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Abstract 

This paper studies the motion of an infinitesimal body near the out of plane 

equilibrium points in the photogravitational restricted three-body problem in the case 

of two equally heavy primary bodies (Copenhagen Problem). These equilibria are 

determined numerically based on the three-dimensional dynamic equations. The 

influence of the radiation factors on the positions of these equilibria as well as the 

allowed regions of motion as determined by the zero velocity curves is studied in a 

parametric way. It is observed that their positions as well as the topology of the zero 

velocity curves are affected by the parameters. Finally, the stability of these points is 

studied and it is found that there is a limited value of the radiation factors for which 

the equilibrium points are stable. This model has many applications, especially in the 

dynamics behavior of extremely small objects such as dust grains and interplanetary 

drifters. It also has interesting applications for artificial satellites, future space 

colonization or even vehicles and spacecraft parking. 

 
Keywords: Circular restricted three-body problem; Photogravitational Copenhagen problem; Out-of-plane equilibria; 
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1.0 Introduction 

The restricted three-body problem (R3BP) in which two massive bodies (primaries) revolve around their common center of 

mass in circular orbits and a third body of infinitesimal mass moves in the gravitational field, is a classical problem; which 

has attracted the attentions of mathematicians and astronomers for centuries because of its application in dynamics of the 

solar and stellar systems, lunar theory and artificial satellites. A special version of the classical restricted three-body problem 

is the so-called ‗Copenhagen problem‘ where the two primary bodies, which rotate with constant angular velocity around 

their common center of gravity, have equal masses. The third body, which is usually refereed as test particle, moves under the 

resultant Newtonian gravitational field of the primaries. This problem was initially studied by Elis Strömgren and his 

colleagues at the Copenhagen Observatory [1]. Due to its simplicity and cosmological relevance the gravitational 

Copenhagen problem has been studied by some authors ([1-8]).  During the last century, several modifications of this 

classical problem have been introduced in order to make it more relevant and applicable to certain systems of Dynamical 

Astronomy and hence one cannot survey all the most important works here. One of such modifications of the classical 

problem is the photogravitational restricted three-body problem (PR3BP) in which the repulsive force of the radiation is also 

considered in the potential function and it was introduced for studying the specific three-body problem of Sun, planet, and a 

dust particle [9]. The importance of the radiation influence on celestial bodies has been recognized by many scientists, 

especially in connection with the formation of concentrations of interplanetary and interstellar dust or grains in planetary and 

binary star systems, as well as the perturbations on artificial satellites [10, 11]. The majority of these systems consist of a 

―sun‖ and a planet or of two planets of nearly equal masses that rotate about their center of mass. Therefore, the Copenhagen 

case of the R3BP comes again on stage and the scientific interest it arouses is renewed ([12-18]. Their interest was mainly 

focused on the study of periodic and asymptotic orbits. Unlike the plane problem the three-dimensional R3BP has not been 

extensively studied. One of the most important steps in the study of a dynamical problem is the determination of the 

equilibrium states of the system. It is well known that in the classical R3BP five equilibrium points exist [1]. In dynamical 

astronomy and celestial mechanics these equilibrium points of a system play a role  
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of great importance since at these locations the test particle is able to maintain its relative position, with respect to the 

primary bodies. Also, they are very important especially for plotting the trajectories of spacecrafts. On this basis, knowing the 

equilibrium points of a system, give us very important information regarding the most intrinsic properties of the dynamical 

system. The plane perpendicular to the plane of motion of the primaries has been shown to result in out-of-plane equilibrium 

points (OEPs) when the photogravitational effects of one or both primary bodies are taken into consideration. The existence 

of the out of the orbital plane equilibrium points, in the PR3BP, was first pointed out by [19] in the cases of Sun-Planet-

particle and Galaxy Kernel-Sun-particle. He found two equilibrium points on the ( x , z ) plane in symmetrical positions with 

respect to the ( x , y ) plane. OEPs in the photogravitational circular restricted problems have been studied in many earlier 

papers [20 – 27]. The existence of these points is of particular astronomical interest in connection with planetary system 

formation, satellite motion, etc. 

