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Abstract 

The implicit-explicit (IMEX) linear multistep methods are now emerging technique for 

the numerical solutions of ordinary differential equations (ODEs) which arises from 

the discretization of partial differential equations (PDE) by method of lines (MOL), 

and chemical reaction models amongst other sources in which the resultant stiff ODEs 

admits an additively separable structure. In fact, the Prothero-Robinson stiff ODE is a 

typical example. In this paper, the purpose is to extend the implicit-explicit linear 

multistep methods to implicit-explicitsecond derivative linear multistep methods (IMEX 

SDLMM) for the numerical solution of additively separable stiff ODEs. The new 

IMEX SDLMMare based on the second derivative backward differentiation formulas 

(SDBDF). The IMEX methods developed herein are constructed by combining an 

extrapolated explicit method with its implicit method. The IMEX methods are shown to 

be stable on the conventional Dahlquist test problem. Numerical results are presented 

on the notable Prothero-Robinson stiff problem. 
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1.0 Introduction 

Large systems of ordinary differential equations (ODEs) arise amongst other sources from chemical reaction models and 

discretization in space of partial differential equations (PDEs) by method of lines (MOL).These differential equations (DEs) 

are sometimes models from real life applications. For such systems, there are often natural splitting of the right hand side of 

the differential system into two or more parts; such system can be written in the general form; 
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(1.1)                                     

where each of the ( , ( )); 1(1)jF t y t j s may represent a process in the model. However, the interest will be in when 

2s  . In particular, consider the two term additive splitting,   
/ ( ) ( , ( )) ( , ( )),y t f t y t g t y t  0 0 ,( )y t y

0[ , ]t t T      (1.2) 

where ( , ( ))f t y t  represents the non-stiff process and suitable for explicit time integration, for example advection and ( , ( ))g t y t  

represents the stiff process and suitable for implicit time integration for example diffusion or chemical reaction models [1]. 

The implicit-explicit (IMEX) integration approach discretizes the non-stiff part ( , ( ))f t y t  with an explicit method, and the 

stiff part ( , ( ))g t y t  with an implicit stable method. This strategy seeks to ensure the numerical stability of the solution of (1.2) 

while reducing the implicitness and therefore the overall computational effort in solving the ODE (1.2). This is the 

computational advantage of IMEX LMM. Hence in solving ODE (1.1), numerical schemes which integrate the ( , ( ))g t y t  term 

implicitly and ( , ( ))f t y t term explicitly are highly desired, such implicit-explicit methods are referred to as IMEX schemes 

[2]. One of the simplest examples is the IMEX Euler method 
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which is obtained by applying the implicit Euler formula to the g term and the explicit Euler formula to the f term. Here h  

is the step size, 
0 ,nt t nh   and ny  denotes an approximate value of the theoretical solution of ( )ny t  of (1.2). The IMEX 

linear multistep method was introduced in [3] and [4] and further analysis of its stability is done in [5].
 

In this paper, the purpose is to extend the implicit-explicit linear multistep methods to implicit-explicitsecond derivative 

linear multistep methods (IMEX SDLMM) based on the second derivative backward differentiation formulas (SDBDF). To 

achieve this aim, the following objectives are outlined. The first of these is to develop IMEX SDLMM based on the second 

derivative backward differentiation formula (SDBDF) up to the ninth order. The second objective is to analyze the basic 

properties of the methods in terms of its order, zero stability and region of absolute stability. The last objective is to 

numerically validate the proposed IMEX second derivative schemes. 

This paper is arranged as follows. In section 2, a variety of k-step IMEX SDLMM are derived. The stability of the IMEX 

SDLMM are analyzed and discussed in section 3. Section 4 presents the numerical experiments on the Prothero-Robinson 

problem amongst others. 
 

2.0 Derivation of IMEX SDLMM 

Consider the additive splitting of the ODEs (1.1) into two parts in (1.2). The general SDLMM is, 
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we shall derive an IMEX SDLMM based on the SDBDF  
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which are A-stable/A(α)-stable for 9k  . The IMEX SDLMM to be derived are such that the explicit parts are obtained by 

extrapolation of the implicit terms /,n k n kf f 
 of the SDLMM (2.2). 

