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Abstract 

In this article, a class of stiffly stable third derivative linear multistep methods 

(TDLMM) is presented and analysed. The newly proposed method is a 

modification of the third derivative backward differential formula (TDBDF). 

The TDBDF is inefficient for order 𝒑 = 𝟏𝟐. The proposed class of method is 

stable for order 𝒑 ≤ 𝟏𝟐. Numerical tests on linear and nonlinear stiff systems 

of initial value problems show that, the proposed method compares 

favourably with TDBDF. 
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1.0 Introduction 

Consider a stiff system given as 

0 0 0( ) ( , ( )), (x ) , : ,× N N Nf Ry x f R Rx y Ry x y y     .    (1) 

Methods for the numerical approximation of the solution of (1) are expected to possess wide regions of absolute stability 

𝑅𝐴, which contain the entire or large enough left half of the complex plane [1,2,3]. Of which methods, whose region of 

absolute stability contains the entire left half of the complex plane are known as𝐴-stable methods [4,5].  However, 𝐴-stable 

methods are implicit and cannot exceed order 𝑝 = 2 [1-5]. This barrier is popularly known as the second Dahlquist order 

barrier [2]. To overcome this barrier, different research approaches have been devised and utilized, such inclusion of higher 

derivative term directly into the method, and addition of future points in the method approach [5]. In [6], the relationship 

between the 𝑚th derivative term present in a method and the maximum order an 𝐴-stable method can attain is established. 

This established relationship is known as the Daniel Moore’s conjecture and it states thus: the maximum order of an 𝐴-

stable linear multistep method (LMM) with 𝑚 derivative is 2𝑚. The simple interpretation is that, to derive say for example 

higher derivative methods whose maximum order 𝑝 = 6, then the third derivative of the solution component must be 

infused directly into the method. The backward differentiation formula (BDF) is generalized in [7]. Of a particular interest 

in this article is the third derivative BDF. The third derivative BDF is unstable for order 𝑝 ≥ 12. This article seeks to 

improve on the efficiency of the third derivative BDF. The arrangement of this article is as follows: in section 2 is the 

construction of methods, while the stability analysis of proposed methods is in section 3. Section 4, is on numerical 

experiments and conclusion is in section 5. 

 

2.0 Construction of Method 

The general 𝑘-step third derivative linear multistep method (TDLMM) for solving the IVP (1) is of the form 

2 ' 3 ''

0 0 0 0

k k k k

j n j j n j j n j j n j

j j j j

y h f h f h f      

   

           (2) 

where 1,k  (x, y(x))
,

n j

n j

x x

df
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n j

n j

x x

df
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 , ,j j  j and , 0,1,...,j j k  are parameters to be  
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determined. The TDLMM (2) is explicit if k , k  and k are zero at the same time, else it is implicit. The TDLMM (2) 

can be written in polynomial notation as 
2 ' 3 ''( ) ( ) ( ) ( )n n n nE y h E f h E f h E f                      (3) 

where 

0 0

( ) , ( ) ,
k k

j j

j j

j j

E E E E   
 

  
0

( )
k

j

j

j

E E 


 and

0

( ) .
k

j

j

j

E E 



  (4) 

The polynomials: ( ); ( );E E  ( )E and ( )E are called the first, second, third and fourth characteristics polynomials 

respectively. The linear difference operator associated with the TDLMM (2) is given as 

0

[y(x );h] [ ( ) ( )
k

n j n j n

j

L y x jh h y x jh 


   
2 3( ) ( )]j n j nh y x jh h y x jh      

 
(5) 

It is assumed that (5) is differentiable as often as required, Taylor expanding (5) about nx yields 

2

0 1 2[y(x );h] ( ) ( ) ( )n n n nL C y x C hy x C h y x     ( )q q

q nC h y x                   (6) 

so that 
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(7) 

The TDLMM (2) and its associated linear difference operator (5) is of order p  if 
0 1 0,pC C C    and 

1 0.pC  

1 0pC   is called the error constant.

