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Abstract

In this work, we have considered the numerical treatment of a highly stable four-
stage Runge-kutta method for initial value problems (1VPs) in ordinary differential
equations (ODEs). For this purpose, we have engaged an explosive study of the
family of Runge-kutta methods up to the four — stage. The four-stage Runge-kutta
method was derived and experimented on both linear and nonlinear IVPs for
reliability through a manual and computer aided procedure called Maple 18
software to solve such IVPs. The resulting numerical evidences were presented
graphically and in tables and were compared with the three stage-Runge-Kutta
method for convergence.
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1. Introduction

When real-life situation is analyzed and modeled, it usually results to differential equation. Basically, differential
equations can be implemented to model real-life questions, and graphs and computer calculations provides the real-life
answers. However, in most real-life situations, the differential equation that models the problem is often complicated to
solve. Thus, most of these problems are solved or analyzed along certain conditions known as “initial value conditions”
which the stated problem must satisfy. Due to the complexity associated in seeking the solution of differential
equations, such solutions can be obtained in two approaches [1]. There are few known analytics methods for seeking
the solution of initial value problems (IVPs) such as the d-expansion method, the perturbation method, the Lyapunov
parameter method [2], Thus, iterative techniques have been developed and implemented by various researchers over the
years to effectively solve these problems. Basically, iterative methods for initial value problems are categorized into
two groups. The first are the single step methods (Euler method, improved Euler method, Heun method, the Runge-
Kutta methods, etc), and the second are the multi-step methods (Adams-Bashforth methods, Adams-Moulton methods,
Milne’s method, etc). However, the quest of generalizing the Euler’s method, by allowing evaluations (number of
evaluation) of the derivatives at a step is attributed to Runge [3]. Further works were made in [4-7]. Also, special
iterative methods for computing second order ordinary differential equation were poised [8-10]. The Adams-Moulton
method (also called the Adam-Bashforth-Moulton Corrector method when used with Adams-Bashforth method as a
predicator-correction pair) is a multistep method derived from the fundamental calculus, [11-13]. The object of Euler’s
method is to seek computations (approximations) to the well-posed initial value problem [1]. In this study, we consider
the four-stage Runge-Kutta method in the solution of initial value problems in ordinary differential equations. For the
purpose of recalling, we will confine ourselves to the procedure adopted by [14].

2. RUNGE-KUTTA METHOD
The general stages in the Runge-Kutta methods can be tagged N-stage Runge-Kutta family and is defined as
Uiy = U + Ox;,ugs b 1)
where
@x, u, h = Z?]:O w; ki’
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ki = hgx;,u;,

ki = hgxi + hCi,ui + hz;;} bitkt' i = 2,"',N, C = ZIL';% bit’ ) i= 2,"',N.

We now treat the different stages in the Runge-Kutta methods up to the third stage as follows:

2.1 One-stage Runge-Kutta method

Let N = 1in (1) withw; = 1, we obtain the one-stage Runge-Kutta method (which is simply the Euler’s sinlge step
explicit method) as

Ui = U + ghx;, (2)

2.2 Two-stage Runge-Kutta method

Let N = 2 in (1), then the two-stage Runge-Kutta method is expressed as

Ui = U + wiky + waky, 3)
where

kl = hgxiluil (4)
kz = hgxi + hCZ,ui + b21k1, (5)

w, =ux;, x; =x9+ih,
where wy, w,, coand by; are unknown constant parameters to be determined. Now expanding ux;, 4 in a Taylor series
through the terms of o(h?), we get

2

Uipq = UX;4q = UX; +h = ux; + hu'*i + h?u”xi (6)
Recall that we have defined higher order derivatives as

. ,,_6g+6gdu N 66g+6gdu+66g agdudu
e P dx G T 99wt =5 ox T Budx | duox | dudxdx

DU = Gex + 2900 + 9 Guu + Gu(Gx + 99u) , €S,
where g and all partial derivatives are evaluated at (x;, u;) and u; = ux;.