In the present study our aim is to numerically investigate how the radiation factors influence the positions of the OEPs as 

well as the regions allowed to motion of the infinitesimal body in the Copenhagen problem [21]. Seen as whole the problem 

displays a number of interesting features that are not apparent in previous studies.  

The paper is organized in six sections. Section 2 provides the equations of motion for the dynamic model-problem. Section 3 

locates the positions of the out of plane equilibrium points. Specifically, it discusses the influence of the system parameters 

(radiation factors 1q and 2q of the primaries) on the equilibrium points in a parametric way. Section 4 is devoted to the 

surfaces and curves of zero velocity. The regions of allowed motion as determined by the zero velocity curves as well as the 

positions of out of plane points are given. Section 5 established the linearized stability of these equilibria; while Section 6 

discusses the obtained results and conclusion of the paper.  

 

2 Equations of Motion 

Consider the motion of an infinitesimal mass 3m (e.g. interplanetary dust grain) that is influenced by the gravitational and 

radiation pressure forces of two illuminating primary bodies of mass 1m and 2m and radiation pressure factors 
1q  and 

2q . 

The two heaviest bodies (the primaries) revolve under their mutual gravitational attraction around their center of mass in 

circular orbits. The units of measure of mass, length and time are taken so that the sum of the masses and the distance 

between the primaries is unity, and, also, the Gaussian constant of gravitation G is 1. A rotating rectangular coordinate 

system whose origin is the center of mass of the primaries and whose Ox-axis contains the primaries is used. The angular 

velocity of the system is also unity [1]. Then, the equations of motion of the infinitesimal mass in the three-dimensional 

photogravitational Copenhagen restricted three-body in this coordinate system can be described following [5] and [21] in the 

dimensionless variables as, 
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where dots denote time derivatives and   the potential function in synodic coordinates is given as 
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where 1r  and 2r are the distances of the third body from the primaries;  is the mass-ratio of the smaller primary to the total 

mass of the primaries and 5.01   (the larger primary is located at the position ( 0,0, ) and the second primary at 

the (1 0,0, ) correspondingly) and  the unit of distance is the distance between the primaries. The radiation pressure 

parameters of the primaries 
21,qq according to Radzievskii theory is expressed by means of the relations )2,1(,1  ibq ii

 

where 
1b and 

2b are the ratios of the radiation force 
rF to the gravitational force 

gF which results from the gravitation due to 

the two primary bodies 1m and 2m , respectively. It is interesting to note that for ,121  qq  we obtain classical circular 

restricted three-body problem. It is clear that:  If 
iq =1, radiation pressure has no effect. If 0

iq  1, gravitational force 

exceeds radiation. .If 
iq =0, radiation force balances the gravitational one. If 

iq  0, then radiation pressure overrides the 

gravitational attraction. 
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The energy (Jacobi) integral of this problem, is given by the expression 

,2222 Czyx                                                                 (4)   

where C is the Jacobian constant, while x , y and z  are the velocities. 

3 Locations of out-of-plane equilibrium points  

The equilibrium points out of the plane Oxy  can be found by setting all velocity and acceleration terms to zero and solving 

the right sides of system (1). Obviously, the second equation of the system (1) is satisfied for 0y  and we solve the 

remaining two equations for 0y and ,0z  
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where the two radii can be deduced to 
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and the subscript ‗0‘ is used to denote the equilibrium values. 

From equation (6) we have that 
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where k  is a constant. 

From Eq. 7 it can be seen that, for the existence of any real solution, one of the following conditions is necessary to hold: 

021 qq      or      021  qq                                                            (8) 

The second condition means that the gravitational attractions balance the corresponding radiation pressure forces. This case 

will not be considered here. The first condition means that the radiation pressure force of just one of the primaries exceeds its 

gravitational attraction and implies that Eq. 7 can be satisfied if and only if 
1q  and 

2q have different signs, which is not true 

for the classical case. In this case it is evident from the form of (5) and (6) that solutions, if they exist, occur in pairs, 

corresponding to z , as is necessary from the symmetry of the system. The locations of out-of-plane equilibria are hard to 

be obtained with analytical expressions. Therefore, approximated solutions (numerical methods) were given in previous 

publications. Here, only the numerical results are presented to determine the coordinates of these equilibrium points.  