 Consider the third derivative backward differentiation formula (TDBDF) given as 

(1) 2 (2) 3 (3)

0

,
k

i n i k n k k n k k n k

i

y h f h f h f      



                      (8) 

In polynomial notation, (8) can be written as  
2 3( ) ( ) ( ) ( ),E h E h E h E                            

(9) 

where (1) (2) (3)

0

( ) , ( ) , ( ) , ( )
k

i k k k

i k k k

i

E E E E E E E E       


   
 are the first, second, third and fourth characteristics 

polynomials of the third derivative backward differentiation formulae (TDBDF) respectively [1,4]. The TDBDF (8) has 

been shown to be𝐴-stable for order 6p 
, 
𝐴 ( ) -stable for order 11p   and unstable for order 12,p  [8]. In the spirit 

of Muka and Obiorah (2016), a non-zero coefficient is introduced into the second characteristics polynomials of (8), 

thereby resulting into a new class of methods. This is done by introducing a non-zero coefficient
(1*)

k    of the function 𝑓 

evaluated at the point .xn k  
 
This is a modification of the second characteristics polynomial of the scheme (8) in the 

following way 
(1) (1*)( ) .k k

k kE E E 

   

                                                       (10a) 

(1) (1*) 2 (2) 3 (3)

0

( ) ,
k

i n i k n k k n k k n k k n k

i

y h f f h f h f           



    
            

(10b) 

where ( ) (1*), v 1,2,3, , 1,2,...,v

k k k    are non-zero parameters to be determined. The parameters of methods (10b) are 

determined using Taylor’s series expansion and method of undetermined coefficients. Parameters  
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(v) (1*), i 1,2,...,k, , v 1,2,3, , 1,2,...,i k k k       are determined completely by requiring (10b) to be of order 3p k  . If 

(1*) 0k     in (10a), then (10a) reduces to the TDBDF (8). The linear difference operator  [ , ( ); ]n nx y x hL  associated with 

the TDLMM (10b) is given as 

(1) (1*) 2 (2)

0

3 (3)

[ , ( ); ] ( ) ( ( , ( )) ( , y( ))) ( , ( ))

( , ( )),

k

n n i n i k n k n k k n k n k k n k n k

i

k n k n k

x y x h y x h f x y x f x x h f x y x

h f x y x

     



         



 

   



L

  

(11) 

Expanding (11) about nx  yields  

0 1 2[ , ( ); ] ( ) ( ) ( ) ... y ( )q

n n n n n q nx y x h C y x C y x C y x C x      L
             

(12) 

The coefficients 
1, , ,o qC C C are given as follows 
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            (13) 

TDLMM (10b) of order 3p k   can be obtained by solving the first ( 4)k  system of linear equations (13) using the 

linear solver of MATHEMATICA 10 suite. By solving the first ( 4) ( 4)k k    system of linear equations in (13) will yield 

parameters that are functions of . Therefore, for each k-step and varying 1,2, ,k   will lead to the derivation of 𝑘 

number of methods of 𝑘-step TDLMM. 

For 1k  and 1  , (10b) becomes 

(1) (1*) 2 (2) 3 (3)

1 0 1 1 0 1 1 1 1( )n n n n n ny y h f f h f h f       
                     (14) 

By setting 0, 0(1)4qC q    in (13) yields the following order conditions 

0 0

(1) (1*)

1 1 0

(1) (2)

2 1 1

(1)
(2) (3)1

3 1 1

(1) (2)
(3)1 1

4 1

1 0

1 0

1
0

2

1
0

6 2

1
0

24 6 2

C

C

C

C

C



 

 


 

 


   


   



    

    


    
                

(15) 

Solving the system of linear equations (15), yields (1*) (1) (2) (3)

0 0 1 1 1

1 3 1 1
1, , , ,

4 4 4 24
            .  

Inserting the values of the parameters as determined from (15), yields  
2 3

1 1 1 1(3 )
4 4 24

n n n n n n

h h h
y y f f f f   

                                          (16) 

The one-step 1,   TDLMM (16) has error constant
5

1

480
C


  . 
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For 2,k  (10b) becomes 

(1) (1*) 2 (2) 3 (3)

2 1 1 0 2 2 2 2 2 2 2 2( )n n n n n n ny y y h f f h f h f             
                       (17) 

Setting 0, 0(1)5qC q    in (13) yields  

0 1 0

(1) (1*)

1 1 2 2

(1) (1*) (2)

2 2 2 2

2
1 (1*) (2) (3)1

3 2 2 2 2

3
(1) (1*) (2) (3)1

4 2 2 2 2

4
(1)1

5 2 2

1 0

2 0

2 2 (2 ) 0
2

4 (2 )
2 2 0

3 6 2

2 4 (2 )
2 2 0

3 24 3 6
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2 2

4
2 0
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(18)                                         

For 1  , solving the system (18), yields 

(1) (1*) (2) (3)

0 1 2 1 2 2

1 48 34 16 10 4
, , , , , ;

49 49 49 49 49 147
               

and inserting these values in (17) to obtain 
2 3

2 1 2 1 2 2

48 1 10 4
(34 16 ) ,

49 49 49 49 147
n n n n n n n

h h h
y y y f f f f     

                               (19)
 

The Two-step 1,   TDLMM (19) has error constant
6

1

2205
C




.