Thus, equation (6) can be expressed as

hZ ag
o ()

Also, expanding equatron (7) |n a Taylor series through term of o(h?), we get

Ui = Ux; +hg+ g

kz hg + C2h2—+ hb21k1—+ (h2b21k1C2)— (8)
Now, substrtutrng the expressions for k; and k, mto equation (3.3), we have
Uiy =U; +wihg +w, hg + czh2 =4 hb21k1 " (h2b21k152)— 9
Comparing the coefficients of h and h2 with equatlon (7), we obtaln

1
wi+w; =1, WaC2 = o Woby1 = >

Solving the above equations, we obtain

1 1
b21 =C, Wy =Zand Wy = (1 —Z)
Thus, the equations (3-5) can be rewritten as

ui+1:ui+1—ik1 +ik2, (10)
where

kl hgxuuu (ll)
ky = hgx; + hcy, u; + by ky, (12)

u; =ux;, Xx; =x9+ih.
Here, ¢, is arbitrary and lies in the interval (0,1). Thus, we have an infinite family of these methods.

Now, if c; = 1, we obtain by,; =1, w, = % and wy = % . Hence, we get the method
Uipr = U + lk1 + ks, (13)
kq = hgxl,ul,

ky = hgx; + h,u; + kq,

u; =ux;, x;=x9+ih,
which is the Heun’s method (or Euler - Cauchy method).

If we choose ¢, = % thenw, = 1,w; = 0and by; = % Thus, we get the method
U1 =U; + ko, (14)
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kl hgxu uu

ky =hgx; +- ui+%k1,

u; = ux;, X; —x0+ih,

which is the modiﬁed Euler’s method.

Local truncation error of the two-stage Runge-Kutta method
Subtracting (9) from (6), we obtain the truncation error (T.E) as follow:

T.E= UXip1 — U1 = h3 % - %2 [ggxx + Zggxu + nguu] + %gu [gx + ggu]xl- (15)

Hence, the method is of order two. That is, it is a second order method. Now, observe that if ¢, = % in (15), the first
term vanishes. Thus, the standard two-stage Runge-Kutta method is given as

U1 = U + 5k + 3k, (16)

ky = hgxl,ul,

ky=hgx; += hu + = kl,

u; = ux;, xl =X+ lh

2.3 Three-stage Runge-Kutta method
Let N = 3 in (1), then the three-stage Runge-Kutta method is expressed as

Uip1 = Yy + W1k1 + W2k2 + W3k3, (17)
where

kl hgxuuu (18)
ky = hgx; + hcy, u; + by ky, (19
k3 hgx + hCz,u + b31k1 + b32k2, (20)
u; = ux;, = xq + ih,

Where Wuku for1 <i<3,¢forl<i<2and by, b3;andbs; are unknown constant parameters to be determined.
Now expanding ux;,; in a Taylor series through the terms of o(h?), we get

Uipq ® UX;4q = UX; + h = ux; + hu' + u Xy —u "x; (21)
Recall that we have defined higher order derlvatlves as

. . 0g 0dgdu w 00dg dgdu 0 dg dgdudu
w=gnut 6x+(')udx 9x + 99w U 6x6x+6udx+6u6x+%§§

DU = Gy + 2900 + 92 G + 9u(9x + 99u) | ELC,
where g and all partial derivatives are evaluated at (x;, u;) and u; = ux;.

Thus, equation (21) can be expressed as

h? h? h3
Usr = ux; +hg+ 590, + 599y + 7 Gxx + 2090 + 9°Guu + 9u(9x + 99.)(22)
Also, expanding equation (19) and (20) in a Taylor series through term of o(h?) as follows:

da%2g | h3c¢}a%g . hb3 k% d%g
kz hg+C1h2_+hb21k1_+h b21k1C20 PW + Zlﬁ %ﬁ; (23)

6 %9 h3cd%g
k3 = hg + Clhza + h(b31k1 + b32k22)za_u+ hZCZ(bglkl + b32k2)m+ Tzﬁ
h(bz1kq + b3y ky)= 0
n (b31kq 32k2)" 079 (24)

2 ou?
Now, substituting the expressions for k4, k, and k3 into equation (16) we have

h3cf 92 hb3 k? 82
Uiy1 = Uy +W1hg+W2 hg+C1h2_+hb21k1 +h2b21k1C2 6xag %ﬁ{‘ 221 1 g+W3 hg+C1h2

