+1 (2'2)

where

. kK (i
ijml = Z[:j(_l)r Yni-rs k :l(l)g
r=1

which are A-stable/A(a)-stable for k <9. The IMEX SDLMM to be derived are such that the explicit parts are obtained by
extrapolation of the implicit terms f_, fn’+k of the SDLMM (2.2).

2.1 The Design of IMEX SDLMM
The fully implicit second derivative linear k-step method is

k K
Zajyn+j :hZﬁj(f(tn+jvyn+j)+g(tn+jvyn+j))+
= [

£ 2.3
hzzﬂj(f/(tn+jlyn+j)+g/(tn+jvyn+j)); ak =1 ( )
=0

!
with respect to the additive splitting in (1.2). An IMEX SDLMM can be derived by reducing f (t,,,, Yn.) - Pt You)
through extrapolation as follows,

o(t,,) = Zyjcb(tnﬂ) +O(hY); (1) = f(t,y(1) 24

O',,) = @ (G, ) +OM);  @(t) = (L, y(D))

j=0

This leads to the k-step IMEX SDLMM

k k-1 k-1

zajymj :hZIB*jf(tn+jvyn+j)+hzz/rjf/(tn+j'yn+j)
j=0 j=0 j=0

k k
+hZﬂj g(tmj ’ yn+j) + hzz/ljg/(tmj ’ yn+j)

i=0 i=0 (2.5)
with
B =B+ B A=A+ Ay B A #0
The order of Prothero-Robinson convergence of the IMEX SDLMM to be derived will be stated and this is captured in what
follows.
2.2 Prothero-Robinson Convergence of the IMEX SDLMM (2.5)
Let the extrapolated IMEX SDLMM schemes (2.5) be of order p when applied to the stiff system of differential equations
(1.2). Following [6], consider the Prothero-Robinson convergence of the scheme in (2.5) on the Prothero-Robinson test
problem [6].

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 143 -154

144



Implicit-Explicit Second... Ibezute and Ikhile Trans. Of NAMP

{y/(t)=A(y(t)—q(t))+q’(t>. t>0, (2.2.1)
y(0) =q(t),

where A€ has a large and negative real part and a@) isa slowly varying function. The solution to (2.2.1) is y(t) =q(t).
The IMEX scheme (2.5) is said to be Prothero-Robinson (PR) convergent if the application of (2.5) to the equation (2.2.1)
leads to the solution y(t,.,) whose global error satisfies

LS k-1 k-1
zajy(tmj)_[hZﬁ*j f (tn+j ’ y(tn+j))+ hZZﬂ*j f /(tn+j ’ y(tn+j))
=0 =0 =0

k Kk
+hzoﬂjg(tn+j!y(tn+j))+hzzoljg/(tn+j!y(tn+j))J=O(hp+l)1 p=min(r'q) (222)
1= 1=

where I is the order of underlying implicit second derivative method in (2.2), 4 is the order of resultant explicit
extrapolation (2.4) and f=q'(t), g=A(y®)-q) or f=-Aq(t)+q’(t), g=Ay(t) the non-stiff and stiff parts respectively. The
methods in (2.5) are PR-convergent and the order of its Prothero-Robinson convergence is captured in the following theorem
Theorem

Assume the implicit SDLMM (2.3) has order r and the extrapolation procedure (2.4) has order g. Then the IMEX SDLMM

(2.5) has order p=min(r,q) as h—0, ih—-x, and AheR,. Here Ras is the region of absolute stability of the SDLMM
(2.3)
Proof. Letd(t) = f (t, y(t))and @'(t)=f'(t, y(t)), the local truncation error can be written as

hi-ZZ(aJ' y(tn+j)_ hIBJ y/(tn+j) - hz/lj y// (tn+j)) +i(ﬂkq’(tn+k) _271®(tn+j)J+
=0 j=0