2.1 The Design of IMEX SDLMM 

The fully implicit second derivative linear k-step method is 
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(2.3) 

with respect to the additive splitting in (1.2). An IMEX SDLMM can be derived by reducing ( , )
n k n k

f t y
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through extrapolation as follows,
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This leads to the k-step IMEX SDLMM                               
1 1
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; ; , 0j j j j j jk k k k              
 

The order of Prothero-Robinson convergence of the IMEX SDLMM to be derived will be stated and this is captured in what 

follows. 

2.2  Prothero-Robinson Convergence of the IMEX SDLMM (2.5) 

Let the extrapolated IMEX SDLMM schemes (2.5) be of order p when applied to the stiff system of differential equations 

(1.2). Following [6], consider the Prothero-Robinson convergence of the scheme in (2.5) on the Prothero-Robinson test 

problem [6]. 
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where   has a large and negative real part and ( )q t  is a slowly varying function. The solution to (2.2.1) is ( ) ( )y t q t . 

The IMEX scheme (2.5) is said to be Prothero-Robinson (PR) convergent if the application of (2.5) to the equation (2.2.1) 

leads to the solution ( )n ky t   whose global error satisfies  
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where r  is the order of underlying implicit second derivative method in (2.2), q  is the order of resultant explicit 

extrapolation (2.4) and 
/ ( ), ( ( ) ( ))f q t g y t q t    or 

/( ) ( ), ( )f q t q t g y t      the non-stiff and stiff parts respectively. The 

methods in (2.5) are PR-convergent and the order of its Prothero-Robinson convergence is captured in the following theorem 

Theorem 

Assume the implicit SDLMM (2.3) has order r and the extrapolation procedure (2.4) has order q. Then the IMEX SDLMM 

(2.5) has order p=min(r,q) as 0, ,h h   and ASh R  . Here ASR is the region of absolute stability of the SDLMM 

(2.3)  

Proof. Let ( ) ( , ( ))t f t y t  and 
/ /( ) ( , ( ))t f t y t  , the local truncation error can be written as 
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with constants 1 2
,C C  determined by the coefficients of the SDLMM (2.5) and extrapolation procedure (2.4). The order p 

follows therefrom (2.2.3) 
 

2.3 Derivation of the IMEX SDLMM (2.5) based on the SDBDF (2.2) 

As an application of this theorem, the derivation of the IMEX SDLMM based on the SDBDF (2.2) for the case of k=1,2 

appears trivial, but consider for example when k=3, the SDBDF for k=3 is  
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According to (2.3), we have 
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 are obtained from the extrapolation procedure (2.4).  The extrapolated explicit method of 

(2.6) becomes  
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The IMEX method from SDBDF (2.2) for k=3 according to (2.5) becomes 
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The IMEX SDBDF for k=1(1)9based on the SDBDF (2.2) are obtained using (2.3) and following the extrapolation process in 

(2.4). The resultant IMEX SDBDF methods are now listed below.They will be referred to as IMEX SDBDFk subsequently. 

The k indicates the step number of the SDBDF in (2.2) from which it was obtained. 

IMEX SDBDF1, p=1 

  2 / /

1 1 1

1 1

2 2
n n n n n n

y y h f g h f g
  
    

 
  

 
           (2.7) 

IMEX SDBDF2,p=2 
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IMEX SDBDF3, p=3 
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IMEX SDBDF4,p=4 
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IMEX SDBDF6,p=6
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3.0 The stability of the IMEX SDLMM (2.5) 

Consider applying the IMEX SDLMM (2.5) to the ODE (1.2) where ( , ( ))f t y t is the non-stiff part and ( , ( ))g t y t is the stiff 

part of the system. Considering the scalar test problem / ( ) ( ) ( ),y t y t y t    it was determined in [5] the conditions under 

which h  and h  lying in the region of stability of their respective methods are sufficient condition for the IMEX method 

to be asymptotically stable. But that the independent stability of the explicit and implicit methods does not imply the stability 

of the IMEX scheme [5]. However the context of that consideration in [5] is for LMM without derivative of the ODE (1.2). 