A(D31k1+032k2)Fgdu +/chZ(b31 k] +D32k2 )a"Zgo"xa"u +h3c22202g0x2+ Ah(H3141 +b32/f2 )ZZﬁngzzZ
(25 . . . .
Comparlhg 2he coefficients of h, h? and h3 with equation (22), we obtain

by1w; + b3q + b3y *ws =

bW, + b3y + b3 *ws =

Wl =N =
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1
1wy + CHrWw3 = E
2 2 1
c{wy + cows = 3
w1 + wW» + w3 = 1
Cobgows = —.
Now, using
1
by1Wa + b3y + b3y*ws = >
2 2 1
b31wy + b3y + b3 wz = 3
1
ciwy + CoW3 = E
2 2 1
C]_ wy + Cz w3 = §
one can show that
by1 = ¢
b31 + b3y = ¢;

CiWy + w3 =

clzwz + C22W3 =

W] RrN -

wq + wy + w3 = 1
Crbzaw3 = 6
It is obvious that there are 6 equations with 8 unknowns. Hence, we keep the two unknown arbitrary. Now if we let
¢, = Ccy, We get
2 2 1 3
=0 =§»b31 = b3, =§:b31 =0,w, sEpWe=w3 =g
Thus, three stage Runge-Kutta method is given as
Uip1 = U + 3 (2ky + 3k + 3k, (26)
where
kl = hgxi'ui'
kz = hgxi + %h,ui + §k1,

ks =hgx; + %h,ui + %kz,

u; =ux;, Xx; =x9+ih.

2.4 Four-stage Runge-Kutta method

Let N = 4 in (1), then the form-stage Runge-Kutta method is expressed as

Uip1 = Yy + Wlkl + Wzkz + W3k3 + W4k4_, (27)
where

ki = hgx;,w;, (28)
kz = hgxi + hCl, U; + b21k1, (29)
k3 = hgxi + hCz,ui + b31k1 + b32k2, (30)
k4_ = hgxi + hC3, Uu; + b41k1 + b4_2k2 + b4_3k3, (31)

u; =ux;, x;=x9+ih,
where w;, k;, for1 <i<4,¢for1l <i<3and by, b3y, b3, bsy, bs, and byzare unknown constant parameters to be
determined. Now expanding ux; . in a Taylor series (as Taylor’s theorem) through the terms of o(h*), we get

r 2 n 3 nr 4 :
Uipp ® UX4q = uX; +h=ux; + hu* + h?u i+ %u ¥+ ;L—4u”’xl- (32)
Using the higher order partial derivatives on (32), we get
h? h? h3 h*

Uiy = ux; + hg + 799x + 79911 + ?gxx + Zggxu + gzguu + gu(gx + ggu) +ﬁgxxx + 3gxgxu + 3ggxxgu +
3g2g9xguu+3ggxguu+gugrx+5g9gugru+grgul+ggugul+4glgugrxr+g3gunn (33)
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where g and all partial derivatives are evaluated at (x;, u;) and u; = ux;. Again, we have by Taylor series for multi-

2_ ag 9%g | h3cfa’g hb21k16 g 2 2 9%
Val‘lab|e funCtlon kz = hg + Clh + hb21k1 + h b21k1C2 Fm + _2 322 2 +h b21C1k1 xdu? +
2 03¢ | h*dadg | hk bnﬂ

h3by k,c? 4
21715 5,25, 6 0x3 6 o0ud’ (3 ) ,
a
232 2
20 2 a2 g R3cf d2g h(b31ky+b3zk3)
k3 hg + C]_h + h(b31k1 + b32k2)— + h Cz(b31k1 + b32k2) 2 ﬁ —2 m +
h 02(1731161"47321(2)2 5 g h(bziki+bsks)? i h3cF(b31ki+bsaky) 93 g @ (35)
2 dxou? 6 ous 6 dx20u 6 0x3’
and
k4 =
3 P 52 n3c2 92 n4c2 33
hg + C3h2 _g + h(b41k1 + b42k2 + b43k3)£ + h2C3(b41k1 + b4_2k2 + b43k3)ﬁ + 263 l?xg 663 axg
h(b41k1+b4zkz+b43k3)2 a%g + h?c3(bgrk1+bgaka+bgsks) 8%g h3cZ (bark1+bazka+basks) 8%g (b41k1+b42k2+b43k3) a3 9°g (36)
2 du? 2 9xd u? 2 ax2ou 62xdu

Now, substituting the expressions for kl, k;, k3andk4 into equation (27), we have