A0 (1) - 70 (t,.)
j=0
—Ch YO (t,) +O(h™) + (B, + A4)C,h D@ (t,) +O(h*™) (2.2.3)

with constants ClaCz determined by the coefficients of the SDLMM (2.5) and extrapolation procedure (2.4). The order p
follows therefrom (2.2.3)

2.3 Derivation of the IMEX SDLMM (2.5) based on the SDBDF (2.2)
As an application of this theorem, the derivation of the IMEX SDLMM based on the SDBDF (2.2) for the case of k=1,2
appears trivial, but consider for example when k=3, the SDBDF for k=3 is

108 27 4 66 18
_=° 2y 2y =2hg. .—h%q. . r=4 (2.6)
yn+3 85 yn+2 + 85 yn+1 85 yn 85 gn+3 85 g n+3
According to (2.3), we have

108 27 4 66 18
Yni3 _g Yni2 +£ Ynu _% Yo = %h(fnﬁ + gn+3)_%h2( f /n+3 + g/n+3)

and the explicit term for f_ ., f/ . are obtained from the extrapolation procedure (2.4). The extrapolated explicit method of

(2.6) becomes
ym—%ym+%ym—%yn :%hfw—%hfm+%hfn—%hzf/M+%h2f’m—£hzf’",
g=3
The IMEX method from SDBDF (2.2) for k=3 according to (2.5) becomes
5644800 4939200 4390400 3087000 1580544 548800
" 3144910 ™7 ' 3144919 '™ 3144919 " ' 3144919 3144910 " ' 3144919
115200 11025 :h(15341760 _ 53696160 107392320 . 134240400
3144919 *"' " 3144919 7" 3144919 "7 3144919 "° 3144919 "° 3144919 "™
107392320 3_53696160 2+15341760 1917720 1917720 g ) 2[7 2822400
3144919 ™° 3144919 " 3144919 ™' 3144919 " 3144919 °™° 3144919

9878400 _, 19756800 _, 24696000 _, 19756800 _, 9878400 |, 2822400 _,
+ flo— fioo+ .- flo+ flo, - f

n+6 n+4 n+3 n+2

n+7

n+l

3144919 3144919 ™ 3144919 3144919 3144919 3144919
2 2
, 352800 . 352800 o (2.14)
3144919 3144919

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 143 -154

145



Implicit-Explicit Second... Ibezute and Ikhile Trans. Of NAMP

108 27 4 198 198 66 . 54
STy Ly, —— Y, = ——hf,_, ———hf_ +—hf ———h*f +
yn~3 85 yn+2 85 yrHl 85 yn 85 n+2 85 n+l 85 n 85 n+2
54 18 66 18
Zhtf! - —h*f! +—hg, - —hg’, ., =3
g Fram gt r oo g, — g, p

The IMEX SDBDF for k=1(1)9based on the SDBDF (2.2) are obtained using (2.3) and following the extrapolation process in
(2.4). The resultant IMEX SDBDF methods are now listed below.They will be referred to as IMEX SDBDFk subsequently.
The k indicates the step number of the SDBDF in (2.2) from which it was obtained.

IMEX SDBDF1, p=1

Yo = Yo :h(fn+gm)+h2(—% f’n—%g/mj (2.7)
IMEX SDBDF2,p=2

8 1 12 6 6 4 2 2
yn+2 _7 yn+1+;yn = h(7 fn+1 _; fn +7gn+2)+h2 (_7 f/n+1+? f/n _79ln+2J (28)
IMEX SDBDF3, p=3

yn+3_ﬁyn+z+£ynu_iyn:h(%f %f %f +@gn+3j+h2(_%f/n+z+%fl

85 85 85 g " 85 " g5 " 85 g5 ™
18 ., 18 ,
& e MJ (2.9)
IMEX SDBDF4,p=4
576 216 64 9 240 360 240 60
yw—Eywﬁmymz—mymﬁﬁyn=h(¥ fs—gg fetgg fugg ™ (2.10)