The application of this approach of stability analysis is difficult and complicated for multiple part splitting and for a LMM 

with step number 2k  . However the approach in [3] is simpler and have been adopted in this work, but with extension to 

the more generalized Cauchy test problem, 
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as suggested by the additive splitting (1.1). In the consideration herein se v
 will represent the stiff part of the ODE (1.1), 

while the rest 
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 are the non-stiff parts. We shall use this to study the stability of the IMEX methods derived in (2.7)-

(2.15), where in (3.1) 
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In particular when s=2 as in (1.2),the Cauchy test problem for this is 
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The square brackets indicates the nature of the splitting. Notice that this reduces to the Dahlquist test problem /
( ) ( )y t v y t , 

with exact solution ( ) v ty t e  . The stability polynomial ( , ; , )r z e v  is obtained by applying the IMEX method (2.5) on the 

generalized Dahlquist test problem (3.1), thus 
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 where z h v . From this polynomial ( , ; , ),r z e v  the stability of the IMEX SDLMM (2.5) is therefore parameterized 

by the stability variables e and v. In fact, these variables suggest the separable additive splitting in (1.2) into a stiff part 

( , ( ))g t y t  by v and non-stiff part ( , ( ))f t y t  by e. If 0e  and 1v   then the stability of the IMEX-SDLMM (2.5) 

approaches the stability of the underlying implicit second derivative method (2.2). It is indeed exactly so when e=0 and v=1. 

The A-stability region of a method (2.5) can be illustrated by plotting its boundary locus curve of the stability polynomial 

( , ; , )r z e v , that is the values of z h v corresponding to the boundary locus defined by 
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of its stability polynomial , ; ,( )z e vr  with roots with respect to zlying within or on the unit circle. The collection of z for which (3.4) 

holds defines the absolute stability region of an IMEX method in (2.5). Following Jorgenson [7], the essence here is to explore IMEX 

methods which, when applied to the Cauchy test problem (3.2), display stable behavior. We shall be considering IMEX methods (2.5) 

which apply the implicit scheme to the first part of (3.2) and its explicit scheme to the second part. A priori it is not obvious which mixed 

method will exhibit stable behavior, and if so, whether the stability properties of the implicit or explicit part will dominate in the IMEX 

method. Consider the IMEX SDBDF (2.7); to see the stability plot of this IMEX SDLMM in terms of step size and roots of its stability 

polynomial, take 
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This ( , ; , )r z e v  is the stability polynomial in r plotted for the parameter z according to (3.4). The stability plot for the method (3.5) for 

v=0.1 with e allowed to vary is shown in Figs (1.0b,c), the stability plots of the independent extrapolated explicit and its implicit method of 

the SDBDF is also shown in Fig (1.0a). The implicit method, IM-SDBDF1 is 
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from which its extrapolated explicit method, EX-SDBDF1 is 
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Fig1.0a: Boundary locus of EX-SDBDF1 and IM-SDBDF1 

   
Fig 1.0b               Fig 1.0c 

Fig(1.0b,c): Boundary Locus of IMEX SDBDF1 with various e, v=0.1 
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The plot in the Fig (1.0b) above shows that the stability region of IMEX SDBDF1 is growing with e; that is, the region of 

absolute stability grows as the scaling of the explicit part of the method approaches that of the implicit. Clearly we see that 

the method is A-stable from e=0.01 to e=0.03 in Fig (1.0b), but the method becomes unstable from e=0.04 to e=0.1 in Fig 

(1.0c). But notice that if e=0 for v=1, we recover the stability plot of the implicit SDBDF1. The stability plots for the 

independent implicit and extrapolated explicit SDBDF and the IMEX SDBDF from k=2(1)9 are shown in Figs (1.1)-(1.8) 

with v=0.1 and for various values of e, the first graphs(a) will be showing the independent explicit and implicit SDBDF, the 

second graphs(b) will be showing the stability plots for which the IMEX SDBDF method is stable and the third graphs(c) will 

be showing the stability plots for which the IMEX SDBDF method is exhibiting instability. It is to be noted that for a stable 

explicit method the interior of the curve is the stability region and for the implicit method that is A/A( )-stable the exterior 

of the closed boundary curve is the region of stability. In fact, for k=2, the IM-SDBDF2 is, 

/2
2 1 2 2 3;

8 1 6 2

7 7 7 7
nn n n n ry y y hg h g         

and the EX-SDBDF is, 

2 / /

2 1 1 1

8 1 12 6 4 2

7 7 7 7
2

7
;

7
n n n n n n ny y y h f f h f qf   

 
       



 
 

   
and similarly for the other IM-SDBDFkand EX-SDBDFkmethodsfork=3(1)9 which the boundary loci have been plotted in 

Figs (1.1)-(1.8). 
 