 

Similarly, for 2  , solving the system (18), we obtain  

(1) (1*) (2) (3)

0 1 2 0 2 2

3 16 11 1 4 2
, , , , , ;

13 13 13 13 13 39
             

 
Inserting these values in (17) yields

 2 3

2 1 2 2 2

16 3 4 2
(11 ) ,

13 13 13 13 39
n n n n n n n

h h h
y y y f f f f    

      
                    

(20)
 

Two-step 2,   TDLMM (20) has error constant
6

1

585
C




.

 

Other members of the class of TDLMM (10b) can be derived in like manner. Coefficients of the TDLMM (10b) are 

presented for 𝑘 = 1,2,3,4 along with their error constant 𝐶𝑝+1 and order 𝑝 in Table 1. 
 

Table 1: Coefficients of TDLMM (10b) for each 𝑘 and 𝜇 values.  

k  
  𝑝 (3)
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−

1
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3.0 STABILITY ANALYSIS 

In this section, the stability properties of the TDLMM (10b) is examined.  

Definition 1: The k  step TDLMM (10b) is zero-stable if the roots , 1,2, ,jw j k of the first characteristics polynomial 

( )w are such that 1, 1,2, ,jw j k  and 1jw  being simple. 

Applying the TDLMM (10b) to the scalar test equation (21) 

( )y x y                    (21) 

yields the stability polynomial  

(1) (1*) 2 (2) 3 (3)

0

( , ) ( )
k

i k k k

i k k k k k

i

w z w z w w z w z w

     





    
,              (22) 

equating (22) to zero, yields the characteristics equation  

0

( , ) 0
k

j

j

j

w z w 


                   (23) 

The roots of the first characteristics polynomial of the TDLMM (10b) are verified to be zero stable for all 𝜇, 𝑘-step 

members, except for 9, 2,3,4k   which are zero unstable. The boundary locus method is used to obtain the 

polynomial which describes the stability regions of the TDLMM (10b), by inserting , 0,1,2, ,tw e t k  in (22) 

and equating to zero, yields a polynomial of degree three in .z  The three roots of z (a function of   ) describe the stability 

region of TDLMM (10b). The stability characteristics of the TDLMM (10b) are presented in Table 2. The search of stable 

TDLMM (10b) is carried out with the aid of MATHEMATICA 10. The entries of Table 2 labelled “-” corresponds to 

unstable members of the TDLMM (10b). The stability plots of the TDLMM (10b) are presented for 𝑘 = 1,2,3 and are given 

in Figures 1 - 6. The 𝛼-values of TDLMM (10b) are summarized in Table 2. 

               

Fig. 1:
AR  of TDLMM (10b) for 1, 1k                       Fig. 2: 

AR  of TDLMM (10b) for 2, 1k    

               

Fig. 3: 
AR  of TDLMM (10b) for 2, 2k  

                
Fig. 4:

AR  of TDLMM (10b) for 3, 1k    

              

Fig. 5: 
AR  of TDLMM (10b) for 3, 2k  

  
       Fig. 6: 

AR  of TDLMM (10b) for 3, 3k    
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Table 2: 𝛼-values of TDLMM (10b) 

         𝜇 

𝑘 

1 2 3 4 5 6 7 8 9 

1 90          

2 90  90         

3 89  89  89        

4 88  89  90  89       

5 88.5  87  88  89  89      

6 86  83  87  85  80  86     

7 80  76  78  75  80  82  82    

8 76  62  - 69  73  74  79  80   

9 71  - - - - 64  69  67  68  

 

4 NUMERICAL EXPERIMENT 

Numerical tests are carried out on three standard problems using the TDLMM (20) and the TDBDF (8). The Newton-

Raphson iterative scheme is used so as to resolve the implicitness in the methods with a fixed stepsize, ℎ. 

 

Problem 1 

The linear system of stiff initial value problem [9] 

 , (0) (1,1,1,1) , [0,1]Ty x   

whose exact solution are:   

The Numerical results are presented in Table 3 for the given problem solved with ℎ = 0.0001 

 