+@gn+4 + hz _@ f/n+3 +4732 f/n+2 _@ f/n+1 +E f/n _Eg/nu
83 415 415 415 415 415

IMEX SDBDFS5, p=5

718000y 8000 yo 4000 - 1125 - 144 y - 41100

™ 12019 7™ 12019 °™° 12019 °"? 12019 "™ 12019 7" 12019 "™

82200 82200 41100 8220 8220 ,( 9000 _,

- n+3 + n+2 - n+1+ fn + gn+5 __f n+4

12019 12019 12019 12019 " 12019 12019

18000 ., 18000 _, 9000 1800 1800

+ f ne3 n+2+ f/rwl_ In_ g/n+5

12019 12019 12019 12019 12019 (2.11)
IMEX SDBDF6,p=6

_21600y +13500y ~ 8000 - 3375 y o 864 _— 100 y _h(7560

™ 13489 "™° 13489 "' 13489 T 13489 °"? 13489 " 13489 " 1927 ™°

18900 25200 18900 7560 1260 1260 »( 10800 _,
- fn+4 + fn+3 - fn+2 + [ fn +— gn+8 T A on f n+5
1927 1927 1927 1927 1927 1927 13489
27000 ., 36000 ., 27000 ., 10800 ., 1800 ., 1800
f ned n+3 + f n+2 n+l + n g n+6
13489 13489 13489 13489 13489 13489
IMEX SDBDF7,p=7
1234800 926100 686000 385875 148176 34300
ne? nee T Yois — Yot Yous Yoo ¥ Yo
726301 726301 726301 726301 726301 726301

3600 3201660 . 9604980 . 16008300 , 16008300 . 9604980
“Z2sa01” " f f fovs =

(2.12)

n+6 - n+5 + n+4 n+3 + n+2
726301 726301 726301 726301 726301
3201660 457380 457380 o e 617400 ., 1852200 , 3087000 .,
726301 " 726301 " 726301 " 726301 "° 726301 "° 726301
, 3087000, 1852200 ., 617400 ., 88200 , 88200 g
726301 " 726301 "? 726301 "' 726301 " 726301 "

(2.13)
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IMEX SDBDFS8,p=8

5644800 4939200 4390400 3087000 1580544 548800
Yous Yoo T Yoes ~ Yous T Youa = Yozt Yoi2
3144919 3144919 3144919 3144919 3144919 3144919
115200 11025 h(15341760 53696160 107392320 f 134240400

3144910 7 T 31aa019 " T\ 3144919 ™7 3144919 "¢ 3144919 ™5 3144919 ™
107392320 53696160 15341760 1917720 , 1917720 L 2822400 _,
3144919 "° 3144919 "? ' 3144919 " 3144910 " ' 3144919 ”*sj (73144919 For
9878400 , 19756800 , 24696000 , 19756800 , 9878400 ., 2822400 ,
3144919 "° 3144919 ™° 3144919 ™' 3144919 "° 3144919 "? 3144919 ™
352800 ., 352800 j (2.14)

3144919 " 3144919 O e

IMEX SDBDF9,p=9
57153600 57153600 59270400 50009400 32006016 14817600
Yo ~ Yos + Yoo = Yoo + Yous = Yoo T Yois
30300391 30300391 30300391 30300391 30300391 30300391
4665125 893025 78400 161685720 646742880 1509066720
30300391 7" 30300391°"* 30300391 " =h( 30300391 ™° 30300391 " 30300391 ™°
_ 2263600080 | 2263600080 . 1509066720 . 646742880 . 161685720
30300391 "° 30300391 ™* 30300391 "° 30300391 "? 30300391 "
17965080 +17965080g j 2(_ 28576800 , 114307200 , 266716800
30300391 " 30300391 " 30300391 ™° 30300391 "7 30300391 "
| 400075200 ., 400075200 , 266716800 , 114307200 ., 28576800 .,
30300391 ™° 30300391 "* 30300391 " 30300391 "’ 30300391 "