3.2 32 2 1,2 52 3
20 6g h®ci d°g hbs1ki0°g 212 2 0°g
Uip1 = Yy + Wlhg + Wy hg + C1h —_— + hb21k1 + h b21k1C2 EPE 2 _[')xz —2 _[')uz +h b21C1k1 _axauz +

h3621k1c120390x20u+rh4c136 ﬁa” gox3+rkl 3&2] 3603g0u3+w3hg+clh20gox+~(03141+632k2)0gdu+r2c
20631k1+63242)02g0x0u+h3c22202g90x2+
N(b31k1+63242)2202g0u2+h2c2(631k1+63242)220390x0u2+h(0314k1+03242)3603g0u3+A3c22(b3141+
D32k2)609390x20u+h4c23603g0x3+wahg+c3h20g0x+/(064141+042k2+04343)0g0u+h2c3(64141+H4242
+0434£3)02g0x0u+h3c32202g0x2+14c3260390x3+A(041k1+64242+H43/k3) 22029012+
h2c3(641k1+064242+64343)202g0x0u2+~3c32(54141+64242+H4343) 202901201+
A(041k1+642k2+643£3)262x0ud3gdu3 (37)

Comparing the coefficients of h, h?, h3 and h* with equation (33), we obtain

1
by1wy + b3y + b3aws + wy(byy + byy + byz) = 3

by1ciwy + b3 + b3ycaws + byy + byy + byzczwy, =

1
3
2 2 2 1
by1ciwy + b3q + b3pciwz + byy + bay + byzcswy = 3
LWy + CrWs + C3Wy = z
1
C12W2 +C22W3 +C§W4 :§
1
C13W2 + C23W3 + c33w4 = 7
W1+W2+W3+W4 =1
1
C1b3aws + wy(C1byy + C2by3) = 5

ctbsyws + wy(cfbyy + cfby3) = —

12

C1C2b3ow3 + Wy (Cibyy + Cabyz)cs =
byobys = !
Wy C1032043 = 24

Again, using the equations

1
by1wy + b3y + b3aws + wy(byy + byy + byz) = >
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by1ciwy + b3y + b3pcaws + byy + byp + byzczwy =

by1¢iwy + b3y + bspciws + by + byy + byzciwy =

Wl RrWI =

1wy + CoWs + C3Wy =

C%WZ +C22W3 +C§W4 =

AR N e

C%WZ + C§W3 + C§W4 =
One can show that
c1=by

¢y = b3y + b3y
C3=b41+b42+b43_- _ _ o
Hence the set of equations that one has to solve in order to determine the set of all unknowns is given by

¢1 = by
€2 = b3y + b3,
€3 = byy + byy + by3

CiWy + W3 + 3wy =
C12W2 + C22W3 + C§W4 =

cl3wz + cz3w3 + c33w4 =

DR W= NIE

(38)
wy+wy, +ws+wy =1

C1b3aW3 + wyCibyy + C2by3 =

2 2 2, _
Cib3aws + wycibyy + cibyz =

= [N
Nl"‘ !

1

C162b3,W3 + Wyc1byy + C3by3c3 = 3
1
\ Wy Cb3pbss =
There exist 11 equations with 13 unknowns. Thus, there exist two arbitrary parameters. Since the terms up to o(h*) are
compared, a simple solution is given by
1 1 1 1

C1=C2=§» 3 =by3 =1, W2:W3:§,W1=W4:g' b21=b32=§'b31=b41=b42=0-
Therefore, the four-stage Runge-kutta method is given as

Uip1 = Yy +%k1 + 2k2 + 2k3 + k4_,

where

ki = hgx;,w;, k, = hg x; +%h, u; + %kl,
k3=hgxi+%h,ui+%k2, k4:hgxi+h'ui+k3J
w; =ux;, x;=xp+ih,i=0123,--

3 Numerical Examples

In this section, we solve some selected 1\VVPs to illustrate both the three-stage and four-stage Runge-kutta methods.
Example 1

Consider the initial value problem v’ = —2xu? with u0 = 1 and h = 0.2, in the interval (0,1), using the four-stage
Runge-Kutta method.