We found two points to be located in the ( x , z ) plane (the equilibria above and below the radiating primary 1m are denoted 

by ZL1
(positive z coordinate) and ZL2

(the other one) correspondingly) in symmetrical positions with respect to the ( x , y ) 

plane. They are solved by using the software package Mathematica. The existence and locations of these equilibria depend on 

the factors 1q  and 2q for fixed .5.0  For brevity we shall restrict the analysis of this model problem to the case where 

01 q  and .02 q  Because of the symmetry of the problem, solutions for negative 
2q and positive 

1q  can be obtained by 

the interchange of .1     

To what follows we investigate the effects of radiation factors on the positions of the equilibrium points. The admissible 

regions of the radiation factors 1q  and 2q  lie in the intervals 1q [1, 0) and 2q   [1, 0)  [21]. After working under the 

assumption that the radiation factors vary in the above given intervals, we have found for various cases, all the equilibrium 

positions corresponding to each combination of these values. The results obtained are shown numerically and graphically in 

Tables 1—4 and Figures 1—4, respectively as 
2q varies, for fixed values of

1q . In all the cases, these points exist at various 

of 1q  and for several values of 2q  in the given intervals and cease to exist for a value outside of the range. Tables 1, 2, 3 

and 4, represent the cases when we have set ,1.01 q ,02.0 ,015.0 and 002.0 for varying radiation factor 2q of 

the primary body 2m respectively. As can be seen, as the radiation parameters 1q and 2q  increase from 1  to zero and 

from 1 to zero correspondingly, the positions of the out of plane equilibrium points move onto the Ox  axis. In Figures 1, 

2, 3 and 4 we show the effects of the radiation parameters on the positions of the two symmetrical, with respect to ( yx, ) 

plane, out of plane equilibrium points 
ZL1 and 

ZL2 , where 1q −0.1, 2q in the interval [1, 0.11], 1q −0.02, 2q  in the 

interval [1, 0.03], 1q −0.015, 2q in the interval [1, 0.12], and 1q −0.002, 2q in the interval [1, 0.46] correspondingly.  
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Table 1. Coordinates of the out of plane equilibrium points as function of 2q [1, 0.11] for 1.01 q and  5.0   

2q                x               z  

1.0      432260.0          0.482507 

0.9      0.409432         0.487794 

0.8      0.384807         0.493222 

0.7      0.357957         0.499034 

0.6      0.328265         0.505684 

0.5      0.294778         0.514105 

0.4      0.255888         0.526439 

0.3      0.208470         0.548668 

0.2 

0.11 

     0.144654 

     0.038826 

        0.605187 

        0.985390 

 

Table 2. Coordinates of the out of plane equilibrium points as function of 2q [1, 0.33] for 02.01 q and 5.0   

2q                x               z  

1.0      477558.0          0.274714 

0.9      0.456258         0.276413 

0.8      0.433428         0.276789 

0.7      0.408735         0.275585 

0.6      0.381715         0.272427 

0.5      0.351679         0.266762 

0.4      0.317531         0.257743 

0.3      0.277340         0.244058 

0.2 

0.1 

0.03 

     0.227068 

     0.154849 

     0.051822 

        0.224091 

        0.204535 

        0.364787 

 

Table 3. Coordinates of the out of plane equilibrium points as function of 2q [1, 0.12] for 015.01 q and 5.0   

2q                x               z  

1.0      481525.0          0.249052 

0.9      0.460347         0.250388 

0.8      0.437657         0.250164 

0.7      0.415678         0.248358 

0.6      0.386315         0.243537 

0.5      0.356534         0.235841 

0.4      0.322724         0.223629 

0.3      0.283016         0.204460 

0.2 

0.12 

     0.233536 

     0.180169 

        0.173297 

        0.133493 

 