3175200 £l 3175200 j

- - 2.15
30300391 " 303003919'Hg @19

3.0 The stability of the IMEX SDLMM (2.5)
Consider applying the IMEX SDLMM (2.5) to the ODE (1.2) where f (t, y(t)) is the non-stiff part and g(t, y(t)) is the stiff

part of the system. Considering the scalar test problem y/(t)=Ay(t)+ uy(t), it was determined in [5] the conditions under

which Ah and 4h lying in the region of stability of their respective methods are sufficient condition for the IMEX method
to be asymptotically stable. But that the independent stability of the explicit and implicit methods does not imply the stability
of the IMEX scheme [5]. However the context of that consideration in [5] is for LMM without derivative of the ODE (1.2).
The application of this approach of stability analysis is difficult and complicated for multiple part splitting and for a LMM
with step humber K > 2. However the approach in [3] is simpler and have been adopted in this work, but with extension to
the more generalized Cauchy test problem,

y'®) =[iejjzy(t)—zi(ejy(t>) 3.1
i=1 j=L
as suggested by the additive splitting (1.1). In the consideration herein® =V will represent the stiff part of the ODE (1.1),

while the rest {6} 06 are the non-stiff parts. We shall use this to study the stability of the IMEX methods derived in (2.7)-

(2.15), where in (3.1)
{Re(ﬂ) <0, Jleg

-1

v=e >0, O<e; <y, e;eR; j=1Ds
In particular when s=2 as in (1.2),the Cauchy test problem for this is

y' () =[91+[f1=[(e+v)2y(O]+[-eAy(t)]

y' O =[91+[f1=[((e+v)" - 2e(e + V) A" y(O)] +[e*2°y (V)] 3.2)

y(0)=1 Re(1)<0, Aez; ev>0
The square brackets indicates the nature of the splitting. Notice that this reduces to the Dahlquist test problem y'(t) = vAy(t),
with exact solution y(t)=e**. The stability polynomial [(r,z;e,V) is obtained by applying the IMEX method (2.5) on the
generalized Dahlquist test problem (3.1), thus
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[1(r,z;e,v) = (3.3)
Zk:ajrj +[%Z)§ﬂ;ri —(e\zlizji/lj*rj —(e+v)§zk:/3jrJ ~[(e+v)? —2e(e+v)]\zl—zzk:/ljrj

where Z=hAV  From this polynomial [1(r,z;e,v), the stability of the IMEX SDLMM (2.5) is therefore parameterized
by the stability variables e and v. In fact, these variables suggest the separable additive splitting in (1.2) into a stiff part
g(t,y®) by v and non-stiff part f(t,y(t)) by e. If €0 and V—1 then the stability of the IMEX-SDLMM (2.5)
approaches the stability of the underlying implicit second derivative method (2.2). It is indeed exactly so when e=0 and v=1.
The A-stability region of a method (2.5) can be illustrated by plotting its boundary locus curve of the stability polynomial

[1(r,z;e,v) , that is the values of Z=hAv corresponding to the boundary locus defined by
ITI(r.z;e,v) <L F =€, 0<0<27, z=hav, i=+-1 (3.4)

of its stability polynomial H(I" Z; e,v) with roots with respect to zlying within or on the unit circle. The collection of z for which (3.4)
holds defines the absolute stability region of an IMEX method in (2.5). Following Jorgenson [7], the essence here is to explore IMEX
methods which, when applied to the Cauchy test problem (3.2), display stable behavior. We shall be considering IMEX methods (2.5)
which apply the implicit scheme to the first part of (3.2) and its explicit scheme to the second part. A priori it is not obvious which mixed
method will exhibit stable behavior, and if so, whether the stability properties of the implicit or explicit part will dominate in the IMEX
method. Consider the IMEX SDBDF (2.7); to see the stability plot of this IMEX SDLMM in terms of step size and roots of its stability

polynomial, take Y, = r"™', z=hav, z? =h’2°v?and applying to the Cauchy test problem (3.2), we have