Table 3: Absolute errors of 𝑦1 and 𝑦2 solution components for problem 1 

𝑥 𝑦𝑖   𝑦 𝑥 − 𝑦𝑇𝐷𝐿𝑀𝑀 (21)   𝑦 𝑥 − 𝑦𝑇𝐷𝐵𝐷𝐹   

0.2 𝑦1 5.6424540091026820𝐸 − 5 8.2116040260982180𝐸 − 5 

𝑦2 9.3793039498996090𝐸 − 5 1.3500694687401670𝐸 − 4 

0.4 𝑦1 4.6444592754935066𝐸 − 5 6.6982840909002300𝐸 − 5 

𝑦2 1.2691008150999411𝐸 − 5 1.8273697646002673𝐸 − 5 

0.6 𝑦1 3.7623928158980746𝐸 − 5 5.5242600008997830𝐸 − 5 

𝑦2 1.7140412139999770𝐸 − 6 2.4765753170001570𝐸 − 6 

0.8 𝑦1 3.1065850371048140𝐸 − 5 4.4966832158988000𝐸 − 5 

𝑦2 2.3124759900001015𝐸 − 7 3.3589058199998090𝐸 − 7 

1.0 𝑦1 2.5905055525965448𝐸 − 5 3.6345239889989944𝐸 − 5 

𝑦2 3.1368503999999490𝐸 − 8 4.5385289000001610𝐸 − 8 

From Table 3, it can be observed that the absolute errors from the TDLMM (20) is smaller compared with that of the 

TDBDF (8). 

 

Problem 2  

Consider the nonlinear equation, a special case of the Riccati equation [5]
3

, (0) 1, [1,10]
2

y
y y x    
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The exact solution is  

The numerical results are presented in Table 4 when the problem is solved using different stepsizes of ℎ = 1,0.1,0.01,0.001 

respectively. 

 

Problem 3 

The linear stiff system of equations [5] 

 , [0,1]x  

whose exact solution are: . The numerical results are presented in Table 

5 with stepsize ℎ = 0.0001. 

 

Table 4: Absolute errors for problem 2. 

𝑥 ℎ  𝑦 𝑥 − 𝑦𝑇𝐷𝐿𝑀𝑀 (21)   𝑦 𝑥 − 𝑦𝑇𝐷𝐵𝐷𝐹   

5 1 1.1197152249049990𝐸 − 2 3.3276352762323990𝐸 − 2 

0.1 2.1627696300399735𝐸 − 3 3.4497928421990400𝐸 − 3 

0.01 2.3362480664196328𝐸 − 4 3.4066981905800375𝐸 − 4 

0.001 2.3533782585960505𝐸 − 5 3.4025300106044210𝐸 − 5 

10 

 

1 5.5278534429083480𝐸 − 3 1.4470642548685630𝐸 − 2 

0.1 8.8613990637437250𝐸 − 4 1.4009908383366132𝐸 − 3 

0.01 9.4267357315380720𝐸 − 5 1.3734762859962668𝐸 − 4 

0.001 9.4819958023628640𝐸 − 6 1.3708021298630690𝐸 − 5 

In Table 4, the numerical results show that the error of the TDLMM (20) is smaller when compared to the TDBDF (8). As 

the step size reduces, there is a positive improvement in the errors of the TDLMM (20). 

 

Table 5: Absolute errors of𝑦 1 and𝑦 2 solution components for problem 3 

𝑥 𝑦𝑖   𝑦 𝑥 − 𝑦𝑇𝐷𝐿𝑀𝑀 (21)   𝑦 𝑥 − 𝑦𝑇𝐷𝐵𝐷𝐹   

0.2 𝑦1 1.1318807158500199𝐸 − 4 1.6351085990296000𝐸 − 4 

𝑦2 1.1427204003000000𝐸 − 4 1.6510249595700000𝐸 − 4 

0.4 𝑦1 9.2797107253073110𝐸 − 5 1.3405774272201576𝐸 − 4 

𝑦2 9.2797156162172100𝐸 − 5 1.3405781528197380𝐸 − 4 

0.6 𝑦1 7.5975668266226040𝐸 − 5 1.0975738806884294𝐸 − 4 

𝑦2 7.5975668267114220𝐸 − 5 1.0975738807283975𝐸 − 4 

0.8 𝑦1 6.2203466298260680𝐸 − 5 8.9861898761811610𝐸 − 5 

𝑦2 6.2203466298260680𝐸 − 5 8.9861898761811610𝐸 − 5 

1.0 𝑦1 5.0927768169284350𝐸 − 5 7.3572822662626440𝐸 − 5 

𝑦2 5.0927768169284350𝐸 − 5 7.3572822662626440𝐸 − 5 

The errors of the TDLMM (20) are smaller compared with the TDBDF (8). 

 

5 CONCLUSION 

In this article, a new class of third derivative linear multistep method is introduced through the inclusion of a nonzero term 

in the conventional third derivative backward differentiation formula (TDBDF). The proposed TDLMM (20) is stable for 

order 𝜌 ≤ 12, while the TDBDF is stable for order 𝜌 ≤ 11 and inefficient incase where method of order 𝜌 = 12 is required. 

The numerical experiments show that the new TDLMM (20) gives a better approximation compared to the TDBDF, in 

solving linear and nonlinear systems of initial value problems in ordinary differential equations. 
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