Table 4. Coordinates of the out of plane equilibrium points as function of 2q [1, 0.46] for 002.01 q and 5.0   

2q               2,1                  4,3  

1.0   
 495223.0  

                   0.126306 

0.9    0.474451                    0.125643 

0.8 

0.7 

0.6 

0.5 

0.46 

   0.452232 

 0.428261 

 0.402115 

 0.373171 

 0.360610 

                   0.121207 

                   0.111598 

                   0.093670 

                   0.056632 

                   0.017567 
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Fig. 1 Position of 
zL1 and zL2

in the ( zx  ) plane as a function of  Fig. 2 Position of 
zL1 and 

zL2 in the ( zx  ) plane as a  

2q   in the interval [1, 0.11] (with an arbitrary small step), for   function of 2q in the interval [1, 0.03] (with an arbitrary 

,1.01 q  and  5.0  
corresponding to Table 1.   small step), for ,02.01 q  and 5.0  corresponding to Table 2. 

    

Fig. 3 Position of 
zL1 and 

zL2 in the ( zx  ) plane as a function of  Fig. 4 Position of 
zL1 and 

zL2 in the ( zx  ) plane as a 

2q   in the interval [1, 0.12] (with an arbitrary small step), for   function of 2q   in the interval [1, 0.46] (with an arbitrary small 

,015.01 q  and 5.0  corresponding to Table 3.   step), for ,002.01 q  and 5.0 corresponding to Table 4. 

 

From all the above figures it is obvious that as the radiation parameters increase the equilibria decrease to make the positions 

of out of plane equilibrium points tend to the Ox  axis. 

Taking into account all the numerical outcomes given in Tables 1, 2, and 3 as well as in Figures 1, 2, and 3 it is obvious that 

radiation parameters of the primaries effects the positions of the out of plane equilibrium points significantly.  

4 Zero - velocity curves in the ( zx, ) plane 

The usefulness of the Jacobi constant integral in clarifying certain general properties of the relative motion of a small body by 

the construction and investigation of zero velocity curves in every problem of celestial dynamics was pointed out by many 

investigators in the past. In this section, we present the contours of the surface (4) on the ( zx, ) plane, for zero velocity, 

which provide the zero velocity curves. In Figure 5 the zero velocity curves for 9.0,5.0 2  q when radiation factor 1q

varies (i.e for 02.0,1.0 11  qq and 002.01 q ) are illustrated. It can be seen that the zero velocity curves between 

the out of plane equilibrium points form regions not allowed to possible motion which shrink to the bigger primary body 1m  

as the radiation factor 1q  increases. In Figure 6 we present the zero velocity curves for 002.0,5.0 1  q when the 

values of radiation factor 
2q varies ( 55.0,1 22  qq and 5.02 q ). It is very clear that the locations are affected 

similarly as depicted in Figure 5. In particular, the zero velocity curves up to the out of plane equilibria go approaching the 

bigger primary body .1m
 
Similar phenomenon we observe in the photogravitational restricted four-body problem where for 

certain negative values of the radiation factor, the symmetrical equilibrium points tend to the dominant primary body 1m

[28].  
 

From the results in Figures 5 and 6 we conclude that radiation pressure has significant effects on the topological structure of 

the regions allowed to motion of the third infinitesimal particle as determined by the zero velocity surface and the 

corresponding equipotential curves.  
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Fig.5. Zero velocity curves in the ( zx, ) plane and locations of the out of plane equilibria for 1.01 q , 02.01 q and 

002.01 q  correspondingly. The locations of the primary bodies are presented too.  Note:  The value of ,5.0 and 

9.02 q  are fixed for all cases 
 

 

Fig.6. Zero velocity curves in the ( zx, ) plane and locations of the out of plane equilibria for 12 q , 55.02 q and 

5.02 q  correspondingly. The locations of the primary bodies are presented too.  Note:  The value of ,5.0 and 

002.01 q  are fixed for all cases 

5 Linear stability of the equilibrium points 

To determine the linear stability of the out of plane equilibrium points 
ZL 2,1 we transfer the origin to ( 00 ,0, zx ) and linearize 

the equations of motion, obtaining: 

 2 = 0
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where the superscript ‗o‘ indicates that the partial derivatives are to be evaluated at the equilibrium point. 