Y., — Y, =—eihy —%ezlzhzyn +(e+v)ihy, , —%[(e +v)? —2e(e +v)]/12h2y

n+l (35)
This implies,

n(r Z'eV):r—l— (_E)_Z;E[ij+z(ﬂ)r_l_z (e+v)2_2e(e+V) .
T \ 2 V2 Vv 2 VZ Vz

asin (3.3). So that,
—e ZZ eZ

1”(7)7[72)

'

2 v? v?

r=

This H(r, Z;e,V) is the stability polynomial in r plotted for the parameter z according to (3.4). The stability plot for the method (3.5) for

v=0.1 with e allowed to vary is shown in Figs (1.0b,c), the stability plots of the independent extrapolated explicit and its implicit method of

the SDBDF is also shown in Fig (1.0a). The implicit method, IM-SDBDF1 is

h? ,
Yo =Y =hgn+1_Eg Nl r=2

from which its extrapolated explicit method, EX-SDBDF1 is
1

yn+l_yn:hfn_§h2f/n; q:]-

—

EX-SDBDF1
IM-SDBDF1

15

o.

In(2)

0.

s
o
s
1

S —

2
1 o. 1 15 2

o 0.5
Re (2)

Figl.0a: Boundary locus of EX-SDBDF1 and IM-SDBDF1

=

1

- =004
e=00t €=0.06

- L
E’g'gg 5 e=0.09
e
e=0.1
€0, 01, 1 o
s )
\ R

el N —

|

T s 1 15 2 25 o s 0 5 10 15
Re (2) Re (2)

Fig 1.0b Fig 1.0c
Fig(1.0b,c): Boundary Locus of IMEX SDBDF1 with various e, v=0.1
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The plot in the Fig (1.0b) above shows that the stability region of IMEX SDBDF1 is growing with e; that is, the region of
absolute stability grows as the scaling of the explicit part of the method approaches that of the implicit. Clearly we see that
the method is A-stable from e=0.01 to e=0.03 in Fig (1.0b), but the method becomes unstable from e=0.04 to e=0.1 in Fig
(1.0c). But notice that if e=0 for v=1, we recover the stability plot of the implicit SDBDF1. The stability plots for the
independent implicit and extrapolated explicit SDBDF and the IMEX SDBDF from k=2(1)9 are shown in Figs (1.1)-(1.8)
with v=0.1 and for various values of e, the first graphs(a) will be showing the independent explicit and implicit SDBDF, the
second graphs(b) will be showing the stability plots for which the IMEX SDBDF method is stable and the third graphs(c) will
be showing the stability plots for which the IMEX SDBDF method is exhibiting instability. It is to be noted that for a stable
explicit method the interior of the curve is the stability region and for the implicit method that is A/A( & )-stable the exterior
of the closed boundary curve is the region of stability. In fact, for k=2, the IM-SDBDF2 is,

8 1 6 2.5
yn+27?yn+l+?yn:?hngi?hzg 21 r=3
and the EX-SDBDF is,
8 1 12 6 4 2
Yoiz 7 Yo +; Yo = h[7 fm*? fn}rhz[*? f/n+1+? f/nj; q=2

and similarly for the other IM-SDBDFkand EX-SDBDFkmethodsfork=3(1)9 which the boundary loci have been plotted in
Figs (1.1)-(1.8).

IMEX SDBDF2 (2.8):

o]

FigL.1a: Boundary locus of EX-SDBDF2 and IM-SDBDF2

T - ==
o L]

. . —

2 === . U/

Fig 1.1b Fig 1.1c
Fig(1.1b,c): Boundary Locus of IMEX SDBDF2 with various e, v=0.1
IMEX SDBDF3 (2.9):

) /{*fa:;’%s:;
572 ~ )

4
1 [ 1 2 3 4
Re (2)

Figl.2a: Boundary locus of EX-SDBDF3 an

s, =
-

=" -

Fig 1.2b Fig 1.2c
Fig(1.2b,c): Boundary Locus of IMEX SDBDF3 with various e, v=0.1
IMEX SDBDF4 (2.10):