. . 1
The Exact solution is ux = —.
1+x

Clearly, gx,u = —2xu?,x, = 0, uy = 1.
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Table 1: Showing the comparison of results between the exact solution, three-stage and four stage Runge-kutta
methods for Example 1

i x; | Exact | Three-stage Runge- | Four-stage Error byThree-stage Error by Four-stage
solutio | Kutta method Runge-Kutta Runge-Kutta method | Runge-Kutta method
n method

0 0 1.0000 1.0000 1.0000 0.000E+00 0.000E+00

1 | 0.2 | 09615 0.9614 0.9615 1.000E-04 3.275E-05

2 | 04 | 0.8621 0.8619 0.8621 2.000E-04 4.758E-05

3 | 0.6 | 0.7353 0.7352 0.7353 1.000E-04 2.166E-05

4 | 0.8 | 0.6098 0.6096 0.6098 2.000E-04 4.817E-05

5 | 1.0 | 0.500 0.4997 0.5000 3.000E-04 7.203E-06

0 02

04

T T
06 1k

— High Quality Mumeric Solution
— Runge-Kutta 4th Order

— Runge-Kutta 3rd Order
2nd-Order Taylor

Figure 1: Graphical simulation for Example 1

This procedure operates using floating-point numerics; that is, inputs are first evaluated to floating-point numbers
before computations proceed, and numbers appearing in the output will be in floating-point format.

Example 2

Solve the initial value problem u' =
The exact solution is ux = 1 — x?2.
Applying the three-stage and four-stage Runge-Kutta methods on the above problem, the results are shown in the table
below.

Table 2: Showing the comparison of results between the exact solution, three-stage and four stage Runge-kutta
methods for Example 2

—2x, u0 =1, h = 0.2, on the interval (0,1).

i x; | Exact | Three-stage Four-stage Error by Three-stage | Error by Four-stage
solutio | Runge-Kutta Runge-Kutta Runge-Kutta method Runge-Kutta method
n method method

0 0 1 1 1 0.0000E+00 0.0000E+00

1] 02 0.96 0.96 0.96 0.0000E+00 0.0000E+00

2] 04 0.84 0.84 0.84 0.0000E+00 0.0000E+00

3| 06 0.64 0.64 0.64 0.0000E+00 0.0000E+00

41 038 0.36 0.36 0.36 0.0000E+00 0.0000E+00

5] 1.0 0.00 0.00 0.00 0.0000E+00 0.0000E+00
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0 0z 04 (1] 08

— High Quality Numeric Solution
— Runge-Kutta 4th Order

— Runge-Kutta 3rd Order
2nd-Order Taylor

Figure 2: Graphical simulation for Example 2

Example 3

Consider the initial value problem u' = 1 — cosiifix) with u0 = 1 and h = 0.2, in the interval (0,1), using the four-stage
Runge-Kutta method.

The Exact solution is ux = —sinx + x + 1.

Clearly, gx,u = 1 — cosiifix),xy = 0, ug = 1.

Table 3: Showing the comparison of results between the exact solution, three-stage and four stage Runge-kutta

methods for Example 3

i x Exact Three-stage Four-stage Runge- Error by Three- Error by Four-stage
solution Runge-Kutta Kutta method stage Runge-Kutta Runge-Kutta
method method method

0| O 1 1 1 0.0000E+00 0.000E+00

1| 0.2 | 1.00133066 1.001331359 1.00133055870156 6.9000E-07 1.105E-07
9

2 | 04 | 1.01058165 1.010584488 1.01058144109000 2.8300E-06 2.166E-07
8

3| 0.6 | 1.03535752 1.035363863 1.03535721254087 6.3360E-06 3.141E-07
7

4 | 0.8 | 1.08264390 1.082654977 1.08264351009437 1.1068E-05 3.990E-07
9

5| 1.0 | 1.15852901 1.158545852 1.15852854715111 1.6837E-05 4.680E-07
5

100

0z 0 ns

nE 1

— Runge-Kutta 4th Order
— Runge-Kutta 3rd Order
Znd-Order Tavlor

High Quality Mumernic Soluhon

Figure 3: Graphical simulation for Example 3
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4. Discussion of Results

The results obtained show that the four-stage Runge-kutta method is a more an excellent solver of initial value

problems in ordinary differential equations, and is highly stable. Results obtained as presented graphically and in

tables show that approximate solution with four-stage Runge-kutta method at some grid- points are very close to

the exact solution as i tends to infinity.
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