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Abstract 

In this article, we propose a class of generalized Adams methods with future points for 

stiff ordinary differential equations (ODEs). For reference purposes these methods will 

be referred to as extended generalized Adams methods (EGAMs). The EGAMs are 

boundary value methods (BVMs) of order 𝒌 + 𝟐  which are , 10v k v   stable and 

, 1v k vA    stable with (𝒗, 𝒌 + 𝟏 − 𝒗)-boundary conditions for  𝒌 ≥ 𝟏.   
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1. Introduction 

Boundary value methods are linear multistep methods used with a fixed number of initial and final conditions. These 

methods generate stable discrete boundary value schemes for the solution of initial and boundary value ordinary differential 

equations of the form 

( ) ( , ( )),  [ , ],  y x f x y x x a b  
    

(1)    

that could be subject to either initial (𝑦 𝑎 = 𝑦0) or boundary (𝑔 𝑦 𝑎 , 𝑦 𝑏  = 0) 

Conditions; : [ , ] m mf a b     is sufficiently smooth function. Examples of boundary value methods (BVMs) can be 

found in [1-13]. 

In [2], Brugnano and Trigiante examined the family of boundary value methods (BVMs) based on the particular class of k-

step linear multistep formulae (LMF) of the form 

1

0

1,...,
k

n j n j i n i

i

y y h f j k   



  
      (2) 

For  𝑗 = 𝑘 , one obtains the Adams-Moulton formulae which are all 0-stable and are used as initial value methods (IVMS). 

These methods have been intensively used mainly for the approximation of the solution of non-stiff ODEs. The trapezoidal 

rule which has order 2 is the only Adams-Moulton method appropriate for solving stiff problems because it has an 

unbounded Absolute stability region. This corresponds to the case k= 1 : 

1 12
( )h

n n n ny y f f          (3) 

But for 𝑘 ≥ 2the Absolute stability regions of these methods are all bounded and become smaller and smaller as 𝑘increases. 

In an attempt to obtain methods with better stability regions, Brugnano and Trigiante, in [2], derived for j=1the Reverse 

Adams Methods; a family of 
1, 10 k  stable methods which must be used as BVMs with (1, 𝑘 − 1) -boundary condition and 

given by 
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The boundaryloci of the Reverse Adams methods are the reflection about the imaginary axis of those of the corresponding 

Adams-Moulton methods. The Reverse Adams methods can also be used to approximate the solution of stiff problems since 

for 𝑘 ≤ 8the(1, 𝑘 − 1)-Absolute stabilityregions are unbounded. But even though they have better stability properties than 

the Adams-Moulton methods they do not provide very high order methods suitable for stiff problems. By choosing in (2) 

𝑗 = 𝑣, Brugnano and Trigiante derived for 𝑘 ≥ 1 a family of methods with thebest stability properties called generalized 

Adams methods (GAMs) of order𝑘 + 1 which are ,0v k v  stable and ,v k vA   stable with(𝑣, 𝑘 − 𝑣)-boundary 

conditions. These methods can be written as 
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          (6) 

They are conveniently used with the following set of additional initial methods, 

( )
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and final ones, 

( )
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            (8)  

For odd values of𝑘, the methods are regarded as generalization of the basic trapezoidal rule and referred to as the extended 

trapezoidal rule (ETRs) because they share the same stability properties with the trapezoidal rule. That is their boundary loci 

coincide with the imaginary axis which makes them perfectly 
,v v kA   stable. 

A potentially good numerical method for the solution of stiff systems of ODEs must have good accuracy and some 

reasonably wide region of absolute stability [14]. A-stability requirement puts a severe limitation on the choice of suitable 

methods for stiff problems. The search for higher order A-stable multistep methods is carried out in the two main directions: 

-use higher derivative of the solution; 

-throw in additional stages, off-step points, super-future points and the like. This leads into the large field of general linear 

methods [15]. 

Here we introduce a new classof extended generalized Adams methods (EGAMs)for stiff ordinary differential equations 

(ODEs). The methods have good stability properties and great advantage in accuracy. 

The article is organized as follows. In the next section the new class of EGAMs is introduced. In the third section the stability 

behavior of our method is analyzed. The implementation procedure is given in the forth section. Numerical results are shown 

in the final section. 