’ A R ]|
\j/

4
0 o 1 2 3 4 5

Re @)

Figl.3a: Boundary locus of EX and IM SDBDF4
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\

Fig 1.3b  Figl3c
Fig(1.3b,c): Boundary Locus of IMEX SDBDF4 with various e, v=0.1
IMEX SDBDF5 (2.11):

A :f;-:n;::::\
e N N

Figl.4a: Boundary locus of EX-SDBDF5 and IM-SDBDF5

——e=0001

=T ——e=001

/ | oz N
e ) Fo
— T/
Fig 1.4b Fig 1.4c

Fig(1.4b,c): Boundary Locus of IMEX SDBDF5 with various e, v=0.1
IMEX SDBDF6 (2.12):

/—«7~( —— EXSDBDF6
4 | IM-SDBDF6

T 1

o0 1 2 3 4 5 s
Re (2)

Figl.5a: Boundary locus of EX-SDBDF6 and IM-SDBDF6

=001
e=0.1

Im @)

Im (z)

4
i - e

4 0 1 2 3 4 5 6 P20 0o 20 40 60 8 100
Re @) @

Fig 1.5b Fig 1.5¢
Fig(1.5b,c): Boundary Locus of IMEX SDBDF6 with various e, v=0.1
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Fig(1.7b,c): Boundary Locus of IMEX SDBDF8 with various e, v=0.1
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Fig(1.8b,c): Boundary Locus of IMEX SDBDF9 with various e, v=0.1
Observe that for k=5(1)9, the extrapolated explicit methods from the SDBDF (2.2) shows instability, but yet the arising
IMEX SDBDF, k=1(1)9 shows stability for some values of e. This is in line with the fact that the stability of independent
explicit and implicit method does not imply the stability of the IMEX method as remarked in [5]. For further insight see [8-
23].
4. Numerical experiments and applications of the IMEX SDLMM.
Consider some numerical experiments on the following initial value problems with different additive splitting.
Problem (1): Cauchy test problem [7]
@ Y O=[g1+[f1=[C+V)Ay®]+[-ely®)] 4.1)

y(0)=1, A=-10,e=0.03,v=0.1

has the exact solution y(t) = "4t
o) YO--100y0-lal+11=[-10y0]| -3y | 42)
y0)=1
1

-10=t
with its exact solution as Y(t)=¢e 2

Problem (2): Prothero-Robinson test problem, see [24] and [25]with the additive splitting (1.2) as
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y' () =[]+ [F1=[A(y(® - a®)]+[a' ()] (4.3)
t>0, y(0)=q(0),1<0
The exact solution is given by y(t) =q(t), here choose that

q(t):sin(%ﬂ) and A=-10°
The application of the method (2.5) to problems 1 and 2respectively leads to solving an implicit equation for the solution

component Yok which is resolved by applying the Newton-Raphson scheme on (2.5) to get,
Yo =y -(I(v)) F (), s=012..w (4.4)

where J (yr[ir]k) is the Jacobian matrix from

k-1 k-1 k-1
F(yaaa):yaﬂk{zaij+hzﬂzf(twyn+j>+hzzzzf’(tm,ym,-)
i=0 j=0 j=0

k-1 k-1

+h2ﬂjg(tn+j‘ yn+j)+ hzzﬂ’jgl(tm—j‘ yn+j):|+ hﬂkg(tm-k’ ylEi]k) + hz){kg/(tn+k ' yr[15+1k ’ §= 071' 2""’W
j=0 j=0