IMEX SDBDF2 (2.8): 

 
Fig1.1a: Boundary locus of EX-SDBDF2 and IM-SDBDF2 

    
Fig 1.1b                                             Fig 1.1c 

Fig(1.1b,c): Boundary Locus of IMEX SDBDF2 with various e, v=0.1 
 

IMEX SDBDF3 (2.9): 

 
Fig1.2a: Boundary locus of EX-SDBDF3 and IM-SDBDF3 

    
Fig 1.2b                                  Fig 1.2c 

Fig(1.2b,c): Boundary Locus of IMEX SDBDF3 with various e, v=0.1 
 

IMEX SDBDF4 (2.10): 

 
Fig1.3a: Boundary locus of EX and IM SDBDF4 
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            Fig 1.3b                                                                        Fig 1.3c 

Fig(1.3b,c): Boundary Locus of IMEX SDBDF4 with various e, v=0.1 

IMEX SDBDF5 (2.11): 

 
Fig1.4a: Boundary locus of EX-SDBDF5 and IM-SDBDF5 

     
Fig 1.4b                                                                     Fig 1.4c 

Fig(1.4b,c): Boundary Locus of IMEX SDBDF5 with various e, v=0.1 
 

IMEX SDBDF6 (2.12): 

 
Fig1.5a: Boundary locus of EX-SDBDF6 and IM-SDBDF6 

     
Fig 1.5b                                                        Fig 1.5c 

Fig(1.5b,c): Boundary Locus of IMEX SDBDF6 with various e, v=0.1 

IMEX SDBDF7 (2.13): 

 
Fig1.6a: Boundary locus of EX-SDBDF7 and IM-SDBDF7 

     
Fig 1.6b                                                                    Fig 1.6c 

Fig(1.6b,c): Boundary Locus of IMEX SDBDF7 with various e, v=0.1 

IMEX SDBDF8 (2.14): 
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Fig1.7a: Boundary locus of EX-SDBDF8 and IM-SDBDF8 

    
Fig 1.7b                                                          Fig 1.7c 

Fig(1.7b,c): Boundary Locus of IMEX SDBDF8 with various e, v=0.1 

IMEX SDBDF9 (2.15): 

 

 
Fig1.8a: Boundary locus of EX-SDBDF9 and IM-SDBDF9 

    
Fig 1.8b                                                            Fig 1.8c 

Fig(1.8b,c): Boundary Locus of IMEX SDBDF9 with various e, v=0.1 
 

Observe that for k=5(1)9, the extrapolated explicit methods from the SDBDF (2.2) shows instability, but yet the arising 

IMEX SDBDF, k=1(1)9 shows stability for some values of e. This is in line with the fact that the stability of independent 

explicit and implicit method does not imply the stability of the IMEX method as remarked in [5]. For further insight see [8-

23]. 
 

4. Numerical experiments and applications of the IMEX SDLMM. 

Consider some numerical experiments on the following initial value problems with different additive splitting. 

Problem (1): Cauchy test problem [7] 

(a)       
/

(0) 1, 10, 0.03, 0.1

( ) [ ] [ ] [( ) ( )] [ ( )]

y e v

y t g f e v y t e y t



 

    

     

    

(4.1) 

has the exact solution ( ) v ty t e   

     (b)        / 1 1
( ) 10 ( ) [ ] [ ] 10 ( ) ( )

2 2

(0) 1

y t y t g f y t y t

y

 
        

 



                                 (4.2) 

with its exact solution as 

1
10

2( )
t

y t e


  

Problem (2): Prothero-Robinson test problem, see [24] and [25]with the additive splitting (1.2) as 
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/ /( ) [ ] [ ] [ ( ( ) ( ))] [ ( )]

0, (0) (0), 0

y t g f y t q t q t

t y q





    

  

                        (4.3) 

 

The exact solution is given by ( ) ( )y t q t , here choose that 

2
( ) sin

4
10q t t and


 

 
  

 

 

The application of the method (2.5) to problems 1 and 2respectively leads to solving an implicit equation for the solution 

component n ky   which is resolved by applying the Newton-Raphson scheme on (2.5) to get, 

    
1

[ 1] [ ] [ ] [ ] , 0,1,2,...,s s s s

n k n k n k n ky y J y F y s w




                              (4.4) 

where  [ ]s

n kJ y   is the Jacobian matrix from 

 
1 1 1

[ ] [ ] 2 /

0 0 0

1 1
2 / [ ] 2 / [ ]

0 0

( , ) ( , )

( , ) ( , ) ( , ) ( , ), 0,1,2,...,

k k k
s s

n k n k j n j j n j n j j n j n j

j j j

k k
s s

j n j n j j n j n j k n k n k k n k n k

j j

F y y y h f t y h f t y

h g t y h g t y h g t y h g t y s w

  