 

2. The new class of EGAMs 

The new class of EGAMs for the solution of stiff initial value problems (IVPs) in (1) takes the following general form 

𝑦𝑛+𝑣 − 𝑦𝑛+𝑣−1 =  𝛽𝑗
𝑘+1
𝑗=0 𝑓𝑛+𝑗    (9)     

In the method (9)   

1
   

2

        
2

k
for odd k

v
k

for even k




 



    (10)                                                               

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 121 –126 



123 
 

Extended Geneeralized…             Nwackukwu and Okor                               Trans. Of NAMP 

 

with (𝑣, 𝑘 + 1 − 𝑣)-boundary conditions for  𝑘 ≥ 1. The numerical solution 𝑦𝑛  is an approximation to  𝑦(𝑥𝑛).   𝑦′ 𝑥 =

𝑓(𝑥, 𝑦)  isthe first derivative function while  𝑦𝑛+𝑘  is the output solution at the point 𝑥𝑛+𝑘  of the method (9).   = 𝑥𝑛+1 − 𝑥𝑛   

is the mesh size and𝑘 is the step number. The  𝛽𝑗   are  the coefficients of the method. 

In the spirit of [10-13] the coefficients, error constant and the order of the EGAMs for 1(2)9k  are given in Table 1. 

3. Stability analysis 

The method (9) can be written compactly as 6 

 𝜌(𝐸)𝑦𝑛 = 𝜎(𝐸)𝑓𝑛      (11) 

Where𝜌 𝜉 = 𝜉𝑣 − 𝜉𝑣−1, 𝜎 𝜉 =  𝛽𝑗
𝑘+1
𝑗=0 𝜉𝑗 are the first and second characteristic polynomials respectively, C and 

𝐸𝑗𝑦𝑛 = 𝑦𝑛+𝑗  is the shift operator.  

The stability analysis is done through linearization in the spirit of Hairer and Wanner [15] where we consider the usual test 

equations 

𝑦′ = 𝜆𝑦,       𝑦′′ = 𝜆2𝑦                                                                        (12) 

which is applied to the form (11) to yield the characteristic equation 

1
1

0

( )
k

v v j

j
j
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, Czhz  ,                                            (13)                       

Inserting
ie    inequation (13)we obtain the stability regions of the class of methods (9). The boundary loci of these 

methods are shown in Figures 1 and 2.   

 

   
 

 
Figure1: Stability region (exterior of closed curves) of (9), k=1(2)29     Figure2: Stability region (exterior of closed curves) of (9), k=2(2)28 
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Table 1: The Coefficients, Error Constant ( EC ) and Order p of the EGAMs (9) for 1(1)10k 
 

 

Table 2: Table 1 continued 
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k v p  𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 

1 1 3 5

12
 

2

3
 −

1

12
 

     

2 1 4 3

8
 

19

24
 −

5

24
 

1

24
 

    

3 2 5 
−

19

720
 

173

360
 

19

30
 −

37

360
 

11

720
 

   

4 2 6 
−

3

160
 

637

1440
 

511

720
 −

43

240
 

77

1440
 −

11

1440
 

  

5 3 7 271

60480
 −

23

504
 

10273

20160
 

586

945
 −

2257

20160
 

67

2520
 −

191

60480
 

 

6 3 8 13

4480
 −

4183

120960
 

6403

13440
 

9077

13440
 −

20227

120960
 

803

13440
 −

191

13440
 

191

120960
 

7 4 9 
−

3233

3628800
 

18197

1814400
 −

108007

1814400
 

954929

1814400
 

13903

22680
 −

212881

1814400
 

63143

1814400
 −

12853

1814400
 

8 4 10 
−

7

12800
 

10063

1451520
 −

42767

907200
 

225623

453600
 

2381791

3628800
 −

583073

3628800
 

5779

90720
 −

17663

907200
 

9 5 11 90817

479001600
 −

292531

119750400
 

493837

31933440
 −

1394959

19958400
 

14296081

26611200
 

379571

623700
 −

3216337

26611200
 

163459

3991680
 

10 5 12 443

3942400
 −

218059

136857600
 

2149187

191600640
 −

2607167

45619200
 

11672473

22809600
 

11429669

17740800
 −

24994867

159667200
 

235723

3548160
 

K V p  𝛽8 𝛽9 𝛽10  𝛽11  Cp+1 

1 1 3     1

24
 

2 1 4     
−

19

720
 

3 2 5     
−

11

1440
 

4 2 6     271

60480
 

5 3 7     191

120960
 

6 3 8     
−

3233

3628800
 

7 4 9 2497

3628800
 

   
−

2497

7257600
 

8 4 10 27467

7257600
 −

2497

7257600
 

  90817

479001600
 

9 5 11 
−

1746433

159667200
 

32309

17107200
 −

14797

95800320
 

 14797

191600640
 

10 5 12 
−

7562041

319334400
 

1959493

319334400
 −

192361

191600640
 

14797

191600640
 −

9959263

237758976000
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4. Implementation procedure of the EGAMs 