The solution Y,,,, is thus given by

k-1 k-1 k-1 k-1
yr|+k = _zaj yn+j +h2ﬂ*j f (tn+j ’ yn+j) + hzzﬂ“*j f /(tnﬂ' ! yn+j) + hZﬂjg(tmj ' yn+j)
j=0 j=0 j=0 j=0

k-1
+h2> 4,9 (0 You DI+ DBA R YD) + 02,9 (tu, Y

i=0

from(2.5). The starting values for (4.4) is from the explicit SDBDF

h? 1
O =y, +hf, +—f =2, Cy=—
yn+1 yn n 2 n p 3 6

Problem 1 and 2 will be solved with the IMEX method (2.7-2.10) in the interval [0,1] with step size h=0.001 anqg
h=0.0125 respectively. Note that the stiff term is9=(e+V)Ay(t) and the non-stiff term is f=-edy(t)and

g =-10y(t), fzféy(t) for (4.1) and (4.2) respectively. While for (4.3), 9=A(y()-a(t), f=0q'(). The numerical solutions

Y (@) of the IMEX methods (2.7-2.10) for each problem and its corresponding absolute error |Y(®) -y(®|with output at t=1
will be shown in the tables 1,2,3 and the graphs of the solutions from the IMEX methods (2.7)-(2.10) for each problem at
each point of t€[0,1] will be shown as graphs in figs (4.1-4.3).

Tablel. Problem (1a) (4.1), Y1) =4.53999297624848e — 005; h=0.00; 21=-100

[y - y()|=error

Methodsk IMEX SDBDFk SDBDFk
1 9.13061971219859¢-007 4.44293392277166e-007
2 8.91508411362085¢-007 8.91497007016978¢-007
3 1.33435517756372¢-006 1.33435529383837e-006
4 1.77280735728846e-006 2.51081575422581¢-006

Table2. Problem (1b) (4.2), (1) = 2.75364493497472¢-005,  h=0.001

|y - y(@)|=error
Methodsk

IMEX SDBDFk SDBDFk
! 4.24607454292506e-007 2.82398260454951e-007
2 5.66984608429898e-007 5.66985883467895e-007
3 8.48678136848717e-007 8.48678123208292e-007
4 1.12742828404115e-006 1.61893514155383e-006

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 143 -154
152



Implicit-Explicit Second... Ibezute and Ikhile Trans. Of NAMP

Table3. Problem(2) (4.3), Y(1) = 0.977061263899476; h=0.0125; 4=-100

y(@) - y()|=error
Methods k IMEX SDBDFk SDBDFk
1 1.19757561528899¢-003 1.19757561528933e-003
2 3.20900378985900e-003 3.53066817859904¢-003
3 3.61490600078684¢-003 3.90243650617472¢-003
4 3.43457374914502¢-003 3.66932598718350e-003

The IMEX SDBDFkmethods in section (2.3) resolves the implicitness in the numerical solution of (1.1) in a more cost
effective way when compared with the SDBDFk (2.2). And yet on the problems solved, the IMEX SDBDFkand
SDBDFk(2.2)gives the same numerical order of accuracy as the graphs of the numerical and exact solutions in Figs (4.1)-
(4.3) and Tables 1,2,3 will show.

1
0.8
exact solution S—
solution for (2.7)
0.6 ofution for (2:8)
solution for| (2.9)
solution for (2.10)
X

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t-axis

Fig 4.1: Exact and numerical solution of problem4.1 with IMEX methods(2.7)-(2.10)
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Fig 4.2: Exact and numerical solution of problem4.2 with IMEX methods(2.7)-(2.10)
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Fig 4.3: Exact and numerical solution of problem4.3 with IMEX methods(2.7)-(2.10)

Conclusively a family of variable order IMEX SDLMM (2.7)-(2.15) for the direct solution of I\VVPs in ODEs is considered for
additively separable ODEs (1.1). The methods are based on the SDBDF (2.2). The boundary loci in Figs(1.0) — Fig (1.8)
respectively shows that the proposed schemes from (2.5) based on the SDBDF (2.2) for step length k=1(1)9 for some values
of e are stable on the test problem (3.1). Furthermore, the numerical results in Tables 1,2,3 respectively shows that the IMEX
SDBDFk algorithm in section (2.3) compares favorably with the exact solutions of each problem. IMEX methods which are
based on SDLMM of Enright (1982) [26] can also be considered.
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