   

  
 

      

  

 

       

 


   




    



  

 

 

The solution n ky   is thus given by 

1 1 1 1
2 /

0 0 0 0

1
2 / [ ] 2 / [ ]

0

( , ) ( , ) ( , )

( , )] ( , ) ( , )

k k k k

n k j n j j n j n j j n j n j j n j n j

j j j j

k
w w

j n j n j k n k n k k n k n k

j

y y h f t y h f t y h g t y

h g t y h g t y h g t y

   

  

   
 

       

   



     



    

  

   



 

from(2.5). The starting values for (4.4) is from the explicit SDBDF

 

2
[0] /

1 3

1
2,

2 6
n n n n

h
y y hf f p C     

 
Problem 1 and 2 will be solved with the IMEX method (2.7-2.10) in the interval [0,1] with step size 0.001h   and 

0.0125h   respectively. Note that the stiff term is ( ) ( )g e v y t   and the non-stiff term is ( )f e y t  and 
1

10 ( ), ( )
2

g y t f y t     for (4.1) and (4.2) respectively. While for (4.3), 
/( ( ) ( )), ( ).g y t q t f q t    The numerical solutions 

(1)y of the IMEX methods (2.7-2.10) for each problem and its corresponding absolute error (1) (1)y y with output at t=1 

will be shown in the tables 1,2,3 and the graphs of the solutions from the IMEX methods (2.7)-(2.10) for each problem at 

each point of [0,1]t  will be shown as graphs in figs (4.1-4.3). 

 

Table1. Problem (1a) (4.1), (1) 4.53999297624848 005; 0.001; 100y e h       

 

Methodsk 
(1) (1)y y error   

 IMEX SDBDFk SDBDFk 

1 
9.13061971219859e-007 4.44293392277166e-007

 

2 8.91508411362085e-007 8.91497007016978e-007 

3 1.33435517756372e-006 1.33435529383837e-006 

4 1.77280735728846e-006 2.51081575422581e-006 

 

Table2. Problem (1b) (4.2), (1) 2.75364493497472e-005; 0.001y h   

 

Methodsk 
(1) (1)y y error   

IMEX SDBDFk SDBDFk 

1 
4.24607454292506e-007 2.82398260454951e-007

 

2 5.66984608429898e-007 5.66985883467895e-007 

3 8.48678136848717e-007  8.48678123208292e-007 

4 1.12742828404115e-006 1.61893514155383e-006 
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Table3. Problem(2) (4.3), (1) 0.977061263899476; 0.0125; 100y h      

 

Methods k 
(1) (1)y y error   

 IMEX SDBDFk SDBDFk 

1 
1.19757561528899e-003 1.19757561528933e-003

 

2 3.20900378985900e-003 3.53066817859904e-003 

3 3.61490600078684e-003 3.90243650617472e-003 

4 3.43457374914502e-003 3.66932598718350e-003 

 

The IMEX SDBDFkmethods in section (2.3) resolves the implicitness in the numerical solution of (1.1) in a more cost 

effective way when compared with the SDBDFk (2.2). And yet on the problems solved, the IMEX SDBDFkand 

SDBDFk(2.2)gives the same numerical order of accuracy as the graphs of the numerical and exact solutions in Figs (4.1)-

(4.3) and Tables 1,2,3 will show. 
 

 
Fig 4.1: Exact and numerical solution of problem4.1 with IMEX methods(2.7)-(2.10) 

 

Fig 4.2: Exact and numerical solution of problem4.2 with IMEX methods(2.7)-(2.10) 

 
Fig 4.3: Exact and numerical solution of problem4.3 with IMEX methods(2.7)-(2.10) 
 

Conclusively a family of variable order IMEX SDLMM (2.7)-(2.15) for the direct solution of IVPs in ODEs is considered for 

additively separable ODEs (1.1). The methods are based on the SDBDF (2.2). The boundary loci in Figs(1.0) – Fig (1.8) 

respectively shows that the proposed schemes from (2.5) based on the SDBDF (2.2) for step length k=1(1)9 for some values 

of e are stable on the test problem (3.1). Furthermore, the numerical results in Tables 1,2,3 respectively shows that the IMEX 

SDBDFk algorithm in section (2.3) compares favorably with the exact solutions of each problem. IMEX methods which are 

based on SDLMM of Enright (1982) [26] can also be considered. 
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