The EGAMs are conveniently used with the following set of additional Initial methods 

𝑦𝑟 − 𝑦𝑟−1 =  𝛽𝑗
𝑘+1
𝑗=0 𝑓𝑗                              𝑟 = 1, … , 𝑣 − 1(14) 

and final methods 

𝑦𝑁+𝑟 − 𝑦𝑁+𝑟−1 =   𝛽𝑗+𝑣
 𝑘+1 −𝑣
𝑗=−𝑣 𝑓𝑁+𝑗−1          𝑟 = 0 … , 𝐾 − 𝑣(15) 

The class of methods (9) requires𝑣 − 1 initial and𝑘 + 1 − 𝑣final additional methods for its implementation since𝑦0 is already 

provided by the problem to be solved. 

The fourth order EGAMs (9) 

𝑦𝑛 − 𝑦𝑛−1 = (
3𝑓𝑛−1

8
+

19𝑓𝑛
24

−
5𝑓𝑛+1

24
+

𝑓𝑛+2

24
) 

𝑛 = 1, … , 𝑁 − 1 

can be used with the following two final additional methods, 

𝑦𝑁 − 𝑦𝑁−1 = (−
𝑓𝑁−2

24
+

13𝑓𝑁−1

24
+

13𝑓𝑁
24

−
𝑓𝑁+1

24
) 

and 

𝑦𝑁+1 − 𝑦𝑁 = (
𝑓𝑁−2

24
−

5𝑓𝑁−1

24
+

19𝑓𝑁
24

+
3𝑓𝑁+1

8
) 

The fifth order EGAMs (9)       

𝑦𝑛 − 𝑦𝑛−1 = (−
19𝑓𝑛−2

720
+

173𝑓𝑛−1

360
+

19𝑓𝑛
30

−
37𝑓𝑛+1

360
+

11𝑓𝑛+2

720
) 

𝑛 = 2, … , 𝑁 − 1 
can be used with the following  initial  method, 

𝑦1 − 𝑦0 =   
251

720
𝑓0 +

323

360
𝑓1 −

11

30
𝑓2 +

53

360
𝑓3 −

19

720
𝑓4  

and the two final additional methods, 

𝑦𝑁 − 𝑦𝑁−1 =    
11

720
𝑓𝑁−3 −

37

360
𝑓𝑁−2 +

19

30
𝑓𝑁−1 +

173

360
𝑓𝑁 −

19

720
𝑓𝑁+1  

and 

𝑦𝑁+1 − 𝑦𝑁 = (−
19

720
𝑓𝑁−3 +

53

360
𝑓𝑁−2 −

11

30
𝑓𝑁−1 +

323

360
𝑓𝑁 +

251

720
𝑓𝑁+1) 

 

5. Numerical results 

In this section, all numerical computations were carried out using MATLAB. 

Problem 1: Linear system solved by Brugnano and Trigiante [2] 

  𝑦1
′ = −21𝑦1 + 19𝑦2 − 20𝑦3  ,𝑦1 0 = 1,      𝑦2

′ = 19𝑦1 − 21𝑦2 + 20𝑦3 ,      𝑦2 0 = 0, 
𝑦3

′ = 40𝑦1 − 40𝑦2 + 40𝑦3,      𝑦3 0 = −1.   
The analytical solution of the system is given by 

𝑦1 𝑥 =
1

2
(𝑒−2𝑥 + 𝑒−40𝑥(cos(40𝑥) + sin(40𝑥))) 

𝑦2 𝑥 =
1

2
(𝑒−2𝑥 − 𝑒−40𝑥(cos(40𝑥) + sin(40𝑥))) 

𝑦3 𝑥 = −𝑒−40𝑥(cos 40𝑥 − sin(40𝑥)). 

The numerical results for problem 1 are presented in Table 3. It is seen from Table 3 that the implementation using EGAMs 

(9) is better than the GAMs of Brugnano and Trigiante [2]. In all cases, the rate of convergence of our method is consistent 

with the order of the method. 

Table 3: Maximum Errors for Example 1 
 

 

 

 

 

 
 

Problem 2: Nonlinear stiff system proposed by Kaps[16] 

   𝑦1
′ = −1002𝑦1 + 1000𝑦2

2,         𝑦1 0 = 1, 𝑦2
′ = 𝑦1 − 𝑦2(1 + 𝑦2) ,    𝑦2 0 = 1,   

0 ≤ 𝑡 ≤ 𝑇the smaller is, the more serious the stiffness of the system. 

The exact solution is                     
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H EGAMs error 

K = 2 ,p=4 

Rate EGAMs error 

K = 3, p=5 

Rate GAMs[2] error 

K = 4, p=5 

rate GAMs [2] error 

K = 6, p=7 

Rate 

1.e-1 8.453e-5 ------- 1.644e-2 ------- 5.283e-1 --------- 3.500e-1 --------- 

5.e-2 2.307e-7 8.52 2.1049e-6 12.93 2.249e-1 1.75 1.266e-1 2.47 

2.5e-2 1.496e-8 3.95 8.381e-11 14.62 4.413e-2 3.31 1.449e-2 2.40 

1.25e-2 9.443e-10 3.99 2.315e-12 5.18 6.490e-3 3.21 1.508e-3 5.72 

6.25e-3 5.933e-11 3.99 6.775e-14 5.10 8.859e-4 5.05 1.114e-4 7.27 

3.125e-3 3.718e-12 4.00 2.0817e-15 5.02 9.881e-5 5.59 4.877e-6 7.46 
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𝑦1 𝑡 = 𝑦2

2(𝑡)   ,    𝑦2 𝑡 = 𝑒−𝑡  

The results of Akinfenwa et al [17] and Akinfenwa and Jator [18] are reproduced in Table 4 and compared with that obtained 

using the EGAMs. It can be seen in Table 4 that the results obtained  for EGAMs for 𝑘 = 3 is superior to those of Akinfenwa 

et al [17] for 𝑘 = 4  and 5 and that of Akinfenwa and Jator [18] for 𝑘 = 4. While for 𝑘 = 3 our method is highly competitive 

with that of Akinfenwa and Jator [18] for   𝑘 = 5. 

 

Table 4:Comparison of methods at  𝑇 = 10for Problem 2 

h 𝐶𝐵𝐵𝐷𝐹4[17] 

𝑘 = 4, 𝑝 = 4 

𝐶𝐵𝐵𝐷𝐹5[17] 

𝑘 = 5, 𝑝 = 5 

𝐸𝐶𝐵𝐵𝐷𝐹4[18] 

𝑘 = 4, 𝑝 = 5 

𝐸𝐶𝐵𝐵𝐷𝐹5[18] 

𝑘 = 5, 𝑝 = 6 

𝐸𝐺𝐴𝑀𝑠3  

𝑘 = 3, 𝑝 = 5 

0.02 4.88 x 10
-16

 

5.39 x 10
-12 

8.37 x 10
-18

 

9.16 x 10
-14

 

2.48 x 10
-19

 

3.75 x 10
-16

 

1.33 x 10
-20

 

1.35 x 10
-16

 

2.47e-019 

3.71e-016 

0.01 3.13 x 10
-17

 

3.45 x 10
-13 

3.39 x 10
-21

 

1.23 x 10
-17

 

2.68 x 10
-19

 

2.93 x 10
-15

 

2.87 x 10
-22

 

2.93 x 10
-19

 

2.43e-021 

3.80e-018 

0.002 5.14 x 10
-20

 

5.67 x 10
-14 

4.64 x 10
-21

 

5.16 x 10
-17

 

1.11 x 10
-21

 

1.09 x 10
-17

 

2.32 x 10
-21

 

5.55 x 10
-17

 

8.87e-022 

9.84e-018 

 

6. Conclusion 
This article is concerned with the solution of systems of stiff (IVPs) in (ODEs). This has been achieved by the construction 

and implementation of a class of EGAMs. It has also been shown that these methods are highly competitive with existing 

methods cited in the literature.  
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