Explicitly, the partial derivatives of system (9) are  
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The characteristic equation corresponding to system (9) is given by 

0246  cba                   (15) 

where  

,4 000
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,)(4 200000000
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.)( 000020

zzyyxxyyxzc   

which is a polynomial of sixth degree in λ. 

The eigenvalues of the characteristic equation (15) determine the stability or instability of the respective equilibrium points. 

An equilibrium point is stable only when all roots of the characteristic equation for λ are pure imaginary. Otherwise, the 

equilibrium point is unstable. 

As a particular example we compute the characteristic roots 6,...,2,1, ii  which are shown in Tables 5, 6, 7 and 8 for 

5.0  and for a wide range of the radiation factors 1q and .2q  Here the letters U and S stand for unstable and stable, 

respectively. 

  Table 5. Stability table for the equilibrium points as a function of 
2q for 1.0,5.0 1  q   

2q  
                      2,1  

             4,3                    6,5                  
 Stability 

1.0 i8879650.07200969.0      i2083523.1  i8879650.07200969.0       U 

0.5 i7926044.05678338.0      i1783153.1  i7926044.05678338.0       U 

0.11            i0344721.1     i9564760.0              i1225610.0      S 

 

Table 6. Stability table for the equilibrium points as a function of 
2q for 02.0,5.0 1  q   

2q  
                      2,1  

             4,3                    6,5                  
 Stability 

1.0 i9339548.07849378.0      i2197178.1  i9339548.07849378.0       U 

0.5 i8380485.06441616.0      i1938332.1  i8380485.06441616.0       U 

0.03            i0515113.1     i9249563.0              i1969260.0      S 

Table 7. Stability table for the equilibrium points as a function of 
2q for 015.0,5.0 1  q   

2q  
                      2,1  

             4,3                    6,5                  
 Stability 

1.0 i9379974.07904498.0      i2206325.1  i9379974.07904498.0       U 

0.5 i8368136.06421885.0      i1934396.1  i8368136.06421885.0       U 

0.12 
           i0909069.1     i7739479.0              i4592676.0      S 

 

Table 8. Stability table for the equilibrium points as a function of 
2q for 002.0,5.0 1  q   

2q  
                      2,1  

             4,3                    6,5                  
 Stability 

1.0 i9519737.08093070.0      i2237024.1  i9519737.08093070.0       U 

0.5 i6899045.03438500.0      i1333707.1  i6899045.03438500.0       U 

0.12 
           i0541033.1     i9192555.0              i0541033.1      S 

Analysis of Tables 5, 6, 7 and 8 reveal that there is a limited value of the radiation factors for which the equilibrium points 

are stable. These results are in agreement with [21]. 

6 Discussion and conclusion 
We studied the photogravitational Copenhagen restricted three-body problem in terms of its three dimensional dynamical 

properties. We have found that the equations of motion given in the literature allow the existence of out of plane equilibrium 

points. There are two out of plane equilibrium points that lie in the ( zx, ) plane in symmetrical positions with respect to the  

( yx, ) plane. The effects of the radiation parameters involved on the positions of the out of plane points are shown in Tables 

1—4 (as well as in Figs. 1—4). It is observed that they have influence on the positions of the out of plane equilibrium points. 

Furthermore, the system parameters is also seen to have significant effects on the topology of the zero velocity curves in the  

( zx, ) plane (Figs.5 and 6). Finally, the stability of these points has been achieved numerically by determining the roots of 
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 the characteristic equation (15). A numerical computation of the roots of (15) obtained in Tables 5—8 and other cases where 

the point exits show that there is a limited value of the radiation factors for which the equilibrium points are stable. These 

results are in agreement with [21]. We hope that our investigation and the corresponding outcomes to be useful in connection 

with planetary system formation, satellite motion, etc. 

Finally, out of plane equilibrium points in the photogravitational Copenhagen restricted three-body problem with angular 

velocity we will present in a future article